Dynamic Precision-Scalable Thermal Mapping Algorithm for Three Dimensional Systolic-Array Based Neural Network Accelerator

Nowadays, the systolic-array based accelerator has been used widely for the neural-network applications. Multiple systolic-array based accelerator chips can be stacked by the 3D IC technology to improve the performance of the neural-network applications. However, the 3D accelerator increases the pow...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on consumer electronics Vol. 70; no. 1; pp. 757 - 769
Main Authors Lin, Shu-Yen, Tsai, Chun-Kuan, Kao, Wen-Chun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0098-3063
1558-4127
DOI10.1109/TCE.2024.3378706

Cover

Abstract Nowadays, the systolic-array based accelerator has been used widely for the neural-network applications. Multiple systolic-array based accelerator chips can be stacked by the 3D IC technology to improve the performance of the neural-network applications. However, the 3D accelerator increases the power density and causes the overheating. To avoid the overheating, the sacrifice of the performance for the 3D accelerator under the thermal limitations is important. In this work, a dynamic precision-scalable thermal mapping algorithm (DPSTM) is proposed to change the active processing elements with different data precisions in the 3D accelerators dynamically. The goal is to control the power density and peak temperature of the 3D accelerator. Compared with the related works, DPSTM can reduce 29%-77% and 7%-73% latencies in AlexNet and ResNet-18 with 92-95°C thermal limitations.
AbstractList Nowadays, the systolic-array based accelerator has been used widely for the neural-network applications. Multiple systolic-array based accelerator chips can be stacked by the 3D IC technology to improve the performance of the neural-network applications. However, the 3D accelerator increases the power density and causes the overheating. To avoid the overheating, the sacrifice of the performance for the 3D accelerator under the thermal limitations is important. In this work, a dynamic precision-scalable thermal mapping algorithm (DPSTM) is proposed to change the active processing elements with different data precisions in the 3D accelerators dynamically. The goal is to control the power density and peak temperature of the 3D accelerator. Compared with the related works, DPSTM can reduce 29%-77% and 7%-73% latencies in AlexNet and ResNet-18 with 92-95°C thermal limitations.
Author Tsai, Chun-Kuan
Kao, Wen-Chun
Lin, Shu-Yen
Author_xml – sequence: 1
  givenname: Shu-Yen
  orcidid: 0000-0002-0537-9369
  surname: Lin
  fullname: Lin, Shu-Yen
  email: sylin@saturn.yzu.edu.tw
  organization: Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan
– sequence: 2
  givenname: Chun-Kuan
  surname: Tsai
  fullname: Tsai, Chun-Kuan
  organization: Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan
– sequence: 3
  givenname: Wen-Chun
  surname: Kao
  fullname: Kao, Wen-Chun
  organization: Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan
BookMark eNpNkE1LAzEQhoMo2FbvHjwEPG9NNtlm91hbv0Cr0Hpekuxsje5u6mSL1F9vSj0IAwMz7zMMz5Acd74DQi44G3POiuvV7HacslSOhVC5YpMjMuBZlieSp-qYDBgr8kSwiTglwxA-GOMyS_MB-ZnvOt06S18RrAvOd8nS6kabBujqHbDVDX3Wm43r1nTarD26_r2ltce4RQA6dy10eyzmlrvQ-8bZZIqod_RGB6joArYYdwvovz1-0qm10ADq3uMZOal1E-D8r4_I293tavaQPL3cP86mT4lNZdYnXDOTWptZZVUulKgNN4VJawOaKaW54ZWsa1MVqYQ4rCpRKVPZTEmV1REVI3J1uLtB_7WF0Jcffovx4VAKJgtZ8FgxxQ4piz4EhLrcoGs17krOyr3hMhou94bLP8MRuTwgDgD-xaVSmZyIXzW2e-Y
CODEN ITCEDA
Cites_doi 10.23919/DATE54114.2022.9774692
10.1145/3007787.3001177
10.1109/TC.2022.3141054
10.1109/HPCA51647.2021.00075
10.1109/ACCESS.2022.3151916
10.1109/ISSCC.2017.7870350
10.1109/TCSI.2020.3043778
10.1109/SOCC56010.2022.9908073
10.1109/ISSCC42615.2023.10067643
10.1109/SBAC-PAD49847.2020.00012
10.1109/SiPS.2018.8598454
10.1109/tce.2023.3236972
10.1109/ICCD50377.2020.00088
10.1109/AICAS.2019.8771610
10.1145/3061639.3062197
10.1109/JXCDC.2021.3092436
10.1109/CVPR.2016.90
10.1109/tce.2020.2977964
10.1109/ISSCC.2018.8310262
10.1109/TC.2023.3269696
10.1109/TPDS.2021.3129647
10.1109/JSSC.2022.3141050
10.1109/tcsi.2021.3072622
10.23919/DATE54114.2022.9774679
10.1109/TPDS.2018.2868062
10.1145/3492733
10.1109/NorCAS53631.2021.9599862
10.1109/TCAD.2020.3012753
10.1109/TCSII.2022.3231418
10.1109/DAC.2018.8465915
10.1109/DSN48063.2020.00032
10.1109/TC.2022.3197083
10.1109/GCCE46687.2019.9015268
10.1145/3604802
10.1145/3079856.3080246
10.1109/RADIOELEKTRONIKA54537.2022.9764951
10.1109/ISQED51717.2021.9424349
10.1109/TCAD.2020.3025508
10.1109/DAC56929.2023.10247897
10.1109/ISCA.2018.00069
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/TCE.2024.3378706
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-4127
EndPage 769
ExternalDocumentID 10_1109_TCE_2024_3378706
10477546
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Council, Taiwan
  grantid: NSTC 111-2221-E-155-047-MY2
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c245t-1a0b2cc5c7c78373fb1b9b2fbea077a1b1d4ffbd924efbedd3d7bdc57475f0b23
IEDL.DBID RIE
ISSN 0098-3063
IngestDate Mon Jun 30 05:30:22 EDT 2025
Wed Oct 01 01:11:05 EDT 2025
Wed Aug 27 02:06:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-1a0b2cc5c7c78373fb1b9b2fbea077a1b1d4ffbd924efbedd3d7bdc57475f0b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0537-9369
PQID 3049491491
PQPubID 85469
PageCount 13
ParticipantIDs ieee_primary_10477546
proquest_journals_3049491491
crossref_primary_10_1109_TCE_2024_3378706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on consumer electronics
PublicationTitleAbbrev T-CE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
Zhuang (ref28)
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
(ref24) 2019
ref38
ref18
Mao (ref27) 2017
Krizhevsky (ref25)
Ryu (ref19)
ref46
ref45
ref26
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Samajdar (ref23) 2018
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref21
  doi: 10.23919/DATE54114.2022.9774692
– ident: ref2
  doi: 10.1145/3007787.3001177
– ident: ref47
  doi: 10.1109/TC.2022.3141054
– year: 2017
  ident: ref27
  article-title: Exploring the regularity of sparse structure in convolutional neural networks
  publication-title: arXiv:1705.08922
– ident: ref10
  doi: 10.1109/HPCA51647.2021.00075
– year: 2018
  ident: ref23
  article-title: SCALE-Sim: Systolic CNN accelerator simulator
  publication-title: arXiv:1811.02883
– volume-title: HotSpot 6.0 temperature modeling tool
  year: 2019
  ident: ref24
– ident: ref43
  doi: 10.1109/ACCESS.2022.3151916
– ident: ref13
  doi: 10.1109/ISSCC.2017.7870350
– ident: ref18
  doi: 10.1109/TCSI.2020.3043778
– ident: ref41
  doi: 10.1109/SOCC56010.2022.9908073
– ident: ref46
  doi: 10.1109/ISSCC42615.2023.10067643
– ident: ref7
  doi: 10.1109/SBAC-PAD49847.2020.00012
– ident: ref5
  doi: 10.1109/SiPS.2018.8598454
– ident: ref31
  doi: 10.1109/tce.2023.3236972
– ident: ref12
  doi: 10.1109/ICCD50377.2020.00088
– ident: ref16
  doi: 10.1109/AICAS.2019.8771610
– ident: ref32
  doi: 10.1145/3061639.3062197
– ident: ref3
  doi: 10.1109/JXCDC.2021.3092436
– ident: ref26
  doi: 10.1109/CVPR.2016.90
– ident: ref30
  doi: 10.1109/tce.2020.2977964
– ident: ref15
  doi: 10.1109/ISSCC.2018.8310262
– ident: ref36
  doi: 10.1109/TC.2023.3269696
– ident: ref11
  doi: 10.1109/TPDS.2021.3129647
– start-page: 875
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref28
  article-title: Discrimination-aware channel pruning for deep neural networks
– ident: ref37
  doi: 10.1109/JSSC.2022.3141050
– ident: ref29
  doi: 10.1109/tcsi.2021.3072622
– ident: ref44
  doi: 10.23919/DATE54114.2022.9774679
– ident: ref34
  doi: 10.1109/TPDS.2018.2868062
– ident: ref45
  doi: 10.1145/3492733
– start-page: 1097
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref25
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref9
  doi: 10.1109/NorCAS53631.2021.9599862
– ident: ref8
  doi: 10.1109/TCAD.2020.3012753
– ident: ref40
  doi: 10.1109/TCSII.2022.3231418
– ident: ref17
  doi: 10.1109/DAC.2018.8465915
– ident: ref6
  doi: 10.1109/DSN48063.2020.00032
– ident: ref38
  doi: 10.1109/TC.2022.3197083
– ident: ref35
  doi: 10.1109/GCCE46687.2019.9015268
– ident: ref33
  doi: 10.1145/3604802
– ident: ref1
  doi: 10.1145/3079856.3080246
– ident: ref39
  doi: 10.1109/RADIOELEKTRONIKA54537.2022.9764951
– start-page: 1
  volume-title: Proc. 56th Annu. Design Autom. Conf.
  ident: ref19
  article-title: Bitblade: Area and energy-efficient precision-scalable neural network accelerator with bitwise summation
– ident: ref4
  doi: 10.1109/ISQED51717.2021.9424349
– ident: ref20
  doi: 10.1109/TCAD.2020.3025508
– volume-title: TSMC 90nm CMOS technology
  ident: ref22
– ident: ref42
  doi: 10.1109/DAC56929.2023.10247897
– ident: ref14
  doi: 10.1109/ISCA.2018.00069
SSID ssj0014528
Score 2.404084
Snippet Nowadays, the systolic-array based accelerator has been used widely for the neural-network applications. Multiple systolic-array based accelerator chips can be...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 757
SubjectTerms accelerator
Algorithms
Arrays
Artificial neural networks
Density measurement
Heuristic algorithms
Integrated circuits
Neural network
Neural networks
Overheating
Performance enhancement
Power system measurements
Stacking
Temperature distribution
Thermal mapping
Three-dimensional displays
Title Dynamic Precision-Scalable Thermal Mapping Algorithm for Three Dimensional Systolic-Array Based Neural Network Accelerator
URI https://ieeexplore.ieee.org/document/10477546
https://www.proquest.com/docview/3049491491
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library (LUT)
  customDbUrl:
  eissn: 1558-4127
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014528
  issn: 0098-3063
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJzjwRgwGyoELh4w-knY9jgFCSExIMGm3Kg8HEGNDpTuwX4_TtIiHkLhVTVNF-dzYru3PhBxHARgbK2AJKh_GE50yFRpgKrMoPgDW9lyh8M0wuRrx67EY18XqVS0MAFTJZ9B1l1Us38z03P0qO3W0AqngyTJZTnuJL9b6DBlwEfUagky0g-MmJhlkp_eDC_QEI96NYyefyTcdVDVV-XUSV-rlcp0Mm4X5rJLn7rxUXb34wdn475VvkLXa0KR9LxmbZAmmW2T1C_3gNlmc-3b09LaoO-2wO4TMFVNRFB88sif0RjoChwfanzzMiqfy8YWilYujBQA9d50BPKsHdcznjmKY9YtCvtMzVI6GOuYPHBv6VHPa1xqVXBXX3yGjy4v7wRWrezEwHXFRslAGKtJa6FSn6NPGVoUqU5FVIIM0lSECzK1VBt05wJvGxCZVRgv0VoTFqfEuaU1nU9gjVAaAThngiQ-WS95TNjZCSsRH68QIaJOTBp381VNu5JWrEmQ5Ipk7JPMayTbZcZv95Tm_z23SafDM64_yLXcRRZ6hSxju_zHtgKy4t_us7A5plcUcDtHoKNVRJWwfxHHX5Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB619NByoC8QC0vrQy89eMnDTjbHZQFtW3ZVqYvELfJjDAjYRSF7gF_POE4qSlWptyiOFcvfxDOTmfkG4EsSoXWpRp6R8uEiMznXsUWuC0fig-jc0BcKT2fZ5FR8P5NnbbF6UwuDiE3yGQ78ZRPLt0uz8r_K9j2tQC5F9hJeSSGEDOVav4MGQibDjiKTLOG0i0pGxf58fES-YCIGaeolNPtDCzVtVf46ixsFc_wWZt3SQl7J1WBV64F5eMba-N9rfwcbranJRkE23sMLXHyA9ScEhB_h4TA0pGc_q7bXDv9FoPlyKkYCRIf2NZsqT-FwzkbX58vqsr64YWTn0miFyA59b4DA68E897knGeajqlL37IDUo2We-4PGZiHZnI2MITXXRPY34fT4aD6e8LYbAzeJkDWPVaQTY6TJTU5ebep0rAudOI0qynMVE8TCOW3JoUO6aW1qc22NJH9FOpqabsHaYrnAbWAqQnLLkM58dEKJoXaplUoRPsZkVmIPvnbolLeBdKNsnJWoKAnJ0iNZtkj2YNNv9pPnwj73oN_hWbaf5V3pY4qiIKcw3vnHtM_wejKfnpQn32Y_duGNf1PI0e7DWl2tcI9MkFp_agTvETe32zI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Precision-Scalable+Thermal+Mapping+Algorithm+for+Three+Dimensional+Systolic-Array+Based+Neural+Network+Accelerator&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Shu-Yen%2C+Lin&rft.au=Chun-Kuan+Tsai&rft.au=Wen-Chun+Kao&rft.date=2024-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0098-3063&rft.eissn=1558-4127&rft.volume=70&rft.issue=1&rft.spage=757&rft_id=info:doi/10.1109%2FTCE.2024.3378706&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon