Modelling the Effect of Zero-Field Splitting on the 1H, 13C and 29Si Chemical Shifts of Lanthanide and Actinide Compounds

The prediction of paramagnetic NMR (pNMR) chemical shifts in molecules containing heavy atoms presents a significant challenge to computational quantum chemistry. The importance of meeting this challenge lies in the central role that NMR plays in the structural characterisation of chemical systems....

Full description

Saved in:
Bibliographic Details
Published inMagnetochemistry Vol. 5; no. 1; p. 3
Main Authors Lloyd, Austin W., Moylan, Helen M., McDouall, Joseph J. W.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2019
Subjects
Online AccessGet full text
ISSN2312-7481
2312-7481
DOI10.3390/magnetochemistry5010003

Cover

Abstract The prediction of paramagnetic NMR (pNMR) chemical shifts in molecules containing heavy atoms presents a significant challenge to computational quantum chemistry. The importance of meeting this challenge lies in the central role that NMR plays in the structural characterisation of chemical systems. Hence there is a need for reliable assignment and prediction of chemical shifts. In a previous study [Trends in Physical Chemistry, 17, 25–57, (2017)] we looked at the computation of pNMR chemical shifts in lanthanide and actinide complexes using a spin Hamiltonian approach. In that study we were principally concerned with molecules with S = 1/2 ground states. In the present work we extend that study by looking at the effect of zero field splitting (ZFS) for six complexes with S = 3/2 ground states. It is shown that the inclusion of ZFS can produce substantial shifts in the predicted chemical shifts. The computations presented are typically sufficient to enable assignment of experimental spectra. However for one case, in which the peaks are closely clustered, the inclusion of ZFS re-orders the chemical shifts making assignment quite difficult. We also observe, and echo, the previously reported importance of including the paramagnetic spin-orbit hyperfine interaction for 13 C and 29 Si atoms, when these are directly bound to a heavy element and thus subject to heavy-atom-light-atom effects. The necessary computations are very demanding, and more work is needed to find theoretical and computational approaches that simplify the evaluation of this term. We discuss the computation of each term required in the spin Hamiltonian. The systems we study in this work are restricted to a single heavy atom ion (one Nd(III) and five U(III) complexes), but typify some of the computational complexity encountered in lanthanide and actinide containing molecules.
AbstractList The prediction of paramagnetic NMR (pNMR) chemical shifts in molecules containing heavy atoms presents a significant challenge to computational quantum chemistry. The importance of meeting this challenge lies in the central role that NMR plays in the structural characterisation of chemical systems. Hence there is a need for reliable assignment and prediction of chemical shifts. In a previous study [Trends in Physical Chemistry, 17, 25–57, (2017)] we looked at the computation of pNMR chemical shifts in lanthanide and actinide complexes using a spin Hamiltonian approach. In that study we were principally concerned with molecules with S = 1/2 ground states. In the present work we extend that study by looking at the effect of zero field splitting (ZFS) for six complexes with S = 3/2 ground states. It is shown that the inclusion of ZFS can produce substantial shifts in the predicted chemical shifts. The computations presented are typically sufficient to enable assignment of experimental spectra. However for one case, in which the peaks are closely clustered, the inclusion of ZFS re-orders the chemical shifts making assignment quite difficult. We also observe, and echo, the previously reported importance of including the paramagnetic spin-orbit hyperfine interaction for 13C and 29Si atoms, when these are directly bound to a heavy element and thus subject to heavy-atom-light-atom effects. The necessary computations are very demanding, and more work is needed to find theoretical and computational approaches that simplify the evaluation of this term. We discuss the computation of each term required in the spin Hamiltonian. The systems we study in this work are restricted to a single heavy atom ion (one Nd(III) and five U(III) complexes), but typify some of the computational complexity encountered in lanthanide and actinide containing molecules.
The prediction of paramagnetic NMR (pNMR) chemical shifts in molecules containing heavy atoms presents a significant challenge to computational quantum chemistry. The importance of meeting this challenge lies in the central role that NMR plays in the structural characterisation of chemical systems. Hence there is a need for reliable assignment and prediction of chemical shifts. In a previous study [Trends in Physical Chemistry, 17, 25–57, (2017)] we looked at the computation of pNMR chemical shifts in lanthanide and actinide complexes using a spin Hamiltonian approach. In that study we were principally concerned with molecules with S = 1/2 ground states. In the present work we extend that study by looking at the effect of zero field splitting (ZFS) for six complexes with S = 3/2 ground states. It is shown that the inclusion of ZFS can produce substantial shifts in the predicted chemical shifts. The computations presented are typically sufficient to enable assignment of experimental spectra. However for one case, in which the peaks are closely clustered, the inclusion of ZFS re-orders the chemical shifts making assignment quite difficult. We also observe, and echo, the previously reported importance of including the paramagnetic spin-orbit hyperfine interaction for 13 C and 29 Si atoms, when these are directly bound to a heavy element and thus subject to heavy-atom-light-atom effects. The necessary computations are very demanding, and more work is needed to find theoretical and computational approaches that simplify the evaluation of this term. We discuss the computation of each term required in the spin Hamiltonian. The systems we study in this work are restricted to a single heavy atom ion (one Nd(III) and five U(III) complexes), but typify some of the computational complexity encountered in lanthanide and actinide containing molecules.
Author Lloyd, Austin W.
Moylan, Helen M.
McDouall, Joseph J. W.
Author_xml – sequence: 1
  givenname: Austin W.
  orcidid: 0000-0003-4351-301X
  surname: Lloyd
  fullname: Lloyd, Austin W.
– sequence: 2
  givenname: Helen M.
  surname: Moylan
  fullname: Moylan, Helen M.
– sequence: 3
  givenname: Joseph J. W.
  orcidid: 0000-0001-7730-6938
  surname: McDouall
  fullname: McDouall, Joseph J. W.
BookMark eNqNkV1rFDEUhgepYK39DQa8dWy-5iMXXpShtYUVL1ZvvAlnMmd2s2STMclS9t87sytSBKGBkA-e9zkJ521x4YPHonjP6CchFL3Zw8ZjDmaLe5tyPFaUUUrFq-KSC8bLRrbs4tn-TXGd0m4mOGWi4eqyOH4NAzpn_YbkLZK7cUSTSRjJT4yhvLfoBrKenM15QYI_UezhI2GiI-AHwtXakm6pb8CR9daOOS35Ffi8BW8HPGG3ZhYshy7sp3DwQ3pXvB7BJbz-s14VP-7vvncP5erbl8fudlUaLitR9hwUCsWbqm5r2g7SKKxqxlTVSJynVFI1ktYgqUTRG4msR1EJMwD2ZuzFVfF49g4BdnqKdg_xqANYfboIcaMhZmscauyVaeq6xkpxCcooAA6NASWAz2OcXe3ZdfATHJ_Aub9CRvXSEf2fjszRD-foFMOvA6asd-EQ_fxzzSvZ1pIKzmbq85kyMaQUcdTGZsg2-BzBuhdUaf7Jv_R9vwH2R7lI
CitedBy_id crossref_primary_10_1007_s12043_021_02086_0
Cites_doi 10.1007/978-3-642-40766-6
10.1002/0471224413.ch3
10.1039/b508541a
10.1016/B978-0-444-59411-2.00003-4
10.1021/jp963060t
10.1002/anie.199707741
10.1021/j100034a013
10.1021/acs.jctc.6b00462
10.1021/ja00179a005
10.1080/07366299908934641
10.1016/0031-8914(51)90070-5
10.1080/00268970701549389
10.1080/00268977400100711
10.1063/1.478522
10.1021/om500512q
10.1002/3527601678.ch20
10.1063/1.2079947
10.1080/00268976000100511
10.1063/1.1744052
10.1063/1.3526263
10.1016/j.ccr.2008.12.020
10.1016/S0009-2614(02)01446-X
10.1002/9781118688304.ch12
10.1002/9781118571767.ch6
10.1016/B978-0-444-59411-2.00004-6
10.1103/PhysRevLett.109.073001
10.1021/ic100447m
10.1021/acs.jctc.5b00656
10.1063/1.1370527
10.1063/1.1829047
10.1002/wcms.81
10.1021/acs.jpclett.5b00932
10.1016/0009-2614(95)01386-5
10.1021/ct900090f
10.1021/cr960017t
10.1007/s00214-005-0003-2
10.1021/om301045k
10.1021/j100205a033
10.1063/1.1419058
10.1021/ct200143w
10.1088/0370-1298/63/1/304
10.1103/PhysRev.77.567
10.1021/jp983453n
10.1002/zaac.201000225
10.1007/BF01113132
10.1002/chem.201701058
10.1016/S0009-2614(01)01433-6
10.1016/S0079-6565(02)00002-X
10.1039/dt9750002443
10.1103/PhysRevA.39.6016
10.1021/j100002a024
10.1016/j.pnmrs.2010.10.003
10.1021/acs.jctc.5b00193
10.1111/j.1540-8159.2006.00317.x
10.1063/1.2173246
10.1063/1.2772857
10.1063/1.4792362
10.1103/PhysRevLett.109.246403
10.1039/b103606h
10.1063/1.4906318
10.1021/acs.jctc.7b00168
10.1016/bs.arcc.2015.09.006
10.1103/PhysRevLett.100.133002
10.1063/1.4789398
10.1139/V09-045
10.1021/ct100736b
10.1103/PhysRevA.32.756
10.1002/0470010088
10.1063/1.4775809
10.1002/chem.201404864
10.1002/cphc.200600051
10.1119/1.1933118
10.1016/S0010-8545(02)00287-4
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/magnetochemistry5010003
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2312-7481
ExternalDocumentID oai_doaj_org_article_eb9c7666e5924a9c9aa2a7ca93a2222f
10.3390/magnetochemistry5010003
10_3390_magnetochemistry5010003
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
IAO
KB.
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
ITC
UNPAY
ID FETCH-LOGICAL-c2453-b2a9e3927568608d4c9e56119574e57449497406a404e3bc4e1be353cdaebcfb3
IEDL.DBID 8FG
ISSN 2312-7481
IngestDate Wed Aug 27 01:23:18 EDT 2025
Tue Aug 19 17:26:52 EDT 2025
Fri Jul 25 11:57:09 EDT 2025
Thu Apr 24 23:12:08 EDT 2025
Wed Oct 01 04:17:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2453-b2a9e3927568608d4c9e56119574e57449497406a404e3bc4e1be353cdaebcfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7730-6938
0000-0003-4351-301X
OpenAccessLink https://www.proquest.com/docview/2548640321?pq-origsite=%requestingapplication%
PQID 2548640321
PQPubID 2059549
ParticipantIDs doaj_primary_oai_doaj_org_article_eb9c7666e5924a9c9aa2a7ca93a2222f
unpaywall_primary_10_3390_magnetochemistry5010003
proquest_journals_2548640321
crossref_citationtrail_10_3390_magnetochemistry5010003
crossref_primary_10_3390_magnetochemistry5010003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 20190101
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Magnetochemistry
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Moylan (ref_57) 2018; 17
ref_58
Schreckenbach (ref_26) 1995; 99
Neese (ref_44) 2007; 105
Gendron (ref_15) 2016; 12
Pennanen (ref_22) 2008; 100
Pantazis (ref_61) 2009; 5
Autschbach (ref_48) 2013; 3
ref_18
Marian (ref_41) 1996; 251
ref_17
McConnell (ref_21) 1958; 28
Neese (ref_65) 2012; 2
Griffith (ref_81) 1960; 3
Facelli (ref_24) 2011; 58
Bolvin (ref_36) 2006; 7
Filatov (ref_28) 2002; 365
Windorff (ref_79) 2014; 33
Kaupp (ref_7) 2009; 253
Rouf (ref_55) 2015; 11
Gendron (ref_14) 2015; 6
ref_67
Liimatainen (ref_56) 2009; 87
Ditchfield (ref_25) 1974; 27
Soncini (ref_13) 2013; 138
Tsoureas (ref_1) 2013; 32
Wolinski (ref_64) 1990; 112
Martin (ref_10) 2015; 142
Koseki (ref_39) 1995; 99
Goodwin (ref_2) 2014; 20
ref_27
Soncini (ref_12) 2013; 138
Vaara (ref_16) 2013; 3
Malkin (ref_46) 2011; 134
Neese (ref_43) 2007; 127
Chipman (ref_69) 1992; 82
Evans (ref_77) 1997; 36
Kleinschmidt (ref_33) 2006; 124
Autschbach (ref_54) 2011; 7
Vaara (ref_11) 2015; 11
Schreckenbach (ref_70) 1997; 101
ref_71
Reiher (ref_29) 2006; 116
Natrajan (ref_73) 2010; 49
Koseki (ref_40) 1998; 102
Weigend (ref_63) 2005; 7
Kolarik (ref_75) 1999; 17
ref_35
ref_34
Chibotaru (ref_74) 2012; 109
ref_76
Pryce (ref_19) 1950; 63
ref_31
Patchkovskii (ref_8) 2001; 115
ref_30
Neese (ref_32) 2001; 115
Autschbach (ref_6) 2014; 372
Autschbach (ref_78) 2003; 238–239
ref_37
Vahtras (ref_42) 2002; 351
Soncini (ref_52) 2012; 109
Bertini (ref_9) 2002; 40
Pantazis (ref_62) 2011; 7
ref_80
Hess (ref_66) 1985; 32
Ramsey (ref_23) 1951; 17
Moylan (ref_60) 2017; 23
ref_45
Helgaker (ref_5) 1999; 99
Koseki (ref_38) 1992; 96
Pennanen (ref_53) 2005; 123
ref_49
Luzanov (ref_72) 1994; 311
Sandhoefer (ref_68) 2013; 138
Parsonnet (ref_3) 2006; 29
Adamo (ref_59) 1999; 110
Abragam (ref_20) 1951; 205
Rouf (ref_47) 2017; 13
ref_4
Kurland (ref_51) 1970; 2
References_xml – ident: ref_17
  doi: 10.1007/978-3-642-40766-6
– ident: ref_31
  doi: 10.1002/0471224413.ch3
– volume: 7
  start-page: 3297
  year: 2005
  ident: ref_63
  article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b508541a
– volume: 3
  start-page: 41
  year: 2013
  ident: ref_16
  article-title: Chemical shift in paramagnetic systems
  publication-title: Sci. Technol. At. Mol. Condens. Matter Biol. Syst.
