Modelling the Effect of Zero-Field Splitting on the 1H, 13C and 29Si Chemical Shifts of Lanthanide and Actinide Compounds
The prediction of paramagnetic NMR (pNMR) chemical shifts in molecules containing heavy atoms presents a significant challenge to computational quantum chemistry. The importance of meeting this challenge lies in the central role that NMR plays in the structural characterisation of chemical systems....
Saved in:
Published in | Magnetochemistry Vol. 5; no. 1; p. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2312-7481 2312-7481 |
DOI | 10.3390/magnetochemistry5010003 |
Cover
Abstract | The prediction of paramagnetic NMR (pNMR) chemical shifts in molecules containing heavy atoms presents a significant challenge to computational quantum chemistry. The importance of meeting this challenge lies in the central role that NMR plays in the structural characterisation of chemical systems. Hence there is a need for reliable assignment and prediction of chemical shifts. In a previous study [Trends in Physical Chemistry, 17, 25–57, (2017)] we looked at the computation of pNMR chemical shifts in lanthanide and actinide complexes using a spin Hamiltonian approach. In that study we were principally concerned with molecules with S = 1/2 ground states. In the present work we extend that study by looking at the effect of zero field splitting (ZFS) for six complexes with S = 3/2 ground states. It is shown that the inclusion of ZFS can produce substantial shifts in the predicted chemical shifts. The computations presented are typically sufficient to enable assignment of experimental spectra. However for one case, in which the peaks are closely clustered, the inclusion of ZFS re-orders the chemical shifts making assignment quite difficult. We also observe, and echo, the previously reported importance of including the paramagnetic spin-orbit hyperfine interaction for 13 C and 29 Si atoms, when these are directly bound to a heavy element and thus subject to heavy-atom-light-atom effects. The necessary computations are very demanding, and more work is needed to find theoretical and computational approaches that simplify the evaluation of this term. We discuss the computation of each term required in the spin Hamiltonian. The systems we study in this work are restricted to a single heavy atom ion (one Nd(III) and five U(III) complexes), but typify some of the computational complexity encountered in lanthanide and actinide containing molecules. |
---|---|
AbstractList | The prediction of paramagnetic NMR (pNMR) chemical shifts in molecules containing heavy atoms presents a significant challenge to computational quantum chemistry. The importance of meeting this challenge lies in the central role that NMR plays in the structural characterisation of chemical systems. Hence there is a need for reliable assignment and prediction of chemical shifts. In a previous study [Trends in Physical Chemistry, 17, 25–57, (2017)] we looked at the computation of pNMR chemical shifts in lanthanide and actinide complexes using a spin Hamiltonian approach. In that study we were principally concerned with molecules with S = 1/2 ground states. In the present work we extend that study by looking at the effect of zero field splitting (ZFS) for six complexes with S = 3/2 ground states. It is shown that the inclusion of ZFS can produce substantial shifts in the predicted chemical shifts. The computations presented are typically sufficient to enable assignment of experimental spectra. However for one case, in which the peaks are closely clustered, the inclusion of ZFS re-orders the chemical shifts making assignment quite difficult. We also observe, and echo, the previously reported importance of including the paramagnetic spin-orbit hyperfine interaction for 13C and 29Si atoms, when these are directly bound to a heavy element and thus subject to heavy-atom-light-atom effects. The necessary computations are very demanding, and more work is needed to find theoretical and computational approaches that simplify the evaluation of this term. We discuss the computation of each term required in the spin Hamiltonian. The systems we study in this work are restricted to a single heavy atom ion (one Nd(III) and five U(III) complexes), but typify some of the computational complexity encountered in lanthanide and actinide containing molecules. The prediction of paramagnetic NMR (pNMR) chemical shifts in molecules containing heavy atoms presents a significant challenge to computational quantum chemistry. The importance of meeting this challenge lies in the central role that NMR plays in the structural characterisation of chemical systems. Hence there is a need for reliable assignment and prediction of chemical shifts. In a previous study [Trends in Physical Chemistry, 17, 25–57, (2017)] we looked at the computation of pNMR chemical shifts in lanthanide and actinide complexes using a spin Hamiltonian approach. In that study we were principally concerned with molecules with S = 1/2 ground states. In the present work we extend that study by looking at the effect of zero field splitting (ZFS) for six complexes with S = 3/2 ground states. It is shown that the inclusion of ZFS can produce substantial shifts in the predicted chemical shifts. The computations presented are typically sufficient to enable assignment of experimental spectra. However for one case, in which the peaks are closely clustered, the inclusion of ZFS re-orders the chemical shifts making assignment quite difficult. We also observe, and echo, the previously reported importance of including the paramagnetic spin-orbit hyperfine interaction for 13 C and 29 Si atoms, when these are directly bound to a heavy element and thus subject to heavy-atom-light-atom effects. The necessary computations are very demanding, and more work is needed to find theoretical and computational approaches that simplify the evaluation of this term. We discuss the computation of each term required in the spin Hamiltonian. The systems we study in this work are restricted to a single heavy atom ion (one Nd(III) and five U(III) complexes), but typify some of the computational complexity encountered in lanthanide and actinide containing molecules. |
Author | Lloyd, Austin W. Moylan, Helen M. McDouall, Joseph J. W. |
Author_xml | – sequence: 1 givenname: Austin W. orcidid: 0000-0003-4351-301X surname: Lloyd fullname: Lloyd, Austin W. – sequence: 2 givenname: Helen M. surname: Moylan fullname: Moylan, Helen M. – sequence: 3 givenname: Joseph J. W. orcidid: 0000-0001-7730-6938 surname: McDouall fullname: McDouall, Joseph J. W. |
BookMark | eNqNkV1rFDEUhgepYK39DQa8dWy-5iMXXpShtYUVL1ZvvAlnMmd2s2STMclS9t87sytSBKGBkA-e9zkJ521x4YPHonjP6CchFL3Zw8ZjDmaLe5tyPFaUUUrFq-KSC8bLRrbs4tn-TXGd0m4mOGWi4eqyOH4NAzpn_YbkLZK7cUSTSRjJT4yhvLfoBrKenM15QYI_UezhI2GiI-AHwtXakm6pb8CR9daOOS35Ffi8BW8HPGG3ZhYshy7sp3DwQ3pXvB7BJbz-s14VP-7vvncP5erbl8fudlUaLitR9hwUCsWbqm5r2g7SKKxqxlTVSJynVFI1ktYgqUTRG4msR1EJMwD2ZuzFVfF49g4BdnqKdg_xqANYfboIcaMhZmscauyVaeq6xkpxCcooAA6NASWAz2OcXe3ZdfATHJ_Aub9CRvXSEf2fjszRD-foFMOvA6asd-EQ_fxzzSvZ1pIKzmbq85kyMaQUcdTGZsg2-BzBuhdUaf7Jv_R9vwH2R7lI |
CitedBy_id | crossref_primary_10_1007_s12043_021_02086_0 |
Cites_doi | 10.1007/978-3-642-40766-6 10.1002/0471224413.ch3 10.1039/b508541a 10.1016/B978-0-444-59411-2.00003-4 10.1021/jp963060t 10.1002/anie.199707741 10.1021/j100034a013 10.1021/acs.jctc.6b00462 10.1021/ja00179a005 10.1080/07366299908934641 10.1016/0031-8914(51)90070-5 10.1080/00268970701549389 10.1080/00268977400100711 10.1063/1.478522 10.1021/om500512q 10.1002/3527601678.ch20 10.1063/1.2079947 10.1080/00268976000100511 10.1063/1.1744052 10.1063/1.3526263 10.1016/j.ccr.2008.12.020 10.1016/S0009-2614(02)01446-X 10.1002/9781118688304.ch12 10.1002/9781118571767.ch6 10.1016/B978-0-444-59411-2.00004-6 10.1103/PhysRevLett.109.073001 10.1021/ic100447m 10.1021/acs.jctc.5b00656 10.1063/1.1370527 10.1063/1.1829047 10.1002/wcms.81 10.1021/acs.jpclett.5b00932 10.1016/0009-2614(95)01386-5 10.1021/ct900090f 10.1021/cr960017t 10.1007/s00214-005-0003-2 10.1021/om301045k 10.1021/j100205a033 10.1063/1.1419058 10.1021/ct200143w 10.1088/0370-1298/63/1/304 10.1103/PhysRev.77.567 10.1021/jp983453n 10.1002/zaac.201000225 10.1007/BF01113132 10.1002/chem.201701058 10.1016/S0009-2614(01)01433-6 10.1016/S0079-6565(02)00002-X 10.1039/dt9750002443 10.1103/PhysRevA.39.6016 10.1021/j100002a024 10.1016/j.pnmrs.2010.10.003 10.1021/acs.jctc.5b00193 10.1111/j.1540-8159.2006.00317.x 10.1063/1.2173246 10.1063/1.2772857 10.1063/1.4792362 10.1103/PhysRevLett.109.246403 10.1039/b103606h 10.1063/1.4906318 10.1021/acs.jctc.7b00168 10.1016/bs.arcc.2015.09.006 10.1103/PhysRevLett.100.133002 10.1063/1.4789398 10.1139/V09-045 10.1021/ct100736b 10.1103/PhysRevA.32.756 10.1002/0470010088 10.1063/1.4775809 10.1002/chem.201404864 10.1002/cphc.200600051 10.1119/1.1933118 10.1016/S0010-8545(02)00287-4 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
DOI | 10.3390/magnetochemistry5010003 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2312-7481 |
ExternalDocumentID | oai_doaj_org_article_eb9c7666e5924a9c9aa2a7ca93a2222f 10.3390/magnetochemistry5010003 10_3390_magnetochemistry5010003 |
GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I GROUPED_DOAJ HCIFZ IAO KB. MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC ITC UNPAY |
ID | FETCH-LOGICAL-c2453-b2a9e3927568608d4c9e56119574e57449497406a404e3bc4e1be353cdaebcfb3 |
IEDL.DBID | 8FG |
ISSN | 2312-7481 |
IngestDate | Wed Aug 27 01:23:18 EDT 2025 Tue Aug 19 17:26:52 EDT 2025 Fri Jul 25 11:57:09 EDT 2025 Thu Apr 24 23:12:08 EDT 2025 Wed Oct 01 04:17:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2453-b2a9e3927568608d4c9e56119574e57449497406a404e3bc4e1be353cdaebcfb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7730-6938 0000-0003-4351-301X |
OpenAccessLink | https://www.proquest.com/docview/2548640321?pq-origsite=%requestingapplication% |
PQID | 2548640321 |
PQPubID | 2059549 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eb9c7666e5924a9c9aa2a7ca93a2222f unpaywall_primary_10_3390_magnetochemistry5010003 proquest_journals_2548640321 crossref_citationtrail_10_3390_magnetochemistry5010003 crossref_primary_10_3390_magnetochemistry5010003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 20190101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Magnetochemistry |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Moylan (ref_57) 2018; 17 ref_58 Schreckenbach (ref_26) 1995; 99 Neese (ref_44) 2007; 105 Gendron (ref_15) 2016; 12 Pennanen (ref_22) 2008; 100 Pantazis (ref_61) 2009; 5 Autschbach (ref_48) 2013; 3 ref_18 Marian (ref_41) 1996; 251 ref_17 McConnell (ref_21) 1958; 28 Neese (ref_65) 2012; 2 Griffith (ref_81) 1960; 3 Facelli (ref_24) 2011; 58 Bolvin (ref_36) 2006; 7 Filatov (ref_28) 2002; 365 Windorff (ref_79) 2014; 33 Kaupp (ref_7) 2009; 253 Rouf (ref_55) 2015; 11 Gendron (ref_14) 2015; 6 ref_67 Liimatainen (ref_56) 2009; 87 Ditchfield (ref_25) 1974; 27 Soncini (ref_13) 2013; 138 Tsoureas (ref_1) 2013; 32 Wolinski (ref_64) 1990; 112 Martin (ref_10) 2015; 142 Koseki (ref_39) 1995; 99 Goodwin (ref_2) 2014; 20 ref_27 Soncini (ref_12) 2013; 138 Vaara (ref_16) 2013; 3 Malkin (ref_46) 2011; 134 Neese (ref_43) 2007; 127 Chipman (ref_69) 1992; 82 Evans (ref_77) 1997; 36 Kleinschmidt (ref_33) 2006; 124 Autschbach (ref_54) 2011; 7 Vaara (ref_11) 2015; 11 Schreckenbach (ref_70) 1997; 101 ref_71 Reiher (ref_29) 2006; 116 Natrajan (ref_73) 2010; 49 Koseki (ref_40) 1998; 102 Weigend (ref_63) 2005; 7 Kolarik (ref_75) 1999; 17 ref_35 ref_34 Chibotaru (ref_74) 2012; 109 ref_76 Pryce (ref_19) 1950; 63 ref_31 Patchkovskii (ref_8) 2001; 115 ref_30 Neese (ref_32) 2001; 115 Autschbach (ref_6) 2014; 372 Autschbach (ref_78) 2003; 238–239 ref_37 Vahtras (ref_42) 2002; 351 Soncini (ref_52) 2012; 109 Bertini (ref_9) 2002; 40 Pantazis (ref_62) 2011; 7 ref_80 Hess (ref_66) 1985; 32 Ramsey (ref_23) 1951; 17 Moylan (ref_60) 2017; 23 ref_45 Helgaker (ref_5) 1999; 99 Koseki (ref_38) 1992; 96 Pennanen (ref_53) 2005; 123 ref_49 Luzanov (ref_72) 1994; 311 Sandhoefer (ref_68) 2013; 138 Parsonnet (ref_3) 2006; 29 Adamo (ref_59) 1999; 110 Abragam (ref_20) 1951; 205 Rouf (ref_47) 2017; 13 ref_4 Kurland (ref_51) 1970; 2 |
References_xml | – ident: ref_17 doi: 10.1007/978-3-642-40766-6 – ident: ref_31 doi: 10.1002/0471224413.ch3 – volume: 7 start-page: 3297 year: 2005 ident: ref_63 article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b508541a – volume: 3 start-page: 41 year: 2013 ident: ref_16 article-title: Chemical shift in paramagnetic systems publication-title: Sci. Technol. At. Mol. Condens. Matter Biol. Syst. doi: 10.1016/B978-0-444-59411-2.00003-4 – volume: 101 start-page: 3388 year: 1997 ident: ref_70 article-title: Calculation of the g tensor of electron paramagnetic resonance spectroscopy using gauge-including atomic orbitals and density functional theory publication-title: J. Phys. Chem. A doi: 10.1021/jp963060t – volume: 36 start-page: 774 year: 1997 ident: ref_77 article-title: Activity of [Sm(C5Me5)3] in ethylene polymerization and synthesis of [U(C5Me5)3], the first tris(pentamethylcyclopentadienyl) 5f-element complex publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.199707741 – volume: 99 start-page: 12764 year: 1995 ident: ref_39 article-title: Main group effective nuclear charges for spin-orbit calculations publication-title: J. Phys. Chem. doi: 10.1021/j100034a013 – volume: 12 start-page: 5309 year: 2016 ident: ref_15 article-title: Ligand NMR Chemical Shift Calculations for Paramagnetic Metal Complexes: 5f1 vs 5f2 Actinides publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00462 – volume: 112 start-page: 8251 year: 1990 ident: ref_64 article-title: Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00179a005 – volume: 17 start-page: 1155 year: 1999 ident: ref_75 article-title: Extraction of Am(III) and Eu(III) nitrates by 2-6-di-(5,6-dipropyl-1,2,4-triazin-3-yl)pyridines publication-title: Solvent Extr. Ion Exch. doi: 10.1080/07366299908934641 – volume: 17 start-page: 303 year: 1951 ident: ref_23 article-title: Magnetic shielding of nuclei in molecules publication-title: Physica doi: 10.1016/0031-8914(51)90070-5 – volume: 105 start-page: 2507 year: 2007 ident: ref_44 article-title: Analytic derivative calculation of electronic g-tensors based on multireference configuration interaction wavefunctions publication-title: Mol. Phys. doi: 10.1080/00268970701549389 – volume: 27 start-page: 789 year: 1974 ident: ref_25 article-title: Self-consistent perturbation theory of diamagnetism publication-title: Mol. Phys. doi: 10.1080/00268977400100711 – volume: 110 start-page: 6158 year: 1999 ident: ref_59 article-title: Toward reliable density functional methods without adjustable parameters: The PBE0 model publication-title: J. Chem. Phys. doi: 10.1063/1.478522 – volume: 33 start-page: 3786 year: 2014 ident: ref_79 article-title: 29Si NMR spectra of silicon-containing uranium complexes publication-title: Organometallics doi: 10.1021/om500512q – ident: ref_58 – ident: ref_50 doi: 10.1002/3527601678.ch20 – volume: 123 start-page: 174102 year: 2005 ident: ref_53 article-title: Density-functional calculations of relativistic spin-orbit effects on nuclear magnetic shielding in paramagnetic molecules publication-title: J. Chem. Phys. doi: 10.1063/1.2079947 – volume: 3 start-page: 477 year: 1960 ident: ref_81 article-title: Some investigations in the theory of open-shell ions publication-title: Mol. Phys. doi: 10.1080/00268976000100511 – volume: 28 start-page: 107 year: 1958 ident: ref_21 article-title: Theory of isotropic hyperfine interactions in π-electron radicals publication-title: J. Chem. Phys. doi: 10.1063/1.1744052 – volume: 134 start-page: 044111 year: 2011 ident: ref_46 article-title: Effects of finite size nuclei in relativistic four-component calculations of hyperfine structure publication-title: J. Chem. Phys. doi: 10.1063/1.3526263 – ident: ref_27 – volume: 253 start-page: 2376 year: 2009 ident: ref_7 article-title: Combining NMR spectroscopy and quantum chemistry as tools to quantify spin density distributions in molecular magnetic compounds publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2008.12.020 – volume: 365 start-page: 222 year: 2002 ident: ref_28 article-title: On representation of the Hamiltonian matrix elements in relativistic regular approximation publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)01446-X – ident: ref_30 doi: 10.1002/9781118688304.ch12 – ident: ref_37 doi: 10.1002/9781118571767.ch6 – volume: 3 start-page: 69 year: 2013 ident: ref_48 article-title: Relativistic effects on NMR publication-title: Sci. Technol. At. Mol. Condens. Matter Biol. Syst. doi: 10.1016/B978-0-444-59411-2.00004-6 – volume: 2 start-page: 286 year: 1970 ident: ref_51 article-title: Isotropic NMR shifts in transition metal complexes: The calculation of the fermi contact and pseudocontact terms publication-title: J. Magn. Reson. – volume: 109 start-page: 073001 year: 2012 ident: ref_52 article-title: NMR chemical shift in an electronic state with arbitrary degeneracy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.073001 – volume: 49 start-page: 7700 year: 2010 ident: ref_73 article-title: Probing the structure, conformation, and stereochemical exchange in a family of lanthanide complexes Derived from Tetrapyridyl-Appended Cyclen publication-title: Inorg. Chem. doi: 10.1021/ic100447m – volume: 11 start-page: 4840 year: 2015 ident: ref_11 article-title: Magnetic couplings in the chemical shift of paramagnetic NMR publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00656 – volume: 115 start-page: 26 year: 2001 ident: ref_8 article-title: Curing difficult cases in magnetic properties prediction with self-interaction corrected density functional theory publication-title: J. Chem. Phys. doi: 10.1063/1.1370527 – ident: ref_71 doi: 10.1063/1.1829047 – volume: 2 start-page: 73 year: 2012 ident: ref_65 article-title: The ORCA program system publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.81 – volume: 6 start-page: 2183 year: 2015 ident: ref_14 article-title: Calculating NMR chemical shifts for paramagnetic metal complexes from first-principles publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00932 – ident: ref_45 – volume: 205 start-page: 135 year: 1951 ident: ref_20 article-title: Theory of the nuclear hyperfine structure of paramagnetic resonance spectra in crystals publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 251 start-page: 365 year: 1996 ident: ref_41 article-title: A mean-field spin-orbit method applicable to correlated wavefunctions publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(95)01386-5 – volume: 5 start-page: 2229 year: 2009 ident: ref_61 article-title: All-electron scalar relativistic basis sets for the lanthanides publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900090f – volume: 99 start-page: 293 year: 1999 ident: ref_5 article-title: Ab initio methods for the calculation of NMR shielding and indirect spin-spin coupling constants publication-title: Chem. Rev. doi: 10.1021/cr960017t – volume: 116 start-page: 241 year: 2006 ident: ref_29 article-title: Douglas-Kroll-Hess theory: A relativistic electrons-only theory for chemistry publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-005-0003-2 – volume: 32 start-page: 1352 year: 2013 ident: ref_1 article-title: Steric effects in the reductive coupling of CO by mixed-sandwich uranium(III) complexes publication-title: Organometallics doi: 10.1021/om301045k – volume: 96 start-page: 10768 year: 1992 ident: ref_38 article-title: MCSCF/6-31G(d,p) calculations of one-electron spin-orbit coupling constants in diatomic molecules publication-title: J. Phys. Chem. doi: 10.1021/j100205a033 – volume: 115 start-page: 11080 year: 2001 ident: ref_32 article-title: Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree–Fock and Kohn–Sham theory publication-title: J. Chem. Phys. doi: 10.1063/1.1419058 – volume: 7 start-page: 2175 year: 2011 ident: ref_54 article-title: Calculation of hyperfine tensors and paramagnetic NMR shifts using the relativistic zeroth-order regular approximation and density functional theory publication-title: J. Chem. Theory Comput. doi: 10.1021/ct200143w – volume: 63 start-page: 25 year: 1950 ident: ref_19 article-title: A modified perturbation procedure for a problem in paramagnetism publication-title: Proc. Phys. Soc. Sect. A doi: 10.1088/0370-1298/63/1/304 – ident: ref_49 doi: 10.1103/PhysRev.77.567 – volume: 102 start-page: 10430 year: 1998 ident: ref_40 article-title: Effective nuclear charges for the first- through third-row transition metal elements in spin-orbit calculations publication-title: J. Phys. Chem. A doi: 10.1021/jp983453n – volume: 311 start-page: 211 year: 1994 ident: ref_72 article-title: Gauge-invariant calculations of magnetic properties in semiempirical approaches. Application to full-CI π-electron scheme publication-title: J. Mol. Struct. – ident: ref_80 doi: 10.1002/zaac.201000225 – volume: 82 start-page: 93 year: 1992 ident: ref_69 article-title: The spin polarization model for hyperfine coupling constants publication-title: Theor. Chim. Acta doi: 10.1007/BF01113132 – volume: 372 start-page: 20120489 year: 2014 ident: ref_6 article-title: Relativistic calculations of magnetic resonance parameters: background and some recent developments publication-title: Philos. Trans. A. Math. Phys. Eng. Sci. – volume: 23 start-page: 7798 year: 2017 ident: ref_60 article-title: Electronic g tensors in U(V) complexes—A computational study publication-title: Chem. A Eur. J. doi: 10.1002/chem.201701058 – volume: 351 start-page: 424 year: 2002 ident: ref_42 article-title: Electronic g-tensors obtained with the mean-field spin-orbit Hamiltonian publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(01)01433-6 – volume: 40 start-page: 249 year: 2002 ident: ref_9 article-title: Magnetic susceptibility in paramagnetic NMR publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/S0079-6565(02)00002-X – ident: ref_35 doi: 10.1039/dt9750002443 – ident: ref_67 doi: 10.1103/PhysRevA.39.6016 – volume: 99 start-page: 606 year: 1995 ident: ref_26 article-title: Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory publication-title: J. Phys. Chem. doi: 10.1021/j100002a024 – volume: 58 start-page: 176 year: 2011 ident: ref_24 article-title: Chemical shift tensors: Theory and application to molecular structural problems publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2010.10.003 – volume: 11 start-page: 1683 year: 2015 ident: ref_55 article-title: 1H chemical shifts in paramagnetic Co(II) pyrazolylborate complexes: A first-principles study publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00193 – volume: 29 start-page: 195 year: 2006 ident: ref_3 article-title: Thirty-one years of clinical experience with nuclear-powered pacemakers publication-title: PACE Pacing Clin. Electrophysiol. doi: 10.1111/j.1540-8159.2006.00317.x – volume: 124 start-page: 124101 year: 2006 ident: ref_33 article-title: SPOCK.CI: A multireference spin-orbit configuration interaction method for large molecules publication-title: J. Chem. Phys. doi: 10.1063/1.2173246 – volume: 127 start-page: 164112 year: 2007 ident: ref_43 article-title: Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory publication-title: J. Chem. Phys. doi: 10.1063/1.2772857 – volume: 138 start-page: 104102 year: 2013 ident: ref_68 article-title: Derivation and assessment of relativistic hyperfine-coupling tensors on the basis of orbital-optimized second-order Møller–Plesset perturbation theory and the second-order Douglas–Kroll–Hess transformation publication-title: J. Chem. Phys. doi: 10.1063/1.4792362 – volume: 109 start-page: 246403 year: 2012 ident: ref_74 article-title: Negative g factors, Berry phases, and magnetic properties of complexes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.246403 – ident: ref_4 doi: 10.1039/b103606h – volume: 142 start-page: 054108 year: 2015 ident: ref_10 article-title: Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules publication-title: J. Chem. Phys. doi: 10.1063/1.4906318 – volume: 13 start-page: 3731 year: 2017 ident: ref_47 article-title: Relativistic Approximations to Paramagnetic NMR Chemical Shift and Shielding Anisotropy in Transition Metal Systems publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00168 – ident: ref_18 doi: 10.1016/bs.arcc.2015.09.006 – volume: 100 start-page: 133002 year: 2008 ident: ref_22 article-title: Nuclear magnetic resonance chemical shift in an arbitrary electronic spin state publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.133002 – volume: 17 start-page: 25 year: 2018 ident: ref_57 article-title: Computational study of chemical shifts in paramagnetic f-element compounds publication-title: Trends Phys. Chem. – volume: 138 start-page: 054113 year: 2013 ident: ref_12 article-title: NMR chemical shift as analytical derivative of the Helmholtz free energy publication-title: J. Chem. Phys. doi: 10.1063/1.4789398 – volume: 87 start-page: 954 year: 2009 ident: ref_56 article-title: 1H chemical shifts in nonaxial, paramagnetic chromium(III) complexes—Application of novel pNMR shift theory publication-title: Can. J. Chem. doi: 10.1139/V09-045 – volume: 7 start-page: 677 year: 2011 ident: ref_62 article-title: All-electron scalar relativistic basis sets for the actinides publication-title: J. Chem. Theory Comput. doi: 10.1021/ct100736b – volume: 32 start-page: 756 year: 1985 ident: ref_66 article-title: Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.32.756 – ident: ref_76 doi: 10.1002/0470010088 – volume: 138 start-page: 021103 year: 2013 ident: ref_13 article-title: Communication: Paramagnetic NMR chemical shift in a spin state subject to zero-field splitting publication-title: J. Chem. Phys. doi: 10.1063/1.4775809 – volume: 20 start-page: 14579 year: 2014 ident: ref_2 article-title: A structurally authenticated trigonal planar actinide complex publication-title: Chem. A Eur. J. doi: 10.1002/chem.201404864 – volume: 7 start-page: 1575 year: 2006 ident: ref_36 article-title: An alternative approach to the g-matrix: Theory and applications publication-title: ChemPhysChem doi: 10.1002/cphc.200600051 – ident: ref_34 doi: 10.1119/1.1933118 – volume: 238–239 start-page: 83 year: 2003 ident: ref_78 article-title: Double perturbation theory: a powerful tool in computational coordination chemistry publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(02)00287-4 |
SSID | ssj0002013729 |
Score | 2.056207 |
Snippet | The prediction of paramagnetic NMR (pNMR) chemical shifts in molecules containing heavy atoms presents a significant challenge to computational quantum... |
SourceID | doaj unpaywall proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 3 |
SubjectTerms | actinide complexes Chemistry Computation Energy Ground state Heavy elements hyperfine coupling tensors Magnetic fields NMR Nuclear magnetic resonance paramagnetic nmr Physical chemistry Quantum chemistry relativistic quantum chemistry spin-orbit coupling Splitting zero field splitting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQl7IgnqJQkAdGoiZx0tRjqagqBCylUsUSnR2HFpWk6kOo_547J63aAZWBIUMSO7J8F9_3-fEdY3dhROcOWshUXZ06tLTmtBLtO15ThRAalYCVL355bfYGwdMwHG6l-qI9YYU8cNFxDaOkjhBjmxCZAkgtAXyINEgBGNr8lEZfDGNbZOrTLq95tB5VbOgSyOsbX_CBXJ-yUJVp1Fya2RY74ciq9u9Azeoym8LqGyaTrajTPWZHJVzk7aKZJ-zAZKes2ll__oytKJmZ1dXmCOV4IUbM85S_m1nudGl_Gu8j0LTbm3me2VJe7557osMhS7gv-2O-lg3g_dE4Xcyp_jN2-QiycWJssTaOi_aGBhBKxTQ_Z4Pu41un55TpFByNJhCO8kEahENRiLZxW0mgpUH05MkwCgxepFMTYXyHwA2MUDownjIiFDoBo3SqxAWrZHlmLhlPE3wr0wTplQy060sDCCwUneBCvKD9GmuuezXWpdY4pbyYxMg5yBzxL-aoMXdTcVrIbeyv8kBm2xQnvWz7AL0oLr0o3udFNVZfGz0uf-J5jNy51Qxc4Xs15m0c4a_tuvqPdl2zQ3RlWcz51FllMVuaG0RBC3VrHf4H66MHPQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFcoLzEQot84Eiah-NkLQ7VsmK1QlAhLSsVhBTZjtOuWJLVPkDtr2fGcVYUCYF6yCGJR3I0E_v77PE3AC9FTucOBshUI1MFtLUWDEqTBHGmhRJWl8rJF384yyaz9N25ON-D191ZGEqrRCo-d4M0Yo-ExC7jUIRxyMNlWZ3-8MtIOPXnNNvn_A7sZ7S71IP92dnH4WdXTs4bthldHIl9-F1dINmnMlS-jlpES9v8xnzkZPtvYM2Dbb1UVz_VYvHbtDO-D1-7DrfZJt9Otht9Yq7_0HK85Rcdwj0PR9mwjZ8HsGfrh3Aw6nr_CK6oWJrT7WYIFVkrdsyain2xqyYYU_4bmyKQdenTrKldq3jyisV8xFRdskRO56yTJWDTy3m1WZP9e3TpparnpXXNhjjuuhsaoKjU0_oxzMZvP40mgS_XEBh0MQ90oqRFuJUL9H00KFMjLaKzWIo8tXiRDk6O-EGlUWq5NqmNteWCm1JZbSrNn0Cvbmr7FFhV4ltZlUjfZGqiRFqFwEXTCTHEIybpQ9Y5rTBey5xKaiwK5DTk7eIv3u5DtDNctnIe_zZ5Q1Gxa0563O5Bs7oo_O9dWC1NjkzQCuSzShqpVKJyoyRXCMCSqg9HXUwVfpBYF8jNB1ka8STuQ7yLs__t17Nb2DyHuwj4ZLuEdAS9zWprjxFUbfQL__P8AlKaH88 priority: 102 providerName: Unpaywall |
Title | Modelling the Effect of Zero-Field Splitting on the 1H, 13C and 29Si Chemical Shifts of Lanthanide and Actinide Compounds |
URI | https://www.proquest.com/docview/2548640321 https://www.mdpi.com/2312-7481/5/1/3/pdf?version=1547551473 https://doaj.org/article/eb9c7666e5924a9c9aa2a7ca93a2222f |
UnpaywallVersion | publishedVersion |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2312-7481 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002013729 issn: 2312-7481 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2312-7481 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002013729 issn: 2312-7481 databaseCode: ADMLS dateStart: 20180301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2312-7481 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002013729 issn: 2312-7481 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2312-7481 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002013729 issn: 2312-7481 databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2312-7481 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002013729 issn: 2312-7481 databaseCode: 8FG dateStart: 20151201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swECbaZEiXomlT1G1qcMgYIRIpWeZUOEYco2iMIK6BpItwfCgx4Eiu7aDIv-8dRbnN0MeggRJJCLwj-d3x-B1jR1lO9w76aKnGpozoaC3qWyOipKczyJy24OmLLya98Sz9fJ1dB4fbOoRVtmuiX6htbchHfoKGTL-XxlIkn5bfI8oaRaerIYXGc7abCNQkuik-Ot_6WATx6QnVhHVJtO5P7uEWLX7KRRWSqcXk35ZPNiXP3f8EcO49VEt4_AGLxW97z-gVexlAIx80Ut5nz1z1mu0N2-7fsEdKaebZtTkCOt5QEvO65N_cqo5GFKXGpwg3fZAzrytfKxkf80QOOVSWCzWd85Y8gE_v5uVmTe2_4MDfQTW3zlcb4OroC7SMUEKm9QGbjc6-DsdRSKoQGRSEjLQA5RAU5RlKKO7b1CiHGCpRWZ46fIitJsddHtI4dVKb1CXayUwaC06bUsu3bKeqK_eO8dLiV1VaNLJUamKhHCC80HSPC1GDER3Wa0e1MIFxnBJfLAq0PEgcxR_E0WHxtuGyId34d5NTEtu2OrFm-xf16rYIk7BwWpkc7TWXodUJyigAAbkBJQFhkig77LAVehGm8rr4pXgdlmwV4X__6_3fu_zAXqCSqsanc8h2NqsH9xFRzkZ3vSp32e7p2eTyqut9BViaTS4HNz8B98YCaw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcggXRHmI0FL2ADes2rt27D1UqARCStNe0koVF7Mvt5FSO01SVflT_EZm1nagBx6XHnywvbtaecaz3-zj-wDeJimdO8gwUw1NEdDSWpBZw4OopxOVOG2Vpy8-PukNz-Kv58n5Bvxoz8LQtso2JvpAbStDc-R7mMhkvTgUPPowuw5INYpWV1sJjdotjtzqFlO2xf7hJ7TvO84Hn0_7w6BRFQgM9kQEmivpEBWkCXYxzGxspEMQEckkjR1eRNeS4jCn4jB2QpvYRdqJRBirnDaFFtjuA3gYCyGIqz8bfFnP6XDi7-Oy3kYmhAz3rtRF6ZakfdWIt4U0ny7uDIJeK-AOwO3clDO1ulXT6W9j3eAJPG5AKjuovWoLNlz5FDr9tvlnsCIJNc_mzRBAspoCmVUF--bmVTCgXXFsjPDWb6pmVelLRcP3LBJ9pkrLuBxPWEtWwMaXk2K5oPojNPSlKifW-WIHGI39DYUtEoBaPIeze_ncL2CzrEr3Elhh8a0sLCZ1MjYhl04hnNF0bgxRiuFd6LVfNTcNwzkJbUxzzHTIHPkfzNGFcF1xVpN8_LvKRzLbujixdPsH1fwib3763GlpUswPXYJZrpJGKsVVapQUCmEZL7qw0xo9b0LHIv_l6F2I1o7wv_169fcm30BneHo8ykeHJ0fb8AgdVtbzSTuwuZzfuNeIsJZ617s1g-_3_R_9BHVNOaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKJcEE8RWmAPcMOKvWvH2UOF2rRRSktUESpVXMy-3EYKdpqkqvIX-VXMrO1ADzwuPeSQZHe18szOfrPe-T6At0lKdQc9zFRDkwf0ai3oWcODqKsTlThtlacv_jTqDs_ij-fJ-Qb8aGph6FplExN9oLaloTPyDiYyvW4cCh518vpaxOnB4MPsKiAFKXrT2shpqFpmwe56urG6yOPYrW4wnVvsHh2g7d9xPjj80h8GteJAYHCWItBcSYeIIU1w-mHPxkY6BBiRTNLY4YeoXFLcAlUcxk5oE7tIO5EIY5XTJtcCx70HmynVi7Zgc_9wdPp5feLDid2Py-qSmRAy7HxXF4VbkjJWLe0W0mm7uLVFeiWBW_B367qYqdWNmk5_2wkHj-BhDWHZXuVzj2HDFU9gq98M_xRWJLDmub4ZwktWESSzMmdf3bwMBnRnjo0R_Por16wsfKto-J5Fos9UYRmX4wlrqAzY-HKSLxfU_wTd4FIVE-t8sz2M1f4LBTWSh1o8g7M7eeDPoVWUhXsBLLf4r8wtpnwyNiGXTiHY0VRVhhjG8DZ0m6eamZr_nGQ4phnmQWSO7A_maEO47jirKED-3WWfzLZuThze_odyfpHVISFzWpoUs0eXYA6spJFKcZUaJYVC0MbzNuw0Rs_qwLLIfi2DNkRrR_jfeb38-5Bv4D6uqezkaHS8DQ_QX2V12LQDreX82r1C-LXUr2u_ZvDtrpfST3vRRIY |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFcoLzEQot84Eiah-NkLQ7VsmK1QlAhLSsVhBTZjtOuWJLVPkDtr2fGcVYUCYF6yCGJR3I0E_v77PE3AC9FTucOBshUI1MFtLUWDEqTBHGmhRJWl8rJF384yyaz9N25ON-D191ZGEqrRCo-d4M0Yo-ExC7jUIRxyMNlWZ3-8MtIOPXnNNvn_A7sZ7S71IP92dnH4WdXTs4bthldHIl9-F1dINmnMlS-jlpES9v8xnzkZPtvYM2Dbb1UVz_VYvHbtDO-D1-7DrfZJt9Otht9Yq7_0HK85Rcdwj0PR9mwjZ8HsGfrh3Aw6nr_CK6oWJrT7WYIFVkrdsyain2xqyYYU_4bmyKQdenTrKldq3jyisV8xFRdskRO56yTJWDTy3m1WZP9e3TpparnpXXNhjjuuhsaoKjU0_oxzMZvP40mgS_XEBh0MQ90oqRFuJUL9H00KFMjLaKzWIo8tXiRDk6O-EGlUWq5NqmNteWCm1JZbSrNn0Cvbmr7FFhV4ltZlUjfZGqiRFqFwEXTCTHEIybpQ9Y5rTBey5xKaiwK5DTk7eIv3u5DtDNctnIe_zZ5Q1Gxa0563O5Bs7oo_O9dWC1NjkzQCuSzShqpVKJyoyRXCMCSqg9HXUwVfpBYF8jNB1ka8STuQ7yLs__t17Nb2DyHuwj4ZLuEdAS9zWprjxFUbfQL__P8AlKaH88 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+the+Effect+of+Zero-Field+Splitting+on+the+1H%2C+13C+and+29Si+Chemical+Shifts+of+Lanthanide+and+Actinide+Compounds&rft.jtitle=Magnetochemistry&rft.au=Moylan%2C+Helen+M&rft.au=McDouall%2C+Joseph+J+W&rft.date=2019-01-01&rft.pub=MDPI+AG&rft.eissn=2312-7481&rft.volume=5&rft.issue=1&rft.spage=3&rft_id=info:doi/10.3390%2Fmagnetochemistry5010003&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2312-7481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2312-7481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2312-7481&client=summon |