A BCI System for Imagined Speech Classification Based on Optimization Theory

Electroencephalograms (EEGs) are used for establishing a connection between the human brain and the outside environment, so they are widely used in the brain computer interface (BCI). Nowadays, the imagined speech (IS) is a highly promising paradigm of the BCI. It can be used for controlling the ext...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on consumer electronics Vol. 70; no. 4; pp. 6679 - 6690
Main Authors Zheng, Xiao-Ben, Ling, Bingo Wing-Kuen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0098-3063
1558-4127
DOI10.1109/TCE.2024.3475821

Cover

Abstract Electroencephalograms (EEGs) are used for establishing a connection between the human brain and the outside environment, so they are widely used in the brain computer interface (BCI). Nowadays, the imagined speech (IS) is a highly promising paradigm of the BCI. It can be used for controlling the external devices directly. However, the features for performing the IS are unknown. Hence, the numerous features are extracted. As a result, the dimension of the feature vectors is extremely large. To reduce the required computation, the clustering is required to be performed in the low dimensional space. Under this circumstance, the transform matrix affects both the dimensional reduction part and the clustering part. In fact, finding the transform matrix and the clustering centers under this scenario is challenging. To tackle this difficulty, this paper provides a modified joint principal component analysis (PCA) and k means algorithm for performing the IS. Here, the interclass separation among the feature vectors is also taken into an account of the problem formulation. In particular, the problem is formulated as a nonconvex constrained optimization problem. The total two norm reconstruction error of the feature vectors as well as the total two norm differences between the feature vectors and the clustering centers in the low dimensional space and the total two norm differences among the clustering centers are minimized subject to the orthogonality of the transform matrix. The numerical computer simulations are conducted based on the multi-class IS classification database. The obtained results show that our proposed method outperforms the various states of the art methods in terms of the clustering accuracy and the average required execution time. Overall, using the BCI system for performing the imagined speech classification plays an important role in the consumer electronics area.
AbstractList Electroencephalograms (EEGs) are used for establishing a connection between the human brain and the outside environment, so they are widely used in the brain computer interface (BCI). Nowadays, the imagined speech (IS) is a highly promising paradigm of the BCI. It can be used for controlling the external devices directly. However, the features for performing the IS are unknown. Hence, the numerous features are extracted. As a result, the dimension of the feature vectors is extremely large. To reduce the required computation, the clustering is required to be performed in the low dimensional space. Under this circumstance, the transform matrix affects both the dimensional reduction part and the clustering part. In fact, finding the transform matrix and the clustering centers under this scenario is challenging. To tackle this difficulty, this paper provides a modified joint principal component analysis (PCA) and k means algorithm for performing the IS. Here, the interclass separation among the feature vectors is also taken into an account of the problem formulation. In particular, the problem is formulated as a nonconvex constrained optimization problem. The total two norm reconstruction error of the feature vectors as well as the total two norm differences between the feature vectors and the clustering centers in the low dimensional space and the total two norm differences among the clustering centers are minimized subject to the orthogonality of the transform matrix. The numerical computer simulations are conducted based on the multi-class IS classification database. The obtained results show that our proposed method outperforms the various states of the art methods in terms of the clustering accuracy and the average required execution time. Overall, using the BCI system for performing the imagined speech classification plays an important role in the consumer electronics area.
Author Ling, Bingo Wing-Kuen
Zheng, Xiao-Ben
Author_xml – sequence: 1
  givenname: Xiao-Ben
  orcidid: 0000-0003-0260-5882
  surname: Zheng
  fullname: Zheng, Xiao-Ben
  organization: School of Information Engineering, Guangdong University of Technology, Guangzho, China
– sequence: 2
  givenname: Bingo Wing-Kuen
  orcidid: 0000-0002-0633-7224
  surname: Ling
  fullname: Ling, Bingo Wing-Kuen
  email: yongquanling@gdut.edu.cn
  organization: School of Information Engineering, Guangdong University of Technology, Guangzho, China
BookMark eNpNkD1vwjAQhq2KSoW2e4cOkTqH3vkjsUeIaIuExACdLdexixFJaBwG-usbFIZOd7p73jvpmZBR3dSOkCeEKSKo122xmFKgfMp4LiTFGzJGIWTKkeYjMgZQMmWQsTsyiXEPgFxQOSarWTIvlsnmHDtXJb5pk2VlvkPtymRzdM7ukuJgYgw-WNOFpk7mJva7vlkfu1CF32G63bmmPT-QW28O0T1e6z35fFtsi490tX5fFrNVaikXXYqcutyiyTkq5WT5hcwqCchEVnL0wJiXaKUyxnmlpCwdK8GA9Wi84Eyye_Iy3D22zc_JxU7vm1Nb9y81Q4E040pcKBgo2zYxts7rYxsq0541gr44070zfXGmr876yPMQCc65f3gOmeTA_gD1z2gb
CODEN ITCEDA
Cites_doi 10.1109/TCE.2024.3368569
10.1016/j.bspc.2019.01.006
10.1117/12.2519028
10.1016/j.patcog.2019.04.014
10.1109/tpami.2021.3085739
10.2478/cjece-2020-0004
10.21437/Interspeech.2019-3041
10.1016/j.ins.2022.11.139
10.1109/tnsre.2021.3074162
10.1016/j.imu.2019.100179
10.1109/TCE.2023.3320768
10.1016/j.procs.2020.02.265
10.1109/TCE.2021.3079399
10.1007/s00357-019-09342-4
10.1016/j.eswa.2019.06.064
10.1109/TCE.2019.2920068
10.1145/2910585
10.1016/j.eswa.2020.113352
10.1109/TNSRE.2018.2876129
10.1016/j.bspc.2021.102625
10.1109/ACCESS.2020.2988796
10.1109/TCE.2024.3370310
10.1109/ACCESS.2019.2930958
10.1109/TSP.2014.2371779
10.1109/tnnls.2014.2337335
10.5121/ijci.2023.120305
10.1109/TCE.2023.3330423
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/TCE.2024.3475821
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-4127
EndPage 6690
ExternalDocumentID 10_1109_TCE_2024_3475821
10706840
Genre orig-research
GrantInformation_xml – fundername: Guangdong Higher Education Engineering Technology Research Center for Big Data on Manufacturing Knowledge Patent
  grantid: 501130144
– fundername: National Nature Science Foundation of China
  grantid: U1701266; 61671163; 62071128; 61901123
  funderid: 10.13039/501100001809
– fundername: Hong Kong Innovation and Technology Commission, Enterprise Support Scheme
  grantid: S/E/070/17
  funderid: 10.13039/501100003452
– fundername: Team Project of the Education Ministry of the Guangdong Province
  grantid: 2017KCXTD011
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c245t-142e7c1a74199e8db13c9801356d41f033f81c89aaef9988de3d0a0cf1af54383
IEDL.DBID RIE
ISSN 0098-3063
IngestDate Mon Jun 30 10:26:17 EDT 2025
Tue Jul 01 00:42:07 EDT 2025
Wed Aug 27 02:02:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-142e7c1a74199e8db13c9801356d41f033f81c89aaef9988de3d0a0cf1af54383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0633-7224
0000-0003-0260-5882
PQID 3151264958
PQPubID 85469
PageCount 12
ParticipantIDs proquest_journals_3151264958
ieee_primary_10706840
crossref_primary_10_1109_TCE_2024_3475821
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on consumer electronics
PublicationTitleAbbrev T-CE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Gasparini (ref1) 2022
ref14
ref30
ref11
ref10
ref2
ref16
ref19
ref18
(ref17) 2020
ref24
ref23
Petersen (ref15) 2008
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref30
  doi: 10.1109/TCE.2024.3368569
– ident: ref7
  doi: 10.1016/j.bspc.2019.01.006
– ident: ref4
  doi: 10.1117/12.2519028
– ident: ref13
  doi: 10.1016/j.patcog.2019.04.014
– ident: ref9
  doi: 10.1109/tpami.2021.3085739
– year: 2022
  ident: ref1
  article-title: Inner speech recognition through electroencephalographic signals
  publication-title: arXiv:2210.06472
– ident: ref5
  doi: 10.2478/cjece-2020-0004