  doi: 10.1016/B978-0-444-59411-2.00003-4
– volume: 101
  start-page: 3388
  year: 1997
  ident: ref_70
  article-title: Calculation of the g tensor of electron paramagnetic resonance spectroscopy using gauge-including atomic orbitals and density functional theory
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp963060t
– volume: 36
  start-page: 774
  year: 1997
  ident: ref_77
  article-title: Activity of [Sm(C5Me5)3] in ethylene polymerization and synthesis of [U(C5Me5)3], the first tris(pentamethylcyclopentadienyl) 5f-element complex
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.199707741
– volume: 99
  start-page: 12764
  year: 1995
  ident: ref_39
  article-title: Main group effective nuclear charges for spin-orbit calculations
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100034a013
– volume: 12
  start-page: 5309
  year: 2016
  ident: ref_15
  article-title: Ligand NMR Chemical Shift Calculations for Paramagnetic Metal Complexes: 5f1 vs 5f2 Actinides
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b00462
– volume: 112
  start-page: 8251
  year: 1990
  ident: ref_64
  article-title: Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00179a005
– volume: 17
  start-page: 1155
  year: 1999
  ident: ref_75
  article-title: Extraction of Am(III) and Eu(III) nitrates by 2-6-di-(5,6-dipropyl-1,2,4-triazin-3-yl)pyridines
  publication-title: Solvent Extr. Ion Exch.
  doi: 10.1080/07366299908934641
– volume: 17
  start-page: 303
  year: 1951
  ident: ref_23
  article-title: Magnetic shielding of nuclei in molecules
  publication-title: Physica
  doi: 10.1016/0031-8914(51)90070-5
– volume: 105
  start-page: 2507
  year: 2007
  ident: ref_44
  article-title: Analytic derivative calculation of electronic g-tensors based on multireference configuration interaction wavefunctions
  publication-title: Mol. Phys.
  doi: 10.1080/00268970701549389
– volume: 27
  start-page: 789
  year: 1974
  ident: ref_25
  article-title: Self-consistent perturbation theory of diamagnetism
  publication-title: Mol. Phys.
  doi: 10.1080/00268977400100711
– volume: 110
  start-page: 6158
  year: 1999
  ident: ref_59
  article-title: Toward reliable density functional methods without adjustable parameters: The PBE0 model
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478522
– volume: 33
  start-page: 3786
  year: 2014
  ident: ref_79
  article-title: 29Si NMR spectra of silicon-containing uranium complexes
  publication-title: Organometallics
  doi: 10.1021/om500512q
– ident: ref_58
– ident: ref_50
  doi: 10.1002/3527601678.ch20
– volume: 123
  start-page: 174102
  year: 2005
  ident: ref_53
  article-title: Density-functional calculations of relativistic spin-orbit effects on nuclear magnetic shielding in paramagnetic molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2079947
– volume: 3
  start-page: 477
  year: 1960
  ident: ref_81
  article-title: Some investigations in the theory of open-shell ions
  publication-title: Mol. Phys.
  doi: 10.1080/00268976000100511
– volume: 28
  start-page: 107
  year: 1958
  ident: ref_21
  article-title: Theory of isotropic hyperfine interactions in π-electron radicals
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1744052
– volume: 134
  start-page: 044111
  year: 2011
  ident: ref_46
  article-title: Effects of finite size nuclei in relativistic four-component calculations of hyperfine structure
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3526263
– ident: ref_27
– volume: 253
  start-page: 2376
  year: 2009
  ident: ref_7
  article-title: Combining NMR spectroscopy and quantum chemistry as tools to quantify spin density distributions in molecular magnetic compounds
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2008.12.020
– volume: 365
  start-page: 222
  year: 2002
  ident: ref_28
  article-title: On representation of the Hamiltonian matrix elements in relativistic regular approximation
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)01446-X
– ident: ref_30
  doi: 10.1002/9781118688304.ch12
– ident: ref_37
  doi: 10.1002/9781118571767.ch6
– volume: 3
  start-page: 69
  year: 2013
  ident: ref_48
  article-title: Relativistic effects on NMR
  publication-title: Sci. Technol. At. Mol. Condens. Matter Biol. Syst.
  doi: 10.1016/B978-0-444-59411-2.00004-6
– volume: 2
  start-page: 286
  year: 1970
  ident: ref_51
  article-title: Isotropic NMR shifts in transition metal complexes: The calculation of the fermi contact and pseudocontact terms
  publication-title: J. Magn. Reson.
– volume: 109
  start-page: 073001
  year: 2012
  ident: ref_52
  article-title: NMR chemical shift in an electronic state with arbitrary degeneracy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.073001
– volume: 49
  start-page: 7700
  year: 2010
  ident: ref_73
  article-title: Probing the structure, conformation, and stereochemical exchange in a family of lanthanide complexes Derived from Tetrapyridyl-Appended Cyclen
  publication-title: Inorg. Chem.
  doi: 10.1021/ic100447m
– volume: 11
  start-page: 4840
  year: 2015
  ident: ref_11
  article-title: Magnetic couplings in the chemical shift of paramagnetic NMR
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00656
– volume: 115
  start-page: 26
  year: 2001
  ident: ref_8
  article-title: Curing difficult cases in magnetic properties prediction with self-interaction corrected density functional theory
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1370527
– ident: ref_71
  doi: 10.1063/1.1829047
– volume: 2
  start-page: 73
  year: 2012
  ident: ref_65
  article-title: The ORCA program system
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.81
– volume: 6
  start-page: 2183
  year: 2015
  ident: ref_14
  article-title: Calculating NMR chemical shifts for paramagnetic metal complexes from first-principles
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00932
– ident: ref_45
– volume: 205
  start-page: 135
  year: 1951
  ident: ref_20
  article-title: Theory of the nuclear hyperfine structure of paramagnetic resonance spectra in crystals
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 251
  start-page: 365
  year: 1996
  ident: ref_41
  article-title: A mean-field spin-orbit method applicable to correlated wavefunctions
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(95)01386-5
– volume: 5
  start-page: 2229
  year: 2009
  ident: ref_61
  article-title: All-electron scalar relativistic basis sets for the lanthanides
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900090f
– volume: 99
  start-page: 293
  year: 1999
  ident: ref_5
  article-title: Ab initio methods for the calculation of NMR shielding and indirect spin-spin coupling constants
  publication-title: Chem. Rev.
  doi: 10.1021/cr960017t
– volume: 116
  start-page: 241
  year: 2006
  ident: ref_29
  article-title: Douglas-Kroll-Hess theory: A relativistic electrons-only theory for chemistry
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-005-0003-2
– volume: 32
  start-page: 1352
  year: 2013
  ident: ref_1
  article-title: Steric effects in the reductive coupling of CO by mixed-sandwich uranium(III) complexes
  publication-title: Organometallics
  doi: 10.1021/om301045k
– volume: 96
  start-page: 10768
  year: 1992
  ident: ref_38
  article-title: MCSCF/6-31G(d,p) calculations of one-electron spin-orbit coupling constants in diatomic molecules
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100205a033
– volume: 115
  start-page: 11080
  year: 2001
  ident: ref_32
  article-title: Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree–Fock and Kohn–Sham theory
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1419058
– volume: 7
  start-page: 2175
  year: 2011
  ident: ref_54
  article-title: Calculation of hyperfine tensors and paramagnetic NMR shifts using the relativistic zeroth-order regular approximation and density functional theory
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200143w
– volume: 63
  start-page: 25
  year: 1950
  ident: ref_19
  article-title: A modified perturbation procedure for a problem in paramagnetism
  publication-title: Proc. Phys. Soc. Sect. A
  doi: 10.1088/0370-1298/63/1/304
– ident: ref_49
  doi: 10.1103/PhysRev.77.567
– volume: 102
  start-page: 10430
  year: 1998
  ident: ref_40
  article-title: Effective nuclear charges for the first- through third-row transition metal elements in spin-orbit calculations
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp983453n
– volume: 311
  start-page: 211
  year: 1994
  ident: ref_72
  article-title: Gauge-invariant calculations of magnetic properties in semiempirical approaches. Application to full-CI π-electron scheme
  publication-title: J. Mol. Struct.
– ident: ref_80
  doi: 10.1002/zaac.201000225
– volume: 82
  start-page: 93
  year: 1992
  ident: ref_69
  article-title: The spin polarization model for hyperfine coupling constants
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF01113132
– volume: 372
  start-page: 20120489
  year: 2014
  ident: ref_6
  article-title: Relativistic calculations of magnetic resonance parameters: background and some recent developments
  publication-title: Philos. Trans. A. Math. Phys. Eng. Sci.
– volume: 23
  start-page: 7798
  year: 2017
  ident: ref_60
  article-title: Electronic g tensors in U(V) complexes—A computational study
  publication-title: Chem. A Eur. J.
  doi: 10.1002/chem.201701058
– volume: 351
  start-page: 424
  year: 2002
  ident: ref_42
  article-title: Electronic g-tensors obtained with the mean-field spin-orbit Hamiltonian
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(01)01433-6
– volume: 40
  start-page: 249
  year: 2002
  ident: ref_9
  article-title: Magnetic susceptibility in paramagnetic NMR
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
  doi: 10.1016/S0079-6565(02)00002-X
– ident: ref_35
  doi: 10.1039/dt9750002443
– ident: ref_67
  doi: 10.1103/PhysRevA.39.6016
– volume: 99
  start-page: 606
  year: 1995
  ident: ref_26
  article-title: Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100002a024
– volume: 58
  start-page: 176
  year: 2011
  ident: ref_24
  article-title: Chemical shift tensors: Theory and application to molecular structural problems
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
  doi: 10.1016/j.pnmrs.2010.10.003
– volume: 11
  start-page: 1683
  year: 2015
  ident: ref_55
  article-title: 1H chemical shifts in paramagnetic Co(II) pyrazolylborate complexes: A first-principles study
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00193
– volume: 29
  start-page: 195
  year: 2006
  ident: ref_3
  article-title: Thirty-one years of clinical experience with nuclear-powered pacemakers
  publication-title: PACE Pacing Clin. Electrophysiol.
  doi: 10.1111/j.1540-8159.2006.00317.x
– volume: 124
  start-page: 124101
  year: 2006
  ident: ref_33
  article-title: SPOCK.CI: A multireference spin-orbit configuration interaction method for large molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2173246
– volume: 127
  start-page: 164112
  year: 2007
  ident: ref_43
  article-title: Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2772857
– volume: 138
  start-page: 104102
  year: 2013
  ident: ref_68
  article-title: Derivation and assessment of relativistic hyperfine-coupling tensors on the basis of orbital-optimized second-order Møller–Plesset perturbation theory and the second-order Douglas–Kroll–Hess transformation
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4792362
– volume: 109
  start-page: 246403
  year: 2012
  ident: ref_74
  article-title: Negative g factors, Berry phases, and magnetic properties of complexes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.246403
– ident: ref_4
  doi: 10.1039/b103606h
– volume: 142
  start-page: 054108
  year: 2015
  ident: ref_10
  article-title: Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4906318
– volume: 13
  start-page: 3731
  year: 2017
  ident: ref_47
  article-title: Relativistic Approximations to Paramagnetic NMR Chemical Shift and Shielding Anisotropy in Transition Metal Systems
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00168
– ident: ref_18
  doi: 10.1016/bs.arcc.2015.09.006
– volume: 100
  start-page: 133002
  year: 2008
  ident: ref_22
  article-title: Nuclear magnetic resonance chemical shift in an arbitrary electronic spin state
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.133002
– volume: 17
  start-page: 25
  year: 2018
  ident: ref_57
  article-title: Computational study of chemical shifts in paramagnetic f-element compounds
  publication-title: Trends Phys. Chem.
– volume: 138
  start-page: 054113
  year: 2013
  ident: ref_12
  article-title: NMR chemical shift as analytical derivative of the Helmholtz free energy
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4789398
– volume: 87
  start-page: 954
  year: 2009
  ident: ref_56
  article-title: 1H chemical shifts in nonaxial, paramagnetic chromium(III) complexes—Application of novel pNMR shift theory
  publication-title: Can. J. Chem.
  doi: 10.1139/V09-045
– volume: 7
  start-page: 677
  year: 2011
  ident: ref_62
  article-title: All-electron scalar relativistic basis sets for the actinides
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100736b
– volume: 32
  start-page: 756
  year: 1985
  ident: ref_66
  article-title: Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.32.756
– ident: ref_76
  doi: 10.1002/0470010088
– volume: 138
  start-page: 021103
  year: 2013
  ident: ref_13
  article-title: Communication: Paramagnetic NMR chemical shift in a spin state subject to zero-field splitting
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4775809
– volume: 20
  start-page: 14579
  year: 2014
  ident: ref_2
  article-title: A structurally authenticated trigonal planar actinide complex
  publication-title: Chem. A Eur. J.
  doi: 10.1002/chem.201404864
– volume: 7
  start-page: 1575
  year: 2006
  ident: ref_36
  article-title: An alternative approach to the g-matrix: Theory and applications
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200600051
– ident: ref_34
  doi: 10.1119/1.1933118
– volume: 238–239
  start-page: 83
  year: 2003
  ident: ref_78
  article-title: Double perturbation theory: a powerful tool in computational coordination chemistry
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(02)00287-4
SSID ssj0002013729
Score 2.056207
Snippet The prediction of paramagnetic NMR (pNMR) chemical shifts in molecules containing heavy atoms presents a significant challenge to computational quantum...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3
SubjectTerms actinide complexes
Chemistry
Computation
Energy
Ground state
Heavy elements
hyperfine coupling tensors
Magnetic fields
NMR
Nuclear magnetic resonance
paramagnetic nmr
Physical chemistry
Quantum chemistry
relativistic quantum chemistry
spin-orbit coupling
Splitting
zero field splitting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQl7IgnqJQkAdGoiZx0tRjqagqBCylUsUSnR2HFpWk6kOo_547J63aAZWBIUMSO7J8F9_3-fEdY3dhROcOWshUXZ06tLTmtBLtO15ThRAalYCVL355bfYGwdMwHG6l-qI9YYU8cNFxDaOkjhBjmxCZAkgtAXyINEgBGNr8lEZfDGNbZOrTLq95tB5VbOgSyOsbX_CBXJ-yUJVp1Fya2RY74ciq9u9Azeoym8LqGyaTrajTPWZHJVzk7aKZJ-zAZKes2ll__oytKJmZ1dXmCOV4IUbM85S_m1nudGl_Gu8j0LTbm3me2VJe7557osMhS7gv-2O-lg3g_dE4Xcyp_jN2-QiycWJssTaOi_aGBhBKxTQ_Z4Pu41un55TpFByNJhCO8kEahENRiLZxW0mgpUH05MkwCgxepFMTYXyHwA2MUDownjIiFDoBo3SqxAWrZHlmLhlPE3wr0wTplQy060sDCCwUneBCvKD9GmuuezXWpdY4pbyYxMg5yBzxL-aoMXdTcVrIbeyv8kBm2xQnvWz7AL0oLr0o3udFNVZfGz0uf-J5jNy51Qxc4Xs15m0c4a_tuvqPdl2zQ3RlWcz51FllMVuaG0RBC3VrHf4H66MHPQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFcoLzEQot84Eiah-NkLQ7VsmK1QlAhLSsVhBTZjtOuWJLVPkDtr2fGcVYUCYF6yCGJR3I0E_v77PE3AC9FTucOBshUI1MFtLUWDEqTBHGmhRJWl8rJF384yyaz9N25ON-D191ZGEqrRCo-d4M0Yo-ExC7jUIRxyMNlWZ3-8MtIOPXnNNvn_A7sZ7S71IP92dnH4WdXTs4bthldHIl9-F1dINmnMlS-jlpES9v8xnzkZPtvYM2Dbb1UVz_VYvHbtDO-D1-7DrfZJt9Otht9Yq7_0HK85Rcdwj0PR9mwjZ8HsGfrh3Aw6nr_CK6oWJrT7WYIFVkrdsyain2xqyYYU_4bmyKQdenTrKldq3jyisV8xFRdskRO56yTJWDTy3m1WZP9e3TpparnpXXNhjjuuhsaoKjU0_oxzMZvP40mgS_XEBh0MQ90oqRFuJUL9H00KFMjLaKzWIo8tXiRDk6O-EGlUWq5NqmNteWCm1JZbSrNn0Cvbmr7FFhV4ltZlUjfZGqiRFqFwEXTCTHEIybpQ9Y5rTBey5xKaiwK5DTk7eIv3u5DtDNctnIe_zZ5Q1Gxa0563O5Bs7oo_O9dWC1NjkzQCuSzShqpVKJyoyRXCMCSqg9HXUwVfpBYF8jNB1ka8STuQ7yLs__t17Nb2DyHuwj4ZLuEdAS9zWprjxFUbfQL__P8AlKaH88
  priority: 102
  providerName: Unpaywall
Title Modelling the Effect of Zero-Field Splitting on the 1H, 13C and 29Si Chemical Shifts of Lanthanide and Actinide Compounds
URI https://www.proquest.com/docview/2548640321
https://www.mdpi.com/2312-7481/5/1/3/pdf?version=1547551473
https://doaj.org/article/eb9c7666e5924a9c9aa2a7ca93a2222f
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2312-7481
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002013729
  issn: 2312-7481
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2312-7481
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002013729
  issn: 2312-7481
  databaseCode: ADMLS
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2312-7481
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002013729
  issn: 2312-7481
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2312-7481
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002013729
  issn: 2312-7481
  databaseCode: BENPR
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2312-7481
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002013729
  issn: 2312-7481
  databaseCode: 8FG
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swECbaZEiXomlT1G1qcMgYIRIpWeZUOEYco2iMIK6BpItwfCgx4Eiu7aDIv-8dRbnN0MeggRJJCLwj-d3x-B1jR1lO9w76aKnGpozoaC3qWyOipKczyJy24OmLLya98Sz9fJ1dB4fbOoRVtmuiX6htbchHfoKGTL-XxlIkn5bfI8oaRaerIYXGc7abCNQkuik-Ot_6WATx6QnVhHVJtO5P7uEWLX7KRRWSqcXk35ZPNiXP3f8EcO49VEt4_AGLxW97z-gVexlAIx80Ut5nz1z1mu0N2-7fsEdKaebZtTkCOt5QEvO65N_cqo5GFKXGpwg3fZAzrytfKxkf80QOOVSWCzWd85Y8gE_v5uVmTe2_4MDfQTW3zlcb4OroC7SMUEKm9QGbjc6-DsdRSKoQGRSEjLQA5RAU5RlKKO7b1CiHGCpRWZ46fIitJsddHtI4dVKb1CXayUwaC06bUsu3bKeqK_eO8dLiV1VaNLJUamKhHCC80HSPC1GDER3Wa0e1MIFxnBJfLAq0PEgcxR_E0WHxtuGyId34d5NTEtu2OrFm-xf16rYIk7BwWpkc7TWXodUJyigAAbkBJQFhkig77LAVehGm8rr4pXgdlmwV4X__6_3fu_zAXqCSqsanc8h2NqsH9xFRzkZ3vSp32e7p2eTyqut9BViaTS4HNz8B98YCaw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcggXRHmI0FL2ADes2rt27D1UqARCStNe0koVF7Mvt5FSO01SVflT_EZm1nagBx6XHnywvbtaecaz3-zj-wDeJimdO8gwUw1NEdDSWpBZw4OopxOVOG2Vpy8-PukNz-Kv58n5Bvxoz8LQtso2JvpAbStDc-R7mMhkvTgUPPowuw5INYpWV1sJjdotjtzqFlO2xf7hJ7TvO84Hn0_7w6BRFQgM9kQEmivpEBWkCXYxzGxspEMQEckkjR1eRNeS4jCn4jB2QpvYRdqJRBirnDaFFtjuA3gYCyGIqz8bfFnP6XDi7-Oy3kYmhAz3rtRF6ZakfdWIt4U0ny7uDIJeK-AOwO3clDO1ulXT6W9j3eAJPG5AKjuovWoLNlz5FDr9tvlnsCIJNc_mzRBAspoCmVUF--bmVTCgXXFsjPDWb6pmVelLRcP3LBJ9pkrLuBxPWEtWwMaXk2K5oPojNPSlKifW-WIHGI39DYUtEoBaPIeze_ncL2CzrEr3Elhh8a0sLCZ1MjYhl04hnNF0bgxRiuFd6LVfNTcNwzkJbUxzzHTIHPkfzNGFcF1xVpN8_LvKRzLbujixdPsH1fwib3763GlpUswPXYJZrpJGKsVVapQUCmEZL7qw0xo9b0LHIv_l6F2I1o7wv_169fcm30BneHo8ykeHJ0fb8AgdVtbzSTuwuZzfuNeIsJZ617s1g-_3_R_9BHVNOaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKJcEE8RWmAPcMOKvWvH2UOF2rRRSktUESpVXMy-3EYKdpqkqvIX-VXMrO1ADzwuPeSQZHe18szOfrPe-T6At0lKdQc9zFRDkwf0ai3oWcODqKsTlThtlacv_jTqDs_ij-fJ-Qb8aGph6FplExN9oLaloTPyDiYyvW4cCh518vpaxOnB4MPsKiAFKXrT2shpqFpmwe56urG6yOPYrW4wnVvsHh2g7d9xPjj80h8GteJAYHCWItBcSYeIIU1w-mHPxkY6BBiRTNLY4YeoXFLcAlUcxk5oE7tIO5EIY5XTJtcCx70HmynVi7Zgc_9wdPp5feLDid2Py-qSmRAy7HxXF4VbkjJWLe0W0mm7uLVFeiWBW_B367qYqdWNmk5_2wkHj-BhDWHZXuVzj2HDFU9gq98M_xRWJLDmub4ZwktWESSzMmdf3bwMBnRnjo0R_Por16wsfKto-J5Fos9UYRmX4wlrqAzY-HKSLxfU_wTd4FIVE-t8sz2M1f4LBTWSh1o8g7M7eeDPoVWUhXsBLLf4r8wtpnwyNiGXTiHY0VRVhhjG8DZ0m6eamZr_nGQ4phnmQWSO7A_maEO47jirKED-3WWfzLZuThze_odyfpHVISFzWpoUs0eXYA6spJFKcZUaJYVC0MbzNuw0Rs_qwLLIfi2DNkRrR_jfeb38-5Bv4D6uqezkaHS8DQ_QX2V12LQDreX82r1C-LXUr2u_ZvDtrpfST3vRRIY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFcoLzEQot84Eiah-NkLQ7VsmK1QlAhLSsVhBTZjtOuWJLVPkDtr2fGcVYUCYF6yCGJR3I0E_v77PE3AC9FTucOBshUI1MFtLUWDEqTBHGmhRJWl8rJF384yyaz9N25ON-D191ZGEqrRCo-d4M0Yo-ExC7jUIRxyMNlWZ3-8MtIOPXnNNvn_A7sZ7S71IP92dnH4WdXTs4bthldHIl9-F1dINmnMlS-jlpES9v8xnzkZPtvYM2Dbb1UVz_VYvHbtDO-D1-7DrfZJt9Otht9Yq7_0HK85Rcdwj0PR9mwjZ8HsGfrh3Aw6nr_CK6oWJrT7WYIFVkrdsyain2xqyYYU_4bmyKQdenTrKldq3jyisV8xFRdskRO56yTJWDTy3m1WZP9e3TpparnpXXNhjjuuhsaoKjU0_oxzMZvP40mgS_XEBh0MQ90oqRFuJUL9H00KFMjLaKzWIo8tXiRDk6O-EGlUWq5NqmNteWCm1JZbSrNn0Cvbmr7FFhV4ltZlUjfZGqiRFqFwEXTCTHEIybpQ9Y5rTBey5xKaiwK5DTk7eIv3u5DtDNctnIe_zZ5Q1Gxa0563O5Bs7oo_O9dWC1NjkzQCuSzShqpVKJyoyRXCMCSqg9HXUwVfpBYF8jNB1ka8STuQ7yLs__t17Nb2DyHuwj4ZLuEdAS9zWprjxFUbfQL__P8AlKaH88
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+the+Effect+of+Zero-Field+Splitting+on+the+1H%2C+13C+and+29Si+Chemical+Shifts+of+Lanthanide+and+Actinide+Compounds&rft.jtitle=Magnetochemistry&rft.au=Moylan%2C+Helen+M&rft.au=McDouall%2C+Joseph+J+W&rft.date=2019-01-01&rft.pub=MDPI+AG&rft.eissn=2312-7481&rft.volume=5&rft.issue=1&rft.spage=3&rft_id=info:doi/10.3390%2Fmagnetochemistry5010003&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2312-7481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2312-7481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2312-7481&client=summon