LFSamba: Marry SAM With Mamba for Light Field Salient Object Detection

A light field camera can reconstruct 3D scenes using captured multi-focus images that contain rich spatial geometric information, enhancing applications in stereoscopic photography, virtual reality, and robotic vision. In this work, a state-of-the-art salient object detection model for multi-focus l...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 31; pp. 3144 - 3148
Main Authors Liu, Zhengyi, Wang, Longzhen, Fang, Xianyong, Tu, Zhengzheng, Wang, Linbo
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1070-9908
1558-2361
DOI10.1109/LSP.2024.3493799

Cover

Abstract A light field camera can reconstruct 3D scenes using captured multi-focus images that contain rich spatial geometric information, enhancing applications in stereoscopic photography, virtual reality, and robotic vision. In this work, a state-of-the-art salient object detection model for multi-focus light field images, called LFSamba, is introduced to emphasize four main insights: (a) Efficient feature extraction, where SAM is used to extract modality-aware discriminative features; (b) Inter-slice relation modeling, leveraging Mamba to capture long-range dependencies across multiple focal slices, thus extracting implicit depth cues; (c) Inter-modal relation modeling, utilizing Mamba to integrate all-focus and multi-focus images, enabling mutual enhancement; (d) Weakly supervised learning capability, developing a scribble annotation dataset from an existing pixel-level mask dataset, establishing the first scribble-supervised baseline for light field salient object detection.
AbstractList A light field camera can reconstruct 3D scenes using captured multi-focus images that contain rich spatial geometric information, enhancing applications in stereoscopic photography, virtual reality, and robotic vision. In this work, a state-of-the-art salient object detection model for multi-focus light field images, called LFSamba, is introduced to emphasize four main insights: (a) Efficient feature extraction, where SAM is used to extract modality-aware discriminative features; (b) Inter-slice relation modeling, leveraging Mamba to capture long-range dependencies across multiple focal slices, thus extracting implicit depth cues; (c) Inter-modal relation modeling, utilizing Mamba to integrate all-focus and multi-focus images, enabling mutual enhancement; (d) Weakly supervised learning capability, developing a scribble annotation dataset from an existing pixel-level mask dataset, establishing the first scribble-supervised baseline for light field salient object detection.
Author Tu, Zhengzheng
Liu, Zhengyi
Wang, Longzhen
Wang, Linbo
Fang, Xianyong
Author_xml – sequence: 1
  givenname: Zhengyi
  orcidid: 0000-0003-3265-823X
  surname: Liu
  fullname: Liu, Zhengyi
  email: liuzywen@ahu.edu.cn
  organization: School of Computer Science and Technology, Anhui University, Hefei, China
– sequence: 2
  givenname: Longzhen
  orcidid: 0009-0007-3278-3088
  surname: Wang
  fullname: Wang, Longzhen
  email: 1774537072@qq.com
  organization: School of Computer Science and Technology, Anhui University, Hefei, China
– sequence: 3
  givenname: Xianyong
  orcidid: 0000-0002-6045-8430
  surname: Fang
  fullname: Fang, Xianyong
  email: fangxianyong@ahu.edu.cn
  organization: School of Computer Science and Technology, Anhui University, Hefei, China
– sequence: 4
  givenname: Zhengzheng
  orcidid: 0000-0002-9689-8657
  surname: Tu
  fullname: Tu, Zhengzheng
  email: zhengzhengahu@163.com
  organization: School of Computer Science and Technology, Anhui University, Hefei, China
– sequence: 5
  givenname: Linbo
  orcidid: 0000-0001-7276-7065
  surname: Wang
  fullname: Wang, Linbo
  email: wanglb@ahu.edu.cn
  organization: School of Computer Science and Technology, Anhui University, Hefei, China
BookMark eNpNkDFPwzAQhS0EEm1hZ2CwxJxy9tlxzFYVAkipihQQo-UkDk3VJsVJh_57XLUD07s7vXdP-sbksu1aR8gdgyljoB-z_GPKgYspCo1K6wsyYlImEceYXYYZFERaQ3JNxn2_BoCEJXJE0izN7bawT3RhvT_QfLag382wCmu40rrzNGt-VgNNG7epaG43jWsHuizWrhzosxuCNF17Q65qu-nd7Vkn5Ct9-Zy_Rdny9X0-y6KSCzlEClhcgdSsFCxR6KyuKowLKHVVllKiKrAqFNYCQNXSCuSokkTbokTJZc1xQh5Of3e--927fjDrbu_bUGmQIWjkMRfBBSdX6bu-9642O99srT8YBuZIywRa5kjLnGmFyP0p0jjn_tmVUIwD_gERE2Sm
CODEN ISPLEM
Cites_doi 10.1109/LSP.2024.3374079
10.1109/TPAMI.2023.3235415
10.1109/TIP.2020.2990341
10.1109/ICME55011.2023.00404
10.1109/tcsvt.2024.3437685
10.1109/CVPR.2017.404
10.1109/LSP.2024.3383798
10.1609/aaai.v34i07.6860
10.1109/TIP.2022.3207605
10.1109/LSP.2020.3044544
10.1016/j.imavis.2022.104595
10.1109/LSP.2023.3291311
10.1145/3107956
10.1109/CVPR52688.2022.00180
10.1609/aaai.v35i4.16434
10.1109/TCSVT.2023.3281465
10.1016/j.imavis.2021.104352
10.1016/j.neucom.2022.03.056
10.1109/ICME55011.2023.00407
10.1109/CVPR.2014.359
10.48550/arXiv.2010.11929
10.1109/ICCV.2019.00893
10.1109/TCYB.2021.3095512
10.1109/CVPR.2019.00623
10.1109/LSP.2023.3342613
10.24963/ijcai.2019/127
10.1109/ICCV48922.2021.00467
10.1109/CVPR42600.2020.01256
10.1109/TMM.2023.3274933
10.1109/ICCV51070.2023.00371
10.1109/TIP.2021.3071691
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2024.3493799
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 3148
ExternalDocumentID 10_1109_LSP_2024_3493799
10747120
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62376005
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-7016d0591c41873ea9dd36b0c9dcc5537b3db73f4007f5a43237889abc3525f23
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Mon Jun 30 12:44:38 EDT 2025
Wed Oct 01 03:03:35 EDT 2025
Wed Aug 27 03:06:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-7016d0591c41873ea9dd36b0c9dcc5537b3db73f4007f5a43237889abc3525f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3265-823X
0000-0002-6045-8430
0009-0007-3278-3088
0000-0001-7276-7065
0000-0002-9689-8657
PQID 3130932624
PQPubID 75747
PageCount 5
ParticipantIDs proquest_journals_3130932624
ieee_primary_10747120
crossref_primary_10_1109_LSP_2024_3493799
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
Zhang (ref15) 2019
ref34
ref37
ref14
ref36
ref31
ref30
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
Wei (ref22) 2020
Liu (ref21) 2024
Shi (ref18) 2015; 1
Gu (ref8) 2024
ref24
ref23
ref26
ref25
Gu (ref19) 2022
ref28
ref27
Zhu (ref20) 2024
ref29
ref7
ref9
ref4
ref3
ref5
Chen (ref6) 2022; 35
ref40
Zhang (ref11) 2021
References_xml – ident: ref2
  doi: 10.1109/LSP.2024.3374079
– ident: ref32
  doi: 10.1109/TPAMI.2023.3235415
– ident: ref14
  doi: 10.1109/TIP.2020.2990341
– ident: ref23
  doi: 10.1109/ICME55011.2023.00404
– volume: 1
  start-page: 802
  volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst.
  year: 2015
  ident: ref18
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
– ident: ref34
  doi: 10.1109/tcsvt.2024.3437685
– ident: ref35
  doi: 10.1109/CVPR.2017.404
– ident: ref3
  doi: 10.1109/LSP.2024.3383798
– ident: ref16
  doi: 10.1609/aaai.v34i07.6860
– ident: ref40
  doi: 10.1109/TIP.2022.3207605
– start-page: 1
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2024
  ident: ref20
  article-title: Vision mamba: Efficient visual representation learning with bidirectional state space model
– ident: ref4
  doi: 10.1109/LSP.2020.3044544
– start-page: 1
  volume-title: Proc. Brit. Mach. Vis. Conf.
  year: 2021
  ident: ref11
  article-title: Learning synergistic attention for light field salient object detection
– ident: ref30
  doi: 10.1016/j.imavis.2022.104595
– ident: ref1
  doi: 10.1109/LSP.2023.3291311
– start-page: 898
  volume-title: Proc. 33rd Int. Conf. Neural Inf. Process. Syst.
  year: 2019
  ident: ref15
  article-title: Memory-oriented decoder for light field salient object detection
– start-page: 12321
  volume-title: Proc. AAAI Conf. Artif. Intell.
  year: 2020
  ident: ref22
  article-title: F3 Net: Fusion, feedback and focus for salient object detection
– start-page: 1
  volume-title: Proc. Conf. Lang. Model.
  year: 2024
  ident: ref8
  article-title: Mamba: Linear-time sequence modeling with selective state spaces
– ident: ref25
  doi: 10.1145/3107956
– ident: ref17
  doi: 10.1109/CVPR52688.2022.00180
– ident: ref39
  doi: 10.1609/aaai.v35i4.16434
– ident: ref13
  doi: 10.1109/TCSVT.2023.3281465
– ident: ref29
  doi: 10.1016/j.imavis.2021.104352
– ident: ref10
  doi: 10.1016/j.neucom.2022.03.056
– ident: ref31
  doi: 10.1109/ICME55011.2023.00407
– ident: ref24
  doi: 10.1109/CVPR.2014.359
– ident: ref7
  doi: 10.48550/arXiv.2010.11929
– ident: ref26
  doi: 10.1109/ICCV.2019.00893
– volume: 35
  start-page: 16664
  year: 2022
  ident: ref6
  article-title: AdaptFormer: Adapting vision transformers for scalable visual recognition
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref28
  doi: 10.1109/TCYB.2021.3095512
– ident: ref36
  doi: 10.1109/CVPR.2019.00623
– ident: ref9
  doi: 10.1109/LSP.2023.3342613
– start-page: 1
  volume-title: proc. 38th Annu. Conf. Neural Inf. Process. Syst.