– ident: ref2
  doi: 10.21437/Interspeech.2019-3041
– ident: ref10
  doi: 10.1016/j.ins.2022.11.139
– ident: ref25
  doi: 10.1109/tnsre.2021.3074162
– ident: ref12
  doi: 10.1016/j.imu.2019.100179
– volume-title: 2020 international BCI competition
  year: 2020
  ident: ref17
– ident: ref27
  doi: 10.1109/TCE.2023.3320768
– ident: ref11
  doi: 10.1016/j.procs.2020.02.265
– ident: ref23
  doi: 10.1109/TCE.2021.3079399
– ident: ref24
  doi: 10.1007/s00357-019-09342-4
– ident: ref18
  doi: 10.1016/j.eswa.2019.06.064
– ident: ref28
  doi: 10.1109/TCE.2019.2920068
– ident: ref14
  doi: 10.1145/2910585
– ident: ref6
  doi: 10.1016/j.eswa.2020.113352
– ident: ref21
  doi: 10.1109/TNSRE.2018.2876129
– ident: ref3
  doi: 10.1016/j.bspc.2021.102625
– ident: ref8
  doi: 10.1109/ACCESS.2020.2988796
– ident: ref29
  doi: 10.1109/TCE.2024.3370310
– ident: ref20
  doi: 10.1109/ACCESS.2019.2930958
– ident: ref16
  doi: 10.1109/TSP.2014.2371779
– ident: ref26
  doi: 10.1109/tnnls.2014.2337335
– volume-title: The Matrix Cookbook
  year: 2008
  ident: ref15
– ident: ref19
  doi: 10.5121/ijci.2023.120305
– ident: ref22
  doi: 10.1109/TCE.2023.3330423
SSID ssj0014528
Score 2.42722
Snippet Electroencephalograms (EEGs) are used for establishing a connection between the human brain and the outside environment, so they are widely used in the brain...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 6679
SubjectTerms Algorithms
Classification
Classification algorithms
Clustering
Clustering algorithms
Consumer electronics
Dimensionality reduction
Electroencephalography
Feature extraction
Hierarchies
Human-computer interface
k means clustering in the low dimensional space
linear discriminant analysis
Machine learning algorithms
nonconvex constrained optimization problem
Optimization
Orthogonality
Principal component analysis
Principal components analysis
Semi-supervised imagined speech
Speech
Transforms
Vectors
Title A BCI System for Imagined Speech Classification Based on Optimization Theory
URI https://ieeexplore.ieee.org/document/10706840
https://www.proquest.com/docview/3151264958
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoyAMLQ4IdO4k9tlVRi6AMtFK3KPVDSKgPQbrw6zk7CSogJDYPTmT5zr47333fIXQtZJ6rWJuAayoCDjYwkCKWAbURS5i1YDHde8fjOBlO-f0snlVgdY-FMcb44jMTuqHP5euV2rinMjjhKXHkJA3UAD0rwVpfKQMeR6ImyAQ_mNU5SSJvJ_0BRIIRDxlPHTD0mw3yTVV-3cTevNwdoHG9sLKq5DXcFPNQffzgbPz3yg_RfuVo4m6pGUdoxyyP0d4W_eAJeujiXn-ES9JyDN4rHi1c0yKj8fPaGPWCfctMV0zk5Yd7YPI0hsETXDSLCsGJS3h_C03vBpP-MKi6KwQq4nERUB6ZVNEcXAopjdBzypQEe8XiRHNqCWNWUOVkaSzEZEIbpklOlKW5jR3B6SlqLldLc4ZwYk2iE5idcsnJnArNtHAZyZwQHYm4jW7q_c7WJYlG5oMPIjOQTeZkk1WyaaOW276teeXOtVGnllBWHbP3jDl_JYEYT5z_8dkF2nV_L9GDHdQs3jbmEtyIYn7l1ecTunvBLg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PbAwpNixndojVKAW2jJQJLYo9UNIiIKgXfj1nJ0EFRASmwdHse5s353vvu8ATpQuCiOtS4RlKhFoAxOtpE6YT3nGvUeLGd47-oOscy-uH-RDBVaPWBjnXCw-c80wjLl8-2Km4akMT3iLBnKSeViUGFaoEq71lTQQMlU1RSZ6wrzOSlJ9NmxfYiyYiiYXrQAN_WaFYluVX3dxNDBXazCol1bWlTw1p5NR03z8YG3899rXYbVyNcl5uTc2YM6NN2FlhoBwC3rn5KLdJSVtOUH_lXSfQ9siZ8ndq3PmkcSmmaGcKGqQXKDRswQHt3jVPFcYTlIC_Lfh_upy2O4kVX-FxKRCThImUtcyrECnQmun7Ihxo9FicZlZwTzl3Ctmgjadx6hMWcctLajxrPAyUJzuwML4Zex2gWTeZTbD2S2hBR0xZblVISdZUGpTJRtwWss7fy1pNPIYflCdo27yoJu80k0DtoP4ZuaVkmvAQa2hvDpo7zkPHkuGUZ7a--OzY1jqDPu9vNcd3OzDcvhTiSU8gIXJ29QdolMxGR3FrfQJFszEgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+BCI+System+for+Imagined+Speech+Classification+Based+on+Optimization+Theory&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Xiao-Ben%2C+Zheng&rft.au=Ling%2C+Bingo+Wing-Kuen&rft.date=2024-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0098-3063&rft.eissn=1558-4127&rft.volume=70&rft.issue=4&rft.spage=6679&rft_id=info:doi/10.1109%2FTCE.2024.3475821&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon