A BCI System for Imagined Speech Classification Based on Optimization Theory
Electroencephalograms (EEGs) are used for establishing a connection between the human brain and the outside environment, so they are widely used in the brain computer interface (BCI). Nowadays, the imagined speech (IS) is a highly promising paradigm of the BCI. It can be used for controlling the ext...
Saved in:
Published in | IEEE transactions on consumer electronics Vol. 70; no. 4; pp. 6679 - 6690 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0098-3063 1558-4127 |
DOI | 10.1109/TCE.2024.3475821 |
Cover
Abstract | Electroencephalograms (EEGs) are used for establishing a connection between the human brain and the outside environment, so they are widely used in the brain computer interface (BCI). Nowadays, the imagined speech (IS) is a highly promising paradigm of the BCI. It can be used for controlling the external devices directly. However, the features for performing the IS are unknown. Hence, the numerous features are extracted. As a result, the dimension of the feature vectors is extremely large. To reduce the required computation, the clustering is required to be performed in the low dimensional space. Under this circumstance, the transform matrix affects both the dimensional reduction part and the clustering part. In fact, finding the transform matrix and the clustering centers under this scenario is challenging. To tackle this difficulty, this paper provides a modified joint principal component analysis (PCA) and k means algorithm for performing the IS. Here, the interclass separation among the feature vectors is also taken into an account of the problem formulation. In particular, the problem is formulated as a nonconvex constrained optimization problem. The total two norm reconstruction error of the feature vectors as well as the total two norm differences between the feature vectors and the clustering centers in the low dimensional space and the total two norm differences among the clustering centers are minimized subject to the orthogonality of the transform matrix. The numerical computer simulations are conducted based on the multi-class IS classification database. The obtained results show that our proposed method outperforms the various states of the art methods in terms of the clustering accuracy and the average required execution time. Overall, using the BCI system for performing the imagined speech classification plays an important role in the consumer electronics area. |
---|---|
AbstractList | Electroencephalograms (EEGs) are used for establishing a connection between the human brain and the outside environment, so they are widely used in the brain computer interface (BCI). Nowadays, the imagined speech (IS) is a highly promising paradigm of the BCI. It can be used for controlling the external devices directly. However, the features for performing the IS are unknown. Hence, the numerous features are extracted. As a result, the dimension of the feature vectors is extremely large. To reduce the required computation, the clustering is required to be performed in the low dimensional space. Under this circumstance, the transform matrix affects both the dimensional reduction part and the clustering part. In fact, finding the transform matrix and the clustering centers under this scenario is challenging. To tackle this difficulty, this paper provides a modified joint principal component analysis (PCA) and k means algorithm for performing the IS. Here, the interclass separation among the feature vectors is also taken into an account of the problem formulation. In particular, the problem is formulated as a nonconvex constrained optimization problem. The total two norm reconstruction error of the feature vectors as well as the total two norm differences between the feature vectors and the clustering centers in the low dimensional space and the total two norm differences among the clustering centers are minimized subject to the orthogonality of the transform matrix. The numerical computer simulations are conducted based on the multi-class IS classification database. The obtained results show that our proposed method outperforms the various states of the art methods in terms of the clustering accuracy and the average required execution time. Overall, using the BCI system for performing the imagined speech classification plays an important role in the consumer electronics area. |
Author | Ling, Bingo Wing-Kuen Zheng, Xiao-Ben |
Author_xml | – sequence: 1 givenname: Xiao-Ben orcidid: 0000-0003-0260-5882 surname: Zheng fullname: Zheng, Xiao-Ben organization: School of Information Engineering, Guangdong University of Technology, Guangzho, China – sequence: 2 givenname: Bingo Wing-Kuen orcidid: 0000-0002-0633-7224 surname: Ling fullname: Ling, Bingo Wing-Kuen email: yongquanling@gdut.edu.cn organization: School of Information Engineering, Guangdong University of Technology, Guangzho, China |
BookMark | eNpNkD1vwjAQhq2KSoW2e4cOkTqH3vkjsUeIaIuExACdLdexixFJaBwG-usbFIZOd7p73jvpmZBR3dSOkCeEKSKo122xmFKgfMp4LiTFGzJGIWTKkeYjMgZQMmWQsTsyiXEPgFxQOSarWTIvlsnmHDtXJb5pk2VlvkPtymRzdM7ukuJgYgw-WNOFpk7mJva7vlkfu1CF32G63bmmPT-QW28O0T1e6z35fFtsi490tX5fFrNVaikXXYqcutyiyTkq5WT5hcwqCchEVnL0wJiXaKUyxnmlpCwdK8GA9Wi84Eyye_Iy3D22zc_JxU7vm1Nb9y81Q4E040pcKBgo2zYxts7rYxsq0541gr44070zfXGmr876yPMQCc65f3gOmeTA_gD1z2gb |
CODEN | ITCEDA |
Cites_doi | 10.1109/TCE.2024.3368569 10.1016/j.bspc.2019.01.006 10.1117/12.2519028 10.1016/j.patcog.2019.04.014 10.1109/tpami.2021.3085739 10.2478/cjece-2020-0004 10.21437/Interspeech.2019-3041 10.1016/j.ins.2022.11.139 10.1109/tnsre.2021.3074162 10.1016/j.imu.2019.100179 10.1109/TCE.2023.3320768 10.1016/j.procs.2020.02.265 10.1109/TCE.2021.3079399 10.1007/s00357-019-09342-4 10.1016/j.eswa.2019.06.064 10.1109/TCE.2019.2920068 10.1145/2910585 10.1016/j.eswa.2020.113352 10.1109/TNSRE.2018.2876129 10.1016/j.bspc.2021.102625 10.1109/ACCESS.2020.2988796 10.1109/TCE.2024.3370310 10.1109/ACCESS.2019.2930958 10.1109/TSP.2014.2371779 10.1109/tnnls.2014.2337335 10.5121/ijci.2023.120305 10.1109/TCE.2023.3330423 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD F28 FR3 L7M |
DOI | 10.1109/TCE.2024.3475821 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-4127 |
EndPage | 6690 |
ExternalDocumentID | 10_1109_TCE_2024_3475821 10706840 |
Genre | orig-research |
GrantInformation_xml | – fundername: Guangdong Higher Education Engineering Technology Research Center for Big Data on Manufacturing Knowledge Patent grantid: 501130144 – fundername: National Nature Science Foundation of China grantid: U1701266; 61671163; 62071128; 61901123 funderid: 10.13039/501100001809 – fundername: Hong Kong Innovation and Technology Commission, Enterprise Support Scheme grantid: S/E/070/17 funderid: 10.13039/501100003452 – fundername: Team Project of the Education Ministry of the Guangdong Province grantid: 2017KCXTD011 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION RIG 7SP 8FD F28 FR3 L7M |
ID | FETCH-LOGICAL-c245t-142e7c1a74199e8db13c9801356d41f033f81c89aaef9988de3d0a0cf1af54383 |
IEDL.DBID | RIE |
ISSN | 0098-3063 |
IngestDate | Mon Jun 30 10:26:17 EDT 2025 Tue Jul 01 00:42:07 EDT 2025 Wed Aug 27 02:02:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-142e7c1a74199e8db13c9801356d41f033f81c89aaef9988de3d0a0cf1af54383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0633-7224 0000-0003-0260-5882 |
PQID | 3151264958 |
PQPubID | 85469 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3151264958 ieee_primary_10706840 crossref_primary_10_1109_TCE_2024_3475821 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on consumer electronics |
PublicationTitleAbbrev | T-CE |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 Gasparini (ref1) 2022 ref14 ref30 ref11 ref10 ref2 ref16 ref19 ref18 (ref17) 2020 ref24 ref23 Petersen (ref15) 2008 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref30 doi: 10.1109/TCE.2024.3368569 – ident: ref7 doi: 10.1016/j.bspc.2019.01.006 – ident: ref4 doi: 10.1117/12.2519028 – ident: ref13 doi: 10.1016/j.patcog.2019.04.014 – ident: ref9 doi: 10.1109/tpami.2021.3085739 – year: 2022 ident: ref1 article-title: Inner speech recognition through electroencephalographic signals publication-title: arXiv:2210.06472 – ident: ref5 doi: 10.2478/cjece-2020-0004 – ident: ref2 doi: 10.21437/Interspeech.2019-3041 – ident: ref10 doi: 10.1016/j.ins.2022.11.139 – ident: ref25 doi: 10.1109/tnsre.2021.3074162 – ident: ref12 doi: 10.1016/j.imu.2019.100179 – volume-title: 2020 international BCI competition year: 2020 ident: ref17 – ident: ref27 doi: 10.1109/TCE.2023.3320768 – ident: ref11 doi: 10.1016/j.procs.2020.02.265 – ident: ref23 doi: 10.1109/TCE.2021.3079399 – ident: ref24 doi: 10.1007/s00357-019-09342-4 – ident: ref18 doi: 10.1016/j.eswa.2019.06.064 – ident: ref28 doi: 10.1109/TCE.2019.2920068 – ident: ref14 doi: 10.1145/2910585 – ident: ref6 doi: 10.1016/j.eswa.2020.113352 – ident: ref21 doi: 10.1109/TNSRE.2018.2876129 – ident: ref3 doi: 10.1016/j.bspc.2021.102625 – ident: ref8 doi: 10.1109/ACCESS.2020.2988796 – ident: ref29 doi: 10.1109/TCE.2024.3370310 – ident: ref20 doi: 10.1109/ACCESS.2019.2930958 – ident: ref16 doi: 10.1109/TSP.2014.2371779 – ident: ref26 doi: 10.1109/tnnls.2014.2337335 – volume-title: The Matrix Cookbook year: 2008 ident: ref15 – ident: ref19 doi: 10.5121/ijci.2023.120305 – ident: ref22 doi: 10.1109/TCE.2023.3330423 |
SSID | ssj0014528 |
Score | 2.42722 |
Snippet | Electroencephalograms (EEGs) are used for establishing a connection between the human brain and the outside environment, so they are widely used in the brain... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 6679 |
SubjectTerms | Algorithms Classification Classification algorithms Clustering Clustering algorithms Consumer electronics Dimensionality reduction Electroencephalography Feature extraction Hierarchies Human-computer interface k means clustering in the low dimensional space linear discriminant analysis Machine learning algorithms nonconvex constrained optimization problem Optimization Orthogonality Principal component analysis Principal components analysis Semi-supervised imagined speech Speech Transforms Vectors |
Title | A BCI System for Imagined Speech Classification Based on Optimization Theory |
URI | https://ieeexplore.ieee.org/document/10706840 https://www.proquest.com/docview/3151264958 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoyAMLQ4IdO4k9tlVRi6AMtFK3KPVDSKgPQbrw6zk7CSogJDYPTmT5zr47333fIXQtZJ6rWJuAayoCDjYwkCKWAbURS5i1YDHde8fjOBlO-f0snlVgdY-FMcb44jMTuqHP5euV2rinMjjhKXHkJA3UAD0rwVpfKQMeR6ImyAQ_mNU5SSJvJ_0BRIIRDxlPHTD0mw3yTVV-3cTevNwdoHG9sLKq5DXcFPNQffzgbPz3yg_RfuVo4m6pGUdoxyyP0d4W_eAJeujiXn-ES9JyDN4rHi1c0yKj8fPaGPWCfctMV0zk5Yd7YPI0hsETXDSLCsGJS3h_C03vBpP-MKi6KwQq4nERUB6ZVNEcXAopjdBzypQEe8XiRHNqCWNWUOVkaSzEZEIbpklOlKW5jR3B6SlqLldLc4ZwYk2iE5idcsnJnArNtHAZyZwQHYm4jW7q_c7WJYlG5oMPIjOQTeZkk1WyaaOW276teeXOtVGnllBWHbP3jDl_JYEYT5z_8dkF2nV_L9GDHdQs3jbmEtyIYn7l1ecTunvBLg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8PbAwpNixndojVKAW2jJQJLYo9UNIiIKgXfj1nJ0EFRASmwdHse5s353vvu8ATpQuCiOtS4RlKhFoAxOtpE6YT3nGvUeLGd47-oOscy-uH-RDBVaPWBjnXCw-c80wjLl8-2Km4akMT3iLBnKSeViUGFaoEq71lTQQMlU1RSZ6wrzOSlJ9NmxfYiyYiiYXrQAN_WaFYluVX3dxNDBXazCol1bWlTw1p5NR03z8YG3899rXYbVyNcl5uTc2YM6NN2FlhoBwC3rn5KLdJSVtOUH_lXSfQ9siZ8ndq3PmkcSmmaGcKGqQXKDRswQHt3jVPFcYTlIC_Lfh_upy2O4kVX-FxKRCThImUtcyrECnQmun7Ihxo9FicZlZwTzl3Ctmgjadx6hMWcctLajxrPAyUJzuwML4Zex2gWTeZTbD2S2hBR0xZblVISdZUGpTJRtwWss7fy1pNPIYflCdo27yoJu80k0DtoP4ZuaVkmvAQa2hvDpo7zkPHkuGUZ7a--OzY1jqDPu9vNcd3OzDcvhTiSU8gIXJ29QdolMxGR3FrfQJFszEgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+BCI+System+for+Imagined+Speech+Classification+Based+on+Optimization+Theory&rft.jtitle=IEEE+transactions+on+consumer+electronics&rft.au=Xiao-Ben%2C+Zheng&rft.au=Ling%2C+Bingo+Wing-Kuen&rft.date=2024-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0098-3063&rft.eissn=1558-4127&rft.volume=70&rft.issue=4&rft.spage=6679&rft_id=info:doi/10.1109%2FTCE.2024.3475821&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3063&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3063&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3063&client=summon |