Dynamic Precision-Scalable Thermal Mapping Algorithm for Three Dimensional Systolic-Array Based Neural Network Accelerator
Nowadays, the systolic-array based accelerator has been used widely for the neural-network applications. Multiple systolic-array based accelerator chips can be stacked by the 3D IC technology to improve the performance of the neural-network applications. However, the 3D accelerator increases the pow...
Saved in:
| Published in | IEEE transactions on consumer electronics Vol. 70; no. 1; pp. 757 - 769 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0098-3063 1558-4127 |
| DOI | 10.1109/TCE.2024.3378706 |
Cover
| Abstract | Nowadays, the systolic-array based accelerator has been used widely for the neural-network applications. Multiple systolic-array based accelerator chips can be stacked by the 3D IC technology to improve the performance of the neural-network applications. However, the 3D accelerator increases the power density and causes the overheating. To avoid the overheating, the sacrifice of the performance for the 3D accelerator under the thermal limitations is important. In this work, a dynamic precision-scalable thermal mapping algorithm (DPSTM) is proposed to change the active processing elements with different data precisions in the 3D accelerators dynamically. The goal is to control the power density and peak temperature of the 3D accelerator. Compared with the related works, DPSTM can reduce 29%-77% and 7%-73% latencies in AlexNet and ResNet-18 with 92-95°C thermal limitations. |
|---|---|
| AbstractList | Nowadays, the systolic-array based accelerator has been used widely for the neural-network applications. Multiple systolic-array based accelerator chips can be stacked by the 3D IC technology to improve the performance of the neural-network applications. However, the 3D accelerator increases the power density and causes the overheating. To avoid the overheating, the sacrifice of the performance for the 3D accelerator under the thermal limitations is important. In this work, a dynamic precision-scalable thermal mapping algorithm (DPSTM) is proposed to change the active processing elements with different data precisions in the 3D accelerators dynamically. The goal is to control the power density and peak temperature of the 3D accelerator. Compared with the related works, DPSTM can reduce 29%-77% and 7%-73% latencies in AlexNet and ResNet-18 with 92-95°C thermal limitations. |
| Author | Tsai, Chun-Kuan Kao, Wen-Chun Lin, Shu-Yen |
| Author_xml | – sequence: 1 givenname: Shu-Yen orcidid: 0000-0002-0537-9369 surname: Lin fullname: Lin, Shu-Yen email: sylin@saturn.yzu.edu.tw organization: Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan – sequence: 2 givenname: Chun-Kuan surname: Tsai fullname: Tsai, Chun-Kuan organization: Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan – sequence: 3 givenname: Wen-Chun surname: Kao fullname: Kao, Wen-Chun organization: Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan |
| BookMark | eNpNkE1LAzEQhoMo2FbvHjwEPG9NNtlm91hbv0Cr0Hpekuxsje5u6mSL1F9vSj0IAwMz7zMMz5Acd74DQi44G3POiuvV7HacslSOhVC5YpMjMuBZlieSp-qYDBgr8kSwiTglwxA-GOMyS_MB-ZnvOt06S18RrAvOd8nS6kabBujqHbDVDX3Wm43r1nTarD26_r2ltce4RQA6dy10eyzmlrvQ-8bZZIqod_RGB6joArYYdwvovz1-0qm10ADq3uMZOal1E-D8r4_I293tavaQPL3cP86mT4lNZdYnXDOTWptZZVUulKgNN4VJawOaKaW54ZWsa1MVqYQ4rCpRKVPZTEmV1REVI3J1uLtB_7WF0Jcffovx4VAKJgtZ8FgxxQ4piz4EhLrcoGs17krOyr3hMhou94bLP8MRuTwgDgD-xaVSmZyIXzW2e-Y |
| CODEN | ITCEDA |
| Cites_doi | 10.23919/DATE54114.2022.9774692 10.1145/3007787.3001177 10.1109/TC.2022.3141054 10.1109/HPCA51647.2021.00075 10.1109/ACCESS.2022.3151916 10.1109/ISSCC.2017.7870350 10.1109/TCSI.2020.3043778 10.1109/SOCC56010.2022.9908073 10.1109/ISSCC42615.2023.10067643 10.1109/SBAC-PAD49847.2020.00012 10.1109/SiPS.2018.8598454 10.1109/tce.2023.3236972 10.1109/ICCD50377.2020.00088 10.1109/AICAS.2019.8771610 10.1145/3061639.3062197 10.1109/JXCDC.2021.3092436 10.1109/CVPR.2016.90 10.1109/tce.2020.2977964 10.1109/ISSCC.2018.8310262 10.1109/TC.2023.3269696 10.1109/TPDS.2021.3129647 10.1109/JSSC.2022.3141050 10.1109/tcsi.2021.3072622 10.23919/DATE54114.2022.9774679 10.1109/TPDS.2018.2868062 10.1145/3492733 10.1109/NorCAS53631.2021.9599862 10.1109/TCAD.2020.3012753 10.1109/TCSII.2022.3231418 10.1109/DAC.2018.8465915 10.1109/DSN48063.2020.00032 10.1109/TC.2022.3197083 10.1109/GCCE46687.2019.9015268 10.1145/3604802 10.1145/3079856.3080246 10.1109/RADIOELEKTRONIKA54537.2022.9764951 10.1109/ISQED51717.2021.9424349 10.1109/TCAD.2020.3025508 10.1109/DAC56929.2023.10247897 10.1109/ISCA.2018.00069 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD F28 FR3 L7M |
| DOI | 10.1109/TCE.2024.3378706 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
| DatabaseTitleList | Engineering Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library (LUT) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-4127 |
| EndPage | 769 |
| ExternalDocumentID | 10_1109_TCE_2024_3378706 10477546 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science and Technology Council, Taiwan grantid: NSTC 111-2221-E-155-047-MY2 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SP 8FD F28 FR3 L7M |
| ID | FETCH-LOGICAL-c245t-1a0b2cc5c7c78373fb1b9b2fbea077a1b1d4ffbd924efbedd3d7bdc57475f0b23 |
| IEDL.DBID | RIE |
| ISSN | 0098-3063 |
| IngestDate | Mon Jun 30 05:30:22 EDT 2025 Wed Oct 01 01:11:05 EDT 2025 Wed Aug 27 02:06:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c245t-1a0b2cc5c7c78373fb1b9b2fbea077a1b1d4ffbd924efbedd3d7bdc57475f0b23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0537-9369 |
| PQID | 3049491491 |
| PQPubID | 85469 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10477546 proquest_journals_3049491491 crossref_primary_10_1109_TCE_2024_3378706 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on consumer electronics |
| PublicationTitleAbbrev | T-CE |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 Zhuang (ref28) ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 (ref24) 2019 ref38 ref18 Mao (ref27) 2017 Krizhevsky (ref25) Ryu (ref19) ref46 ref45 ref26 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Samajdar (ref23) 2018 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref21 doi: 10.23919/DATE54114.2022.9774692 – ident: ref2 doi: 10.1145/3007787.3001177 – ident: ref47 doi: 10.1109/TC.2022.3141054 – year: 2017 ident: ref27 article-title: Exploring the regularity of sparse structure in convolutional neural networks publication-title: arXiv:1705.08922 – ident: ref10 doi: 10.1109/HPCA51647.2021.00075 – year: 2018 ident: ref23 article-title: SCALE-Sim: Systolic CNN accelerator simulator publication-title: arXiv:1811.02883 – volume-title: HotSpot 6.0 temperature modeling tool year: 2019 ident: ref24 – ident: ref43 doi: 10.1109/ACCESS.2022.3151916 – ident: ref13 doi: 10.1109/ISSCC.2017.7870350 – ident: ref18 doi: 10.1109/TCSI.2020.3043778 – ident: ref41 doi: 10.1109/SOCC56010.2022.9908073 – ident: ref46 doi: 10.1109/ISSCC42615.2023.10067643 – ident: ref7 doi: 10.1109/SBAC-PAD49847.2020.00012 – ident: ref5 doi: 10.1109/SiPS.2018.8598454 – ident: ref31 doi: 10.1109/tce.2023.3236972 – ident: ref12 doi: 10.1109/ICCD50377.2020.00088 – ident: ref16 doi: 10.1109/AICAS.2019.8771610 – ident: ref32 doi: 10.1145/3061639.3062197 – ident: ref3 doi: 10.1109/JXCDC.2021.3092436 – ident: ref26 doi: 10.1109/CVPR.2016.90 – ident: ref30 doi: 10.1109/tce.2020.2977964 – ident: ref15 doi: 10.1109/ISSCC.2018.8310262 – ident: ref36 doi: 10.1109/TC.2023.3269696 – ident: ref11 doi: 10.1109/TPDS.2021.3129647 – start-page: 875 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref28 article-title: Discrimination-aware channel pruning for deep neural networks – ident: ref37 doi: 10.1109/JSSC.2022.3141050 – ident: ref29 doi: 10.1109/tcsi.2021.3072622 – ident: ref44 doi: 10.23919/DATE54114.2022.9774679 – ident: ref34 doi: 10.1109/TPDS.2018.2868062 – ident: ref45 doi: 10.1145/3492733 – start-page: 1097 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref25 article-title: ImageNet classification with deep convolutional neural networks – ident: ref9 doi: 10.1109/NorCAS53631.2021.9599862 – ident: ref8 doi: 10.1109/TCAD.2020.3012753 – ident: ref40 doi: 10.1109/TCSII.2022.3231418 – ident: ref17 doi: 10.1109/DAC.2018.8465915 – ident: ref6 doi: 10.1109/DSN48063.2020.00032 – ident: ref38 doi: 10.1109/TC.2022.3197083 – ident: ref35 doi: 10.1109/GCCE46687.2019.9015268 – ident: ref33 doi: 10.1145/3604802 – ident: ref1 doi: 10.1145/3079856.3080246 – ident: ref39 doi: 10.1109/RADIOELEKTRONIKA54537.2022.9764951 – start-page: 1 volume-title: Proc. 56th Annu. Design Autom. Conf. ident: ref19 article-title: Bitblade: Area and energy-efficient precision-scalable neural network accelerator with bitwise summation – ident: ref4 doi: 10.1109/ISQED51717.2021.9424349 – ident: ref20 doi: 10.1109/TCAD.2020.3025508 – volume-title: TSMC 90nm CMOS technology ident: ref22 – ident: ref42 doi: 10.1109/DAC56929.2023.10247897 – ident: ref14 doi: 10.1109/ISCA.2018.00069 |
| SSID | ssj0014528 |
| Score | 2.404084 |
| Snippet | Nowadays, the systolic-array based accelerator has been used widely for the neural-network applications. Multiple systolic-array based accelerator chips can be... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 757 |
| SubjectTerms | accelerator Algorithms Arrays Artificial neural networks Density measurement Heuristic algorithms Integrated circuits Neural network Neural networks Overheating Performance enhancement Power system measurements Stacking Temperature distribution Thermal mapping Three-dimensional displays |
| Title | Dynamic Precision-Scalable Thermal Mapping Algorithm for Three Dimensional Systolic-Array Based Neural Network Accelerator |
| URI | https://ieeexplore.ieee.org/document/10477546 https://www.proquest.com/docview/3049491491 |
| Volume | 70 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library (LUT) customDbUrl: eissn: 1558-4127 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014528 issn: 0098-3063 databaseCode: RIE dateStart: 19750101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJzjwRgwGyoELh4w-knY9jgFCSExIMGm3Kg8HEGNDpTuwX4_TtIiHkLhVTVNF-dzYru3PhBxHARgbK2AJKh_GE50yFRpgKrMoPgDW9lyh8M0wuRrx67EY18XqVS0MAFTJZ9B1l1Us38z03P0qO3W0AqngyTJZTnuJL9b6DBlwEfUagky0g-MmJhlkp_eDC_QEI96NYyefyTcdVDVV-XUSV-rlcp0Mm4X5rJLn7rxUXb34wdn475VvkLXa0KR9LxmbZAmmW2T1C_3gNlmc-3b09LaoO-2wO4TMFVNRFB88sif0RjoChwfanzzMiqfy8YWilYujBQA9d50BPKsHdcznjmKY9YtCvtMzVI6GOuYPHBv6VHPa1xqVXBXX3yGjy4v7wRWrezEwHXFRslAGKtJa6FSn6NPGVoUqU5FVIIM0lSECzK1VBt05wJvGxCZVRgv0VoTFqfEuaU1nU9gjVAaAThngiQ-WS95TNjZCSsRH68QIaJOTBp381VNu5JWrEmQ5Ipk7JPMayTbZcZv95Tm_z23SafDM64_yLXcRRZ6hSxju_zHtgKy4t_us7A5plcUcDtHoKNVRJWwfxHHX5Q |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB619NByoC8QC0vrQy89eMnDTjbHZQFtW3ZVqYvELfJjDAjYRSF7gF_POE4qSlWptyiOFcvfxDOTmfkG4EsSoXWpRp6R8uEiMznXsUWuC0fig-jc0BcKT2fZ5FR8P5NnbbF6UwuDiE3yGQ78ZRPLt0uz8r_K9j2tQC5F9hJeSSGEDOVav4MGQibDjiKTLOG0i0pGxf58fES-YCIGaeolNPtDCzVtVf46ixsFc_wWZt3SQl7J1WBV64F5eMba-N9rfwcbranJRkE23sMLXHyA9ScEhB_h4TA0pGc_q7bXDv9FoPlyKkYCRIf2NZsqT-FwzkbX58vqsr64YWTn0miFyA59b4DA68E897knGeajqlL37IDUo2We-4PGZiHZnI2MITXXRPY34fT4aD6e8LYbAzeJkDWPVaQTY6TJTU5ebep0rAudOI0qynMVE8TCOW3JoUO6aW1qc22NJH9FOpqabsHaYrnAbWAqQnLLkM58dEKJoXaplUoRPsZkVmIPvnbolLeBdKNsnJWoKAnJ0iNZtkj2YNNv9pPnwj73oN_hWbaf5V3pY4qiIKcw3vnHtM_wejKfnpQn32Y_duGNf1PI0e7DWl2tcI9MkFp_agTvETe32zI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Precision-Scalable+Thermal+Mapping+Algorithm+for+Three+Dimensional+Systolic-Array+Based+Neural+Network+Accelerator&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Shu-Yen%2C+Lin&rft.au=Chun-Kuan+Tsai&rft.au=Wen-Chun+Kao&rft.date=2024-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0098-3063&rft.eissn=1558-4127&rft.volume=70&rft.issue=1&rft.spage=757&rft_id=info:doi/10.1109%2FTCE.2024.3378706&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon |