A Rapid Adapting and Continual Learning Spiking Neural Network Path Planning Algorithm for Mobile Robots
Mapping traversal costs in an environment and planning paths based on this map are important for autonomous navigation. We present a neurorobotic navigation system that utilizes a Spiking Neural Network (SNN) Wavefront Planner and E-prop learning to concurrently map and plan paths in a large and com...
Saved in:
| Published in | IEEE robotics and automation letters Vol. 9; no. 11; pp. 9542 - 9549 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2377-3766 2377-3766 |
| DOI | 10.1109/LRA.2024.3457371 |
Cover
| Abstract | Mapping traversal costs in an environment and planning paths based on this map are important for autonomous navigation. We present a neurorobotic navigation system that utilizes a Spiking Neural Network (SNN) Wavefront Planner and E-prop learning to concurrently map and plan paths in a large and complex environment. We incorporate a novel method for mapping which, when combined with the Spiking Wavefront Planner (SWP), allows for adaptive planning by selectively considering any combination of costs. The system is tested on a mobile robot platform in an outdoor environment with obstacles and varying terrain. Results indicate that the system is capable of discerning features in the environment using three measures of cost, (1) energy expenditure by the wheels, (2) time spent in the presence of obstacles, and (3) terrain slope. In just twelve hours of online training, E-prop learns and incorporates traversal costs into the path planning maps by updating the delays in the SWP. On simulated paths, the SWP plans significantly shorter and lower cost paths than A* and RRT*. The SWP is compatible with neuromorphic hardware and could be used for applications requiring low size, weight, and power. |
|---|---|
| AbstractList | Mapping traversal costs in an environment and planning paths based on this map are important for autonomous navigation. We present a neurorobotic navigation system that utilizes a Spiking Neural Network (SNN) Wavefront Planner and E-prop learning to concurrently map and plan paths in a large and complex environment. We incorporate a novel method for mapping which, when combined with the Spiking Wavefront Planner (SWP), allows for adaptive planning by selectively considering any combination of costs. The system is tested on a mobile robot platform in an outdoor environment with obstacles and varying terrain. Results indicate that the system is capable of discerning features in the environment using three measures of cost, (1) energy expenditure by the wheels, (2) time spent in the presence of obstacles, and (3) terrain slope. In just twelve hours of online training, E-prop learns and incorporates traversal costs into the path planning maps by updating the delays in the SWP. On simulated paths, the SWP plans significantly shorter and lower cost paths than A* and RRT*. The SWP is compatible with neuromorphic hardware and could be used for applications requiring low size, weight, and power. |
| Author | Bain, Robert Espino, Harrison Krichmar, Jeffrey L. |
| Author_xml | – sequence: 1 givenname: Harrison orcidid: 0009-0001-7914-4220 surname: Espino fullname: Espino, Harrison email: espinoh@uci.edu organization: Department of Computer Science, University of California, Irvine, Irvine, CA, USA – sequence: 2 givenname: Robert surname: Bain fullname: Bain, Robert email: rkbain@uci.edu organization: Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA – sequence: 3 givenname: Jeffrey L. orcidid: 0000-0003-0739-2468 surname: Krichmar fullname: Krichmar, Jeffrey L. email: jkrichma@uci.edu organization: Department of Cognitive Sciences and Department of Computer Science, University of California, Irvine, Irvine, CA, USA |
| BookMark | eNpNkL1PwzAUxC1UJErpzsBgibnl2bHjZIwqvqRQqgJz5CQvbdrUDk4ixH9PQjt0eqfT3Tvpd01Gxhok5JbBnDEIH-J1NOfAxdwTUnmKXZAx95Saecr3R2f6ikybZgcATHLlhXJMthFd67rMaZTrui3NhmqT04U1ve50RWPUzgz2R13uh7vEzvX-Etsf6_Z0pdstXVXa_IeiamNd2W4PtLCOvtm0rJCubWrb5oZcFrpqcHq6E_L19Pi5eJnF78-viyieZVzIduYHWgDwDHWa-pgxjhAKxSUUDAGKTDCRB5mSCJgGPMh0KsJApgHwQIeFDLwJuT_-rZ397rBpk53tnOknE69HJUIIJe9TcExlzjaNwyKpXXnQ7jdhkAxIkx5pMiBNTkj7yt2xUiLiWdxX_Tbz_gCMtnNi |
| CODEN | IRALC6 |
| Cites_doi | 10.1109/IJCNN48605.2020.9206642 10.1177/0278364906065387 10.1109/ICRA40945.2020.9196879 10.1007/s10514-022-10039-8 10.1109/ROBOT.1994.351061 10.1109/IJCNN54540.2023.10191940 10.1109/TCST.2008.2012116 10.1109/TCDS.2017.2655539 10.1109/JPROC.2014.2304638 10.1109/TRO.2023.3248510 10.1109/ISCAS.2017.8050932 10.1016/B978-0-12-416743-8.00003-8 10.1109/ACCESS.2021.3108177 10.3389/fnins.2022.1018006 10.1109/ICRA48891.2023.10161268 10.3390/drones7030211 10.1177/0278364911406761 10.1109/ICRA.2013.6630809 10.1109/TRO.2015.2463671 10.1177/027836498600500404 10.15607/RSS.2022.XVIII.019 10.1109/ICRA.2018.8460487 10.1109/TSSC.1968.300136 10.1109/LRA.2021.3057023 10.1177/0278364915594679 10.1007/978-3-031-16770-6_15 10.1109/JPROC.2021.3067593 10.1109/SSRR.2018.8468643 10.1038/s41467-020-17236-y 10.1109/ROBOT.2004.1307183 10.1109/MM.2018.112130359 10.3389/fnins.2020.00150 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2024.3457371 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 9549 |
| ExternalDocumentID | 10_1109_LRA_2024_3457371 10670281 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF-FO grantid: IIS-2024633 – fundername: Air Force Office of Scientific Research grantid: FA9550-19-1-0306 funderid: 10.13039/100000181 – fundername: National Science Foundation grantid: 1813785 funderid: 10.13039/100000001 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c245t-68a4002ceabb6ec12e0947250f1e00fc414d8c75e0eb828cab4985b8028a9f583 |
| IEDL.DBID | RIE |
| ISSN | 2377-3766 |
| IngestDate | Mon Jun 30 15:48:12 EDT 2025 Wed Oct 01 00:34:18 EDT 2025 Wed Aug 27 02:29:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-68a4002ceabb6ec12e0947250f1e00fc414d8c75e0eb828cab4985b8028a9f583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-7914-4220 0000-0003-0739-2468 |
| PQID | 3109490952 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10670281 crossref_primary_10_1109_LRA_2024_3457371 proquest_journals_3109490952 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 LAVALLE (ref12) 1998 ref34 ref15 ref14 ref31 ref30 ref11 Shaban (ref21) 2022 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 Bojarski (ref24) 2016; abs/1604.07316 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref35 doi: 10.1109/IJCNN48605.2020.9206642 – ident: ref17 doi: 10.1177/0278364906065387 – volume: abs/1604.07316 year: 2016 ident: ref24 article-title: End to end learning for self-driving cars publication-title: CoRR – ident: ref27 doi: 10.1109/ICRA40945.2020.9196879 – ident: ref2 doi: 10.1007/s10514-022-10039-8 – start-page: 619 volume-title: Proc. 5th Conf. Robot Learn. year: 2022 ident: ref21 article-title: Semantic terrain classification for off-road autonomous driving – ident: ref11 doi: 10.1109/ROBOT.1994.351061 – ident: ref32 doi: 10.1109/IJCNN54540.2023.10191940 – ident: ref13 doi: 10.1109/TCST.2008.2012116 – ident: ref8 doi: 10.1109/TCDS.2017.2655539 – ident: ref5 doi: 10.1109/JPROC.2014.2304638 – ident: ref22 doi: 10.1109/TRO.2023.3248510 – ident: ref6 doi: 10.1109/ISCAS.2017.8050932 – ident: ref31 doi: 10.1016/B978-0-12-416743-8.00003-8 – ident: ref3 doi: 10.1109/ACCESS.2021.3108177 – ident: ref7 doi: 10.3389/fnins.2022.1018006 – ident: ref20 doi: 10.1109/ICRA48891.2023.10161268 – ident: ref1 doi: 10.3390/drones7030211 – ident: ref14 doi: 10.1177/0278364911406761 – ident: ref25 doi: 10.1109/ICRA.2013.6630809 – ident: ref18 doi: 10.1109/TRO.2015.2463671 – ident: ref16 doi: 10.1177/027836498600500404 – ident: ref29 doi: 10.15607/RSS.2022.XVIII.019 – year: 1998 ident: ref12 article-title: Rapidly-exploring random trees : A new tool for path planning publication-title: Res. Rep. 9811 – ident: ref23 doi: 10.1109/ICRA.2018.8460487 – ident: ref10 doi: 10.1109/TSSC.1968.300136 – ident: ref26 doi: 10.1109/LRA.2021.3057023 – ident: ref15 doi: 10.1177/0278364915594679 – ident: ref9 doi: 10.1007/978-3-031-16770-6_15 – ident: ref4 doi: 10.1109/JPROC.2021.3067593 – ident: ref28 doi: 10.1109/SSRR.2018.8468643 – ident: ref30 doi: 10.1038/s41467-020-17236-y – ident: ref19 doi: 10.1109/ROBOT.2004.1307183 – ident: ref33 doi: 10.1109/MM.2018.112130359 – ident: ref34 doi: 10.3389/fnins.2020.00150 |
| SSID | ssj0001527395 |
| Score | 2.3149478 |
| Snippet | Mapping traversal costs in an environment and planning paths based on this map are important for autonomous navigation. We present a neurorobotic navigation... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 9542 |
| SubjectTerms | Adaptive systems Algorithms Autonomous navigation Autonomous robots Autonomous vehicle navigation Autonomous vehicles Barriers Costs Hardware Machine learning Mapping motion and path planning Navigation Navigation systems Neural engineering Neural networks neurorobotics Path planning Planning Robots Simultaneous localization and mapping Spiking Terrain Vehicle dynamics Wave fronts |
| Title | A Rapid Adapting and Continual Learning Spiking Neural Network Path Planning Algorithm for Mobile Robots |
| URI | https://ieeexplore.ieee.org/document/10670281 https://www.proquest.com/docview/3109490952 |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: KQ8 dateStart: 20160101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiPKSBxaGlCS1Y3uMUCuEaIUKSGyRHxeogKaCdGHgt3POQ7yExBZFSeT4bN935_s-E3IcOYx8EOgHygkTMBm6wEilA_B0BMh1WPMrhqPk_JZd3PG7hqxecWEAoCo-g66_rPbyXWHnPlV26uXO0B9isLMoZFKTtT4TKl5KTPF2KzJUp5fjFAPAmHV7jIueiL65nuoslV8LcOVVBmtk1LanLiZ57M5L07VvP6Qa_93gdbLa4Eua1gNigyzAdJOsfFEd3CIPKR3r2cTR1OmZr3qmeuqol6maeH1S2kiu3tPr2cQn0qkX8MD7o7pinF4haKTtYUc0fbovXiblwzNF-EuHhcFlho4LU5Sv2-R20L85Ow-aAxcCGzNeBonUOKVjC9qYBGwUAwZ_AkFSHkEY5pZFzEkrOIRgMFKz2jAluZH4i1rlXPZ2yNK0mMIuoTnnIGSuLCQJcz2nIRYaHbIXCxJKhh1y0toim9W6GlkVj4QqQ7tl3m5ZY7cO2fZd--W5ulc75KC1XtbMvNfMK50yhcAx3vvjtX2y7L9eEwoPyFL5ModDRBalOSKLw_f-UTWuPgB-ksyb |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHIADO6KsPnDhkJKkdmIfIwQq0FaogMQt8jIpFdBUkF74esZZxCYkblGUKI7H9rwZz3sm5DiwGPkg0PekjbXHhG89LaTywNERIFN-xa_oD6LuPbt64A81Wb3kwgBAWXwGbXdZ7uXb3MxcquzUyZ2hP8RgZ4EzxnhF1_pMqTgxMcmbzUhfnvaGCYaAIWt3GI87cfDN-ZSnqfxagku_crFKBk2LqnKSp_as0G3z_kOs8d9NXiMrNcKkSTUk1skcTDbI8hfdwU3ymNChmo4tTayaurpnqiaWOqGqsVMopbXo6ojeTsculU6dhAfeH1Q14_QGYSNtjjuiyfMofx0Xjy8UATDt5xoXGjrMdV68bZH7i_O7s65XH7ngmZDxwouEwkkdGlBaR2CCEDD8ixEmZQH4fmZYwKwwMQcfNMZqRmkmBdcCf1HJjIvONpmf5BPYITTjHGKRSQNRxGzHKghjhS7ZyQXFUvgtctLYIp1WyhppGZH4MkW7pc5uaW23FtlyXfvluapXW2S_sV5az7231GmdMonQMdz947Ujsti96_fS3uXgeo8suS9V9MJ9Ml-8zuAAcUahD8vR9QGGbc63 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Rapid+Adapting+and+Continual+Learning+Spiking+Neural+Network+Path+Planning+Algorithm+for+Mobile+Robots&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Espino%2C+Harrison&rft.au=Bain%2C+Robert&rft.au=Krichmar%2C+Jeffrey+L.&rft.date=2024-11-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=9&rft.issue=11&rft.spage=9542&rft.epage=9549&rft_id=info:doi/10.1109%2FLRA.2024.3457371&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2024_3457371 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |