A Rapid Adapting and Continual Learning Spiking Neural Network Path Planning Algorithm for Mobile Robots

Mapping traversal costs in an environment and planning paths based on this map are important for autonomous navigation. We present a neurorobotic navigation system that utilizes a Spiking Neural Network (SNN) Wavefront Planner and E-prop learning to concurrently map and plan paths in a large and com...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 9; no. 11; pp. 9542 - 9549
Main Authors Espino, Harrison, Bain, Robert, Krichmar, Jeffrey L.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2377-3766
2377-3766
DOI10.1109/LRA.2024.3457371

Cover

Abstract Mapping traversal costs in an environment and planning paths based on this map are important for autonomous navigation. We present a neurorobotic navigation system that utilizes a Spiking Neural Network (SNN) Wavefront Planner and E-prop learning to concurrently map and plan paths in a large and complex environment. We incorporate a novel method for mapping which, when combined with the Spiking Wavefront Planner (SWP), allows for adaptive planning by selectively considering any combination of costs. The system is tested on a mobile robot platform in an outdoor environment with obstacles and varying terrain. Results indicate that the system is capable of discerning features in the environment using three measures of cost, (1) energy expenditure by the wheels, (2) time spent in the presence of obstacles, and (3) terrain slope. In just twelve hours of online training, E-prop learns and incorporates traversal costs into the path planning maps by updating the delays in the SWP. On simulated paths, the SWP plans significantly shorter and lower cost paths than A* and RRT*. The SWP is compatible with neuromorphic hardware and could be used for applications requiring low size, weight, and power.
AbstractList Mapping traversal costs in an environment and planning paths based on this map are important for autonomous navigation. We present a neurorobotic navigation system that utilizes a Spiking Neural Network (SNN) Wavefront Planner and E-prop learning to concurrently map and plan paths in a large and complex environment. We incorporate a novel method for mapping which, when combined with the Spiking Wavefront Planner (SWP), allows for adaptive planning by selectively considering any combination of costs. The system is tested on a mobile robot platform in an outdoor environment with obstacles and varying terrain. Results indicate that the system is capable of discerning features in the environment using three measures of cost, (1) energy expenditure by the wheels, (2) time spent in the presence of obstacles, and (3) terrain slope. In just twelve hours of online training, E-prop learns and incorporates traversal costs into the path planning maps by updating the delays in the SWP. On simulated paths, the SWP plans significantly shorter and lower cost paths than A* and RRT*. The SWP is compatible with neuromorphic hardware and could be used for applications requiring low size, weight, and power.
Author Bain, Robert
Espino, Harrison
Krichmar, Jeffrey L.
Author_xml – sequence: 1
  givenname: Harrison
  orcidid: 0009-0001-7914-4220
  surname: Espino
  fullname: Espino, Harrison
  email: espinoh@uci.edu
  organization: Department of Computer Science, University of California, Irvine, Irvine, CA, USA
– sequence: 2
  givenname: Robert
  surname: Bain
  fullname: Bain, Robert
  email: rkbain@uci.edu
  organization: Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
– sequence: 3
  givenname: Jeffrey L.
  orcidid: 0000-0003-0739-2468
  surname: Krichmar
  fullname: Krichmar, Jeffrey L.
  email: jkrichma@uci.edu
  organization: Department of Cognitive Sciences and Department of Computer Science, University of California, Irvine, Irvine, CA, USA
BookMark eNpNkL1PwzAUxC1UJErpzsBgibnl2bHjZIwqvqRQqgJz5CQvbdrUDk4ixH9PQjt0eqfT3Tvpd01Gxhok5JbBnDEIH-J1NOfAxdwTUnmKXZAx95Saecr3R2f6ikybZgcATHLlhXJMthFd67rMaZTrui3NhmqT04U1ve50RWPUzgz2R13uh7vEzvX-Etsf6_Z0pdstXVXa_IeiamNd2W4PtLCOvtm0rJCubWrb5oZcFrpqcHq6E_L19Pi5eJnF78-viyieZVzIduYHWgDwDHWa-pgxjhAKxSUUDAGKTDCRB5mSCJgGPMh0KsJApgHwQIeFDLwJuT_-rZ397rBpk53tnOknE69HJUIIJe9TcExlzjaNwyKpXXnQ7jdhkAxIkx5pMiBNTkj7yt2xUiLiWdxX_Tbz_gCMtnNi
CODEN IRALC6
Cites_doi 10.1109/IJCNN48605.2020.9206642
10.1177/0278364906065387
10.1109/ICRA40945.2020.9196879
10.1007/s10514-022-10039-8
10.1109/ROBOT.1994.351061
10.1109/IJCNN54540.2023.10191940
10.1109/TCST.2008.2012116
10.1109/TCDS.2017.2655539
10.1109/JPROC.2014.2304638
10.1109/TRO.2023.3248510
10.1109/ISCAS.2017.8050932
10.1016/B978-0-12-416743-8.00003-8
10.1109/ACCESS.2021.3108177
10.3389/fnins.2022.1018006
10.1109/ICRA48891.2023.10161268
10.3390/drones7030211
10.1177/0278364911406761
10.1109/ICRA.2013.6630809
10.1109/TRO.2015.2463671
10.1177/027836498600500404
10.15607/RSS.2022.XVIII.019
10.1109/ICRA.2018.8460487
10.1109/TSSC.1968.300136
10.1109/LRA.2021.3057023
10.1177/0278364915594679
10.1007/978-3-031-16770-6_15
10.1109/JPROC.2021.3067593
10.1109/SSRR.2018.8468643
10.1038/s41467-020-17236-y
10.1109/ROBOT.2004.1307183
10.1109/MM.2018.112130359
10.3389/fnins.2020.00150
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2024.3457371
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 9549
ExternalDocumentID 10_1109_LRA_2024_3457371
10670281
Genre orig-research
GrantInformation_xml – fundername: NSF-FO
  grantid: IIS-2024633
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-19-1-0306
  funderid: 10.13039/100000181
– fundername: National Science Foundation
  grantid: 1813785
  funderid: 10.13039/100000001
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-68a4002ceabb6ec12e0947250f1e00fc414d8c75e0eb828cab4985b8028a9f583
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Mon Jun 30 15:48:12 EDT 2025
Wed Oct 01 00:34:18 EDT 2025
Wed Aug 27 02:29:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-68a4002ceabb6ec12e0947250f1e00fc414d8c75e0eb828cab4985b8028a9f583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-7914-4220
0000-0003-0739-2468
PQID 3109490952
PQPubID 4437225
PageCount 8
ParticipantIDs ieee_primary_10670281
crossref_primary_10_1109_LRA_2024_3457371
proquest_journals_3109490952
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
LAVALLE (ref12) 1998
ref34
ref15
ref14
ref31
ref30
ref11
Shaban (ref21) 2022
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
Bojarski (ref24) 2016; abs/1604.07316
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref35
  doi: 10.1109/IJCNN48605.2020.9206642
– ident: ref17
  doi: 10.1177/0278364906065387
– volume: abs/1604.07316
  year: 2016
  ident: ref24
  article-title: End to end learning for self-driving cars
  publication-title: CoRR
– ident: ref27
  doi: 10.1109/ICRA40945.2020.9196879
– ident: ref2
  doi: 10.1007/s10514-022-10039-8
– start-page: 619
  volume-title: Proc. 5th Conf. Robot Learn.
  year: 2022
  ident: ref21
  article-title: Semantic terrain classification for off-road autonomous driving
– ident: ref11
  doi: 10.1109/ROBOT.1994.351061
– ident: ref32
  doi: 10.1109/IJCNN54540.2023.10191940
– ident: ref13
  doi: 10.1109/TCST.2008.2012116
– ident: ref8
  doi: 10.1109/TCDS.2017.2655539
– ident: ref5
  doi: 10.1109/JPROC.2014.2304638
– ident: ref22
  doi: 10.1109/TRO.2023.3248510
– ident: ref6
  doi: 10.1109/ISCAS.2017.8050932
– ident: ref31
  doi: 10.1016/B978-0-12-416743-8.00003-8
– ident: ref3
  doi: 10.1109/ACCESS.2021.3108177
– ident: ref7
  doi: 10.3389/fnins.2022.1018006
– ident: ref20
  doi: 10.1109/ICRA48891.2023.10161268
– ident: ref1
  doi: 10.3390/drones7030211
– ident: ref14
  doi: 10.1177/0278364911406761
– ident: ref25
  doi: 10.1109/ICRA.2013.6630809
– ident: ref18
  doi: 10.1109/TRO.2015.2463671
– ident: ref16
  doi: 10.1177/027836498600500404
– ident: ref29
  doi: 10.15607/RSS.2022.XVIII.019
– year: 1998
  ident: ref12
  article-title: Rapidly-exploring random trees : A new tool for path planning
  publication-title: Res. Rep. 9811
– ident: ref23
  doi: 10.1109/ICRA.2018.8460487
– ident: ref10
  doi: 10.1109/TSSC.1968.300136
– ident: ref26
  doi: 10.1109/LRA.2021.3057023
– ident: ref15
  doi: 10.1177/0278364915594679
– ident: ref9
  doi: 10.1007/978-3-031-16770-6_15
– ident: ref4
  doi: 10.1109/JPROC.2021.3067593
– ident: ref28
  doi: 10.1109/SSRR.2018.8468643
– ident: ref30
  doi: 10.1038/s41467-020-17236-y
– ident: ref19
  doi: 10.1109/ROBOT.2004.1307183
– ident: ref33
  doi: 10.1109/MM.2018.112130359
– ident: ref34
  doi: 10.3389/fnins.2020.00150
SSID ssj0001527395
Score 2.3149478
Snippet Mapping traversal costs in an environment and planning paths based on this map are important for autonomous navigation. We present a neurorobotic navigation...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 9542
SubjectTerms Adaptive systems
Algorithms
Autonomous navigation
Autonomous robots
Autonomous vehicle navigation
Autonomous vehicles
Barriers
Costs
Hardware
Machine learning
Mapping
motion and path planning
Navigation
Navigation systems
Neural engineering
Neural networks
neurorobotics
Path planning
Planning
Robots
Simultaneous localization and mapping
Spiking
Terrain
Vehicle dynamics
Wave fronts
Title A Rapid Adapting and Continual Learning Spiking Neural Network Path Planning Algorithm for Mobile Robots
URI https://ieeexplore.ieee.org/document/10670281
https://www.proquest.com/docview/3109490952
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: KQ8
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiPKSBxaGlCS1Y3uMUCuEaIUKSGyRHxeogKaCdGHgt3POQ7yExBZFSeT4bN935_s-E3IcOYx8EOgHygkTMBm6wEilA_B0BMh1WPMrhqPk_JZd3PG7hqxecWEAoCo-g66_rPbyXWHnPlV26uXO0B9isLMoZFKTtT4TKl5KTPF2KzJUp5fjFAPAmHV7jIueiL65nuoslV8LcOVVBmtk1LanLiZ57M5L07VvP6Qa_93gdbLa4Eua1gNigyzAdJOsfFEd3CIPKR3r2cTR1OmZr3qmeuqol6maeH1S2kiu3tPr2cQn0qkX8MD7o7pinF4haKTtYUc0fbovXiblwzNF-EuHhcFlho4LU5Sv2-R20L85Ow-aAxcCGzNeBonUOKVjC9qYBGwUAwZ_AkFSHkEY5pZFzEkrOIRgMFKz2jAluZH4i1rlXPZ2yNK0mMIuoTnnIGSuLCQJcz2nIRYaHbIXCxJKhh1y0toim9W6GlkVj4QqQ7tl3m5ZY7cO2fZd--W5ulc75KC1XtbMvNfMK50yhcAx3vvjtX2y7L9eEwoPyFL5ModDRBalOSKLw_f-UTWuPgB-ksyb
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHIADO6KsPnDhkJKkdmIfIwQq0FaogMQt8jIpFdBUkF74esZZxCYkblGUKI7H9rwZz3sm5DiwGPkg0PekjbXHhG89LaTywNERIFN-xa_oD6LuPbt64A81Wb3kwgBAWXwGbXdZ7uXb3MxcquzUyZ2hP8RgZ4EzxnhF1_pMqTgxMcmbzUhfnvaGCYaAIWt3GI87cfDN-ZSnqfxagku_crFKBk2LqnKSp_as0G3z_kOs8d9NXiMrNcKkSTUk1skcTDbI8hfdwU3ymNChmo4tTayaurpnqiaWOqGqsVMopbXo6ojeTsculU6dhAfeH1Q14_QGYSNtjjuiyfMofx0Xjy8UATDt5xoXGjrMdV68bZH7i_O7s65XH7ngmZDxwouEwkkdGlBaR2CCEDD8ixEmZQH4fmZYwKwwMQcfNMZqRmkmBdcCf1HJjIvONpmf5BPYITTjHGKRSQNRxGzHKghjhS7ZyQXFUvgtctLYIp1WyhppGZH4MkW7pc5uaW23FtlyXfvluapXW2S_sV5az7231GmdMonQMdz947Ujsti96_fS3uXgeo8suS9V9MJ9Ml-8zuAAcUahD8vR9QGGbc63
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Rapid+Adapting+and+Continual+Learning+Spiking+Neural+Network+Path+Planning+Algorithm+for+Mobile+Robots&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Espino%2C+Harrison&rft.au=Bain%2C+Robert&rft.au=Krichmar%2C+Jeffrey+L.&rft.date=2024-11-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=9&rft.issue=11&rft.spage=9542&rft.epage=9549&rft_id=info:doi/10.1109%2FLRA.2024.3457371&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2024_3457371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon