LFSamba: Marry SAM With Mamba for Light Field Salient Object Detection
A light field camera can reconstruct 3D scenes using captured multi-focus images that contain rich spatial geometric information, enhancing applications in stereoscopic photography, virtual reality, and robotic vision. In this work, a state-of-the-art salient object detection model for multi-focus l...
Saved in:
| Published in | IEEE signal processing letters Vol. 31; pp. 3144 - 3148 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1070-9908 1558-2361 |
| DOI | 10.1109/LSP.2024.3493799 |
Cover
| Abstract | A light field camera can reconstruct 3D scenes using captured multi-focus images that contain rich spatial geometric information, enhancing applications in stereoscopic photography, virtual reality, and robotic vision. In this work, a state-of-the-art salient object detection model for multi-focus light field images, called LFSamba, is introduced to emphasize four main insights: (a) Efficient feature extraction, where SAM is used to extract modality-aware discriminative features; (b) Inter-slice relation modeling, leveraging Mamba to capture long-range dependencies across multiple focal slices, thus extracting implicit depth cues; (c) Inter-modal relation modeling, utilizing Mamba to integrate all-focus and multi-focus images, enabling mutual enhancement; (d) Weakly supervised learning capability, developing a scribble annotation dataset from an existing pixel-level mask dataset, establishing the first scribble-supervised baseline for light field salient object detection. |
|---|---|
| AbstractList | A light field camera can reconstruct 3D scenes using captured multi-focus images that contain rich spatial geometric information, enhancing applications in stereoscopic photography, virtual reality, and robotic vision. In this work, a state-of-the-art salient object detection model for multi-focus light field images, called LFSamba, is introduced to emphasize four main insights: (a) Efficient feature extraction, where SAM is used to extract modality-aware discriminative features; (b) Inter-slice relation modeling, leveraging Mamba to capture long-range dependencies across multiple focal slices, thus extracting implicit depth cues; (c) Inter-modal relation modeling, utilizing Mamba to integrate all-focus and multi-focus images, enabling mutual enhancement; (d) Weakly supervised learning capability, developing a scribble annotation dataset from an existing pixel-level mask dataset, establishing the first scribble-supervised baseline for light field salient object detection. |
| Author | Tu, Zhengzheng Liu, Zhengyi Wang, Longzhen Wang, Linbo Fang, Xianyong |
| Author_xml | – sequence: 1 givenname: Zhengyi orcidid: 0000-0003-3265-823X surname: Liu fullname: Liu, Zhengyi email: liuzywen@ahu.edu.cn organization: School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 2 givenname: Longzhen orcidid: 0009-0007-3278-3088 surname: Wang fullname: Wang, Longzhen email: 1774537072@qq.com organization: School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 3 givenname: Xianyong orcidid: 0000-0002-6045-8430 surname: Fang fullname: Fang, Xianyong email: fangxianyong@ahu.edu.cn organization: School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 4 givenname: Zhengzheng orcidid: 0000-0002-9689-8657 surname: Tu fullname: Tu, Zhengzheng email: zhengzhengahu@163.com organization: School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 5 givenname: Linbo orcidid: 0000-0001-7276-7065 surname: Wang fullname: Wang, Linbo email: wanglb@ahu.edu.cn organization: School of Computer Science and Technology, Anhui University, Hefei, China |
| BookMark | eNpNkDFPwzAQhS0EEm1hZ2CwxJxy9tlxzFYVAkipihQQo-UkDk3VJsVJh_57XLUD07s7vXdP-sbksu1aR8gdgyljoB-z_GPKgYspCo1K6wsyYlImEceYXYYZFERaQ3JNxn2_BoCEJXJE0izN7bawT3RhvT_QfLag382wCmu40rrzNGt-VgNNG7epaG43jWsHuizWrhzosxuCNF17Q65qu-nd7Vkn5Ct9-Zy_Rdny9X0-y6KSCzlEClhcgdSsFCxR6KyuKowLKHVVllKiKrAqFNYCQNXSCuSokkTbokTJZc1xQh5Of3e--927fjDrbu_bUGmQIWjkMRfBBSdX6bu-9642O99srT8YBuZIywRa5kjLnGmFyP0p0jjn_tmVUIwD_gERE2Sm |
| CODEN | ISPLEM |
| Cites_doi | 10.1109/LSP.2024.3374079 10.1109/TPAMI.2023.3235415 10.1109/TIP.2020.2990341 10.1109/ICME55011.2023.00404 10.1109/tcsvt.2024.3437685 10.1109/CVPR.2017.404 10.1109/LSP.2024.3383798 10.1609/aaai.v34i07.6860 10.1109/TIP.2022.3207605 10.1109/LSP.2020.3044544 10.1016/j.imavis.2022.104595 10.1109/LSP.2023.3291311 10.1145/3107956 10.1109/CVPR52688.2022.00180 10.1609/aaai.v35i4.16434 10.1109/TCSVT.2023.3281465 10.1016/j.imavis.2021.104352 10.1016/j.neucom.2022.03.056 10.1109/ICME55011.2023.00407 10.1109/CVPR.2014.359 10.48550/arXiv.2010.11929 10.1109/ICCV.2019.00893 10.1109/TCYB.2021.3095512 10.1109/CVPR.2019.00623 10.1109/LSP.2023.3342613 10.24963/ijcai.2019/127 10.1109/ICCV48922.2021.00467 10.1109/CVPR42600.2020.01256 10.1109/TMM.2023.3274933 10.1109/ICCV51070.2023.00371 10.1109/TIP.2021.3071691 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LSP.2024.3493799 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2361 |
| EndPage | 3148 |
| ExternalDocumentID | 10_1109_LSP_2024_3493799 10747120 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62376005 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c245t-7016d0591c41873ea9dd36b0c9dcc5537b3db73f4007f5a43237889abc3525f23 |
| IEDL.DBID | RIE |
| ISSN | 1070-9908 |
| IngestDate | Mon Jun 30 12:44:38 EDT 2025 Wed Oct 01 03:03:35 EDT 2025 Wed Aug 27 03:06:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-7016d0591c41873ea9dd36b0c9dcc5537b3db73f4007f5a43237889abc3525f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3265-823X 0000-0002-6045-8430 0009-0007-3278-3088 0000-0001-7276-7065 0000-0002-9689-8657 |
| PQID | 3130932624 |
| PQPubID | 75747 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_3130932624 ieee_primary_10747120 crossref_primary_10_1109_LSP_2024_3493799 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE signal processing letters |
| PublicationTitleAbbrev | LSP |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 Zhang (ref15) 2019 ref34 ref37 ref14 ref36 ref31 ref30 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 Wei (ref22) 2020 Liu (ref21) 2024 Shi (ref18) 2015; 1 Gu (ref8) 2024 ref24 ref23 ref26 ref25 Gu (ref19) 2022 ref28 ref27 Zhu (ref20) 2024 ref29 ref7 ref9 ref4 ref3 ref5 Chen (ref6) 2022; 35 ref40 Zhang (ref11) 2021 |
| References_xml | – ident: ref2 doi: 10.1109/LSP.2024.3374079 – ident: ref32 doi: 10.1109/TPAMI.2023.3235415 – ident: ref14 doi: 10.1109/TIP.2020.2990341 – ident: ref23 doi: 10.1109/ICME55011.2023.00404 – volume: 1 start-page: 802 volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst. year: 2015 ident: ref18 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting – ident: ref34 doi: 10.1109/tcsvt.2024.3437685 – ident: ref35 doi: 10.1109/CVPR.2017.404 – ident: ref3 doi: 10.1109/LSP.2024.3383798 – ident: ref16 doi: 10.1609/aaai.v34i07.6860 – ident: ref40 doi: 10.1109/TIP.2022.3207605 – start-page: 1 volume-title: Proc. Int. Conf. Mach. Learn. year: 2024 ident: ref20 article-title: Vision mamba: Efficient visual representation learning with bidirectional state space model – ident: ref4 doi: 10.1109/LSP.2020.3044544 – start-page: 1 volume-title: Proc. Brit. Mach. Vis. Conf. year: 2021 ident: ref11 article-title: Learning synergistic attention for light field salient object detection – ident: ref30 doi: 10.1016/j.imavis.2022.104595 – ident: ref1 doi: 10.1109/LSP.2023.3291311 – start-page: 898 volume-title: Proc. 33rd Int. Conf. Neural Inf. Process. Syst. year: 2019 ident: ref15 article-title: Memory-oriented decoder for light field salient object detection – start-page: 12321 volume-title: Proc. AAAI Conf. Artif. Intell. year: 2020 ident: ref22 article-title: F3 Net: Fusion, feedback and focus for salient object detection – start-page: 1 volume-title: Proc. Conf. Lang. Model. year: 2024 ident: ref8 article-title: Mamba: Linear-time sequence modeling with selective state spaces – ident: ref25 doi: 10.1145/3107956 – ident: ref17 doi: 10.1109/CVPR52688.2022.00180 – ident: ref39 doi: 10.1609/aaai.v35i4.16434 – ident: ref13 doi: 10.1109/TCSVT.2023.3281465 – ident: ref29 doi: 10.1016/j.imavis.2021.104352 – ident: ref10 doi: 10.1016/j.neucom.2022.03.056 – ident: ref31 doi: 10.1109/ICME55011.2023.00407 – ident: ref24 doi: 10.1109/CVPR.2014.359 – ident: ref7 doi: 10.48550/arXiv.2010.11929 – ident: ref26 doi: 10.1109/ICCV.2019.00893 – volume: 35 start-page: 16664 year: 2022 ident: ref6 article-title: AdaptFormer: Adapting vision transformers for scalable visual recognition publication-title: Adv. Neural Inf. Process. Syst. – ident: ref28 doi: 10.1109/TCYB.2021.3095512 – ident: ref36 doi: 10.1109/CVPR.2019.00623 – ident: ref9 doi: 10.1109/LSP.2023.3342613 – start-page: 1 volume-title: proc. 38th Annu. Conf. Neural Inf. Process. Syst. year: 2024 ident: ref21 article-title: VMamba: Visual state space model – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations year: 2022 ident: ref19 article-title: Efficiently modeling long sequences with structured state spaces – ident: ref27 doi: 10.24963/ijcai.2019/127 – ident: ref12 doi: 10.1109/ICCV48922.2021.00467 – ident: ref37 doi: 10.1109/CVPR42600.2020.01256 – ident: ref33 doi: 10.1109/TMM.2023.3274933 – ident: ref5 doi: 10.1109/ICCV51070.2023.00371 – ident: ref38 doi: 10.1109/TIP.2021.3071691 |
| SSID | ssj0008185 |
| Score | 2.4340384 |
| Snippet | A light field camera can reconstruct 3D scenes using captured multi-focus images that contain rich spatial geometric information, enhancing applications in... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3144 |
| SubjectTerms | Adaptation models Annotations Convolution Costs Datasets Feature extraction Field cameras Image enhancement Image reconstruction light field Machine vision Mamba Modelling multi-focus Object detection Object recognition Salience salient object detection SAM Solid modeling Stereophotography Supervised learning Three-dimensional displays Transformers Virtual reality |
| Title | LFSamba: Marry SAM With Mamba for Light Field Salient Object Detection |
| URI | https://ieeexplore.ieee.org/document/10747120 https://www.proquest.com/docview/3130932624 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2361 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008185 issn: 1070-9908 databaseCode: RIE dateStart: 19940101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG90Jz34OeN0mh68eGADWih4W1SymG2azMXdSFtKNEZmJjvoX-97hemiMfEGpIXmvfI-2t_7lZAziRxaroqdMHdzh4OKHcmZcYQ2UmbQi-WYKA5HYX_Cb6bBtC5Wt7UwxhgLPjMdvLR7-dlML3CprIvgQeH5kKGviyisirW-zC56ngpg6DpgYqPlnqQbdwfjO8gEfd5hHLyxpXn99kH2UJVflti6l2SbjJYDq1Alz51FqTr64wdn479HvkO26kCT9qqZsUvWTLFHNlfoB_dJMkjG8kXJCzqU8_k7HfeG9OGpfIRbeEohnKUDzN1pgjA3OoaQHb5CbxWu3dArU1oYV9Ekk-T6_rLv1OcqONrnQekICPMyCKs8zb1IMCPjLGOhcnWcaR0ETCgkXWY5HpmeB6A6H0nnY6k0cqfmPjsgjWJWmENCQ6ElmEuWRzm0Y0xxz0jhhxrRcyIIW-R8Ken0taLPSG3a4cYpaCVFraS1VlqkiYJbaVfJrEXaS92k9Q_2ljIPt3D90OdHf3Q7Jhv49mq5pE0a5XxhTiCAKNWpnTif1EC-rA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT4MwFG-MHtSDnzNOp_bgxQMb0ALD26KSqTBNtsXdSFtKNMbNTHbQv973CtNFY-INSJs2feV9tL_3e4ScCuTQsmVo-bmdWxxEbAnOtBUoLUQGvViOgWLS87tDfjPyRlWyusmF0Vob8Jlu4qO5y88maoZHZS0EDwaOCxH6isc598p0rS_Fi7anhBjaFijZ9vxW0g5bcf8eYkGXNxkHe2yIXr-tkCmr8ksXGwMTbZLefGolruS5OStkU338YG3899y3yEblatJOuTe2yZIe75D1BQLCXRLFUV-8SHFOEzGdvtN-J6EPT8UjvMJXCg4tjTF6pxEC3WgfnHYYhd5JPL2hl7owQK5xjQyjq8FF16oqK1jK5V5hBeDoZeBYOYo77YBpEWYZ86Wtwkwpz2OBRNpllmPR9NwD4blIOx8KqZA9NXfZHlkeT8Z6n1A_UAIUJsvbObRjTHJHi8D1FeLnAs-vk7P5SqevJYFGagIPO0xBKilKJa2kUic1XLiFduWa1UljLpu0-sXeUubgJa7ru_zgj24nZLU7SOI0vu7dHpI1HKk8PGmQ5WI600fgThTy2GyiTwRJwfk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LFSamba%3A+Marry+SAM+With+Mamba+for+Light+Field+Salient+Object+Detection&rft.jtitle=IEEE+signal+processing+letters&rft.au=Liu%2C+Zhengyi&rft.au=Wang%2C+Longzhen&rft.au=Fang%2C+Xianyong&rft.au=Tu%2C+Zhengzheng&rft.date=2024&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=31&rft.spage=3144&rft.epage=3148&rft_id=info:doi/10.1109%2FLSP.2024.3493799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2024_3493799 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |