A Practical Diophantine Approximation for Sparse Linear Array Direction Finding

This article presents a computationally efficient, fixed complexity algorithm for estimating the angle of arrival of a radio frequency signal that impinges on a sparse linear array of sensors. The likelihood function for the bearing estimation problem is reduced to an inhomogeneous Diophantine appro...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on aerospace and electronic systems Vol. 57; no. 3; pp. 1405 - 1412
Main Authors Sirianunpiboon, Songsri, Ly, Peter Q. C., Elton, Stephen D.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9251
1557-9603
DOI10.1109/TAES.2020.3046080

Cover

More Information
Summary:This article presents a computationally efficient, fixed complexity algorithm for estimating the angle of arrival of a radio frequency signal that impinges on a sparse linear array of sensors. The likelihood function for the bearing estimation problem is reduced to an inhomogeneous Diophantine approximation problem involving an unknown set of integer multiples of <inline-formula><tex-math notation="LaTeX">2\pi</tex-math></inline-formula>. In solving for the integers, we propose a modification to the Cassels algorithm and generate an approximate linearized maximum-likelihood (ML) estimate of bearing. The number of iterations for convergence of the algorithm can be precomputed, which allows the algorithm to have fixed computational complexity. The proposed technique applies to a large class of array configurations, allowing the array configuration to be chosen to optimize estimation performance rather than to suit the algorithm. The simulation results show the performance of the proposed bearing estimation algorithm to be very close to that of ML estimation, but with a significantly reduced computational overhead.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2020.3046080