  year: 2024
  ident: ref21
  article-title: VMamba: Visual state space model
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  year: 2022
  ident: ref19
  article-title: Efficiently modeling long sequences with structured state spaces
– ident: ref27
  doi: 10.24963/ijcai.2019/127
– ident: ref12
  doi: 10.1109/ICCV48922.2021.00467
– ident: ref37
  doi: 10.1109/CVPR42600.2020.01256
– ident: ref33
  doi: 10.1109/TMM.2023.3274933
– ident: ref5
  doi: 10.1109/ICCV51070.2023.00371
– ident: ref38
  doi: 10.1109/TIP.2021.3071691
SSID ssj0008185
Score 2.4340384
Snippet A light field camera can reconstruct 3D scenes using captured multi-focus images that contain rich spatial geometric information, enhancing applications in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3144
SubjectTerms Adaptation models
Annotations
Convolution
Costs
Datasets
Feature extraction
Field cameras
Image enhancement
Image reconstruction
light field
Machine vision
Mamba
Modelling
multi-focus
Object detection
Object recognition
Salience
salient object detection
SAM
Solid modeling
Stereophotography
Supervised learning
Three-dimensional displays
Transformers
Virtual reality
Title LFSamba: Marry SAM With Mamba for Light Field Salient Object Detection
URI https://ieeexplore.ieee.org/document/10747120
https://www.proquest.com/docview/3130932624
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG90Jz34OeN0mh68eGADWih4W1SymG2azMXdSFtKNEZmJjvoX-97hemiMfEGpIXmvfI-2t_7lZAziRxaroqdMHdzh4OKHcmZcYQ2UmbQi-WYKA5HYX_Cb6bBtC5Wt7UwxhgLPjMdvLR7-dlML3CprIvgQeH5kKGviyisirW-zC56ngpg6DpgYqPlnqQbdwfjO8gEfd5hHLyxpXn99kH2UJVflti6l2SbjJYDq1Alz51FqTr64wdn479HvkO26kCT9qqZsUvWTLFHNlfoB_dJMkjG8kXJCzqU8_k7HfeG9OGpfIRbeEohnKUDzN1pgjA3OoaQHb5CbxWu3dArU1oYV9Ekk-T6_rLv1OcqONrnQekICPMyCKs8zb1IMCPjLGOhcnWcaR0ETCgkXWY5HpmeB6A6H0nnY6k0cqfmPjsgjWJWmENCQ6ElmEuWRzm0Y0xxz0jhhxrRcyIIW-R8Ken0taLPSG3a4cYpaCVFraS1VlqkiYJbaVfJrEXaS92k9Q_2ljIPt3D90OdHf3Q7Jhv49mq5pE0a5XxhTiCAKNWpnTif1EC-rA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG-MHtSDnzNOp_bgxQMb0ALD26KSqTBNtsXdSFtKNMbNTHbQv973CtNFY-INSJs2feV9tL_3e4ScCuTQsmVo-bmdWxxEbAnOtBUoLUQGvViOgWLS87tDfjPyRlWyusmF0Vob8Jlu4qO5y88maoZHZS0EDwaOCxH6isc598p0rS_Fi7anhBjaFijZ9vxW0g5bcf8eYkGXNxkHe2yIXr-tkCmr8ksXGwMTbZLefGolruS5OStkU338YG3899y3yEblatJOuTe2yZIe75D1BQLCXRLFUV-8SHFOEzGdvtN-J6EPT8UjvMJXCg4tjTF6pxEC3WgfnHYYhd5JPL2hl7owQK5xjQyjq8FF16oqK1jK5V5hBeDoZeBYOYo77YBpEWYZ86Wtwkwpz2OBRNpllmPR9NwD4blIOx8KqZA9NXfZHlkeT8Z6n1A_UAIUJsvbObRjTHJHi8D1FeLnAs-vk7P5SqevJYFGagIPO0xBKilKJa2kUic1XLiFduWa1UljLpu0-sXeUubgJa7ru_zgj24nZLU7SOI0vu7dHpI1HKk8PGmQ5WI600fgThTy2GyiTwRJwfk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LFSamba%3A+Marry+SAM+With+Mamba+for+Light+Field+Salient+Object+Detection&rft.jtitle=IEEE+signal+processing+letters&rft.au=Liu%2C+Zhengyi&rft.au=Wang%2C+Longzhen&rft.au=Fang%2C+Xianyong&rft.au=Tu%2C+Zhengzheng&rft.date=2024&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=31&rft.spage=3144&rft.epage=3148&rft_id=info:doi/10.1109%2FLSP.2024.3493799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2024_3493799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon