On computing the symplectic LLT factorization

We analyze two algorithms for computing the symplectic factorization A = LL T of a given symmetric positive definite symplectic matrix A . The first algorithm W 1 is an implementation of the HH T factorization from Dopico and Johnson ( SIAM J. Matrix Anal. Appl. 31(2):650–673, 2009 ), see Theorem 5....

Full description

Saved in:
Bibliographic Details
Published inNumerical algorithms Vol. 93; no. 3; pp. 1401 - 1416
Main Authors Bujok, Maksymilian, Smoktunowicz, Alicja, Borowik, Grzegorz
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1017-1398
1572-9265
1572-9265
DOI10.1007/s11075-022-01472-y

Cover

Abstract We analyze two algorithms for computing the symplectic factorization A = LL T of a given symmetric positive definite symplectic matrix A . The first algorithm W 1 is an implementation of the HH T factorization from Dopico and Johnson ( SIAM J. Matrix Anal. Appl. 31(2):650–673, 2009 ), see Theorem 5.2. The second one is a new algorithm W 2 that uses both Cholesky and Reverse Cholesky decompositions of symmetric positive definite matrices. We present a comparison of these algorithms and illustrate their properties by numerical experiments in MATLAB . A particular emphasis is given on symplecticity properties of the computed matrices in floating-point arithmetic.
AbstractList We analyze two algorithms for computing the symplectic factorization A = LLT of a given symmetric positive definite symplectic matrix A. The first algorithm W1 is an implementation of the HHT factorization from Dopico and Johnson (SIAM J. Matrix Anal. Appl. 31(2):650–673, 2009), see Theorem 5.2. The second one is a new algorithm W2 that uses both Cholesky and Reverse Cholesky decompositions of symmetric positive definite matrices. We present a comparison of these algorithms and illustrate their properties by numerical experiments in MATLAB. A particular emphasis is given on symplecticity properties of the computed matrices in floating-point arithmetic.
We analyze two algorithms for computing the symplectic factorization A = LL T of a given symmetric positive definite symplectic matrix A . The first algorithm W 1 is an implementation of the HH T factorization from Dopico and Johnson ( SIAM J. Matrix Anal. Appl. 31(2):650–673, 2009 ), see Theorem 5.2. The second one is a new algorithm W 2 that uses both Cholesky and Reverse Cholesky decompositions of symmetric positive definite matrices. We present a comparison of these algorithms and illustrate their properties by numerical experiments in MATLAB . A particular emphasis is given on symplecticity properties of the computed matrices in floating-point arithmetic.
We analyze two algorithms for computing the symplectic factorization A = LL T of a given symmetric positive definite symplectic matrix A . The first algorithm W 1 is an implementation of the HH T factorization from Dopico and Johnson ( SIAM J. Matrix Anal. Appl. 31(2):650–673, 2009), see Theorem 5.2. The second one is a new algorithm W 2 that uses both Cholesky and Reverse Cholesky decompositions of symmetric positive definite matrices. We present a comparison of these algorithms and illustrate their properties by numerical experiments in MATLAB . A particular emphasis is given on symplecticity properties of the computed matrices in floating-point arithmetic.
Author Bujok, Maksymilian
Borowik, Grzegorz
Smoktunowicz, Alicja
Author_xml – sequence: 1
  givenname: Maksymilian
  surname: Bujok
  fullname: Bujok, Maksymilian
  email: mbujok@swps.edu.pl
  organization: Faculty of Design, SWPS University of Social Sciences and Humanities
– sequence: 2
  givenname: Alicja
  surname: Smoktunowicz
  fullname: Smoktunowicz, Alicja
  organization: Faculty of Mathematics and Information Science, Warsaw University of Technology
– sequence: 3
  givenname: Grzegorz
  surname: Borowik
  fullname: Borowik, Grzegorz
  organization: Faculty of Design, SWPS University of Social Sciences and Humanities
BookMark eNqNjz1PwzAURS1UJNrCH2CKxGx4fnHsZEQVX1KkLmW2XNcpqVIn2IlQ-PUYUokNMb073HP1zoLMXOssIdcMbhmAvAuMgcwoIFJgXCIdz8icZTEUKLJZzMAkZWmRX5BFCAeAiKGcE7p2iWmP3dDXbp_0bzYJ47FrrOlrk5TlJqm06Vtff-q-bt0lOa90E-zV6S7J6-PDZvVMy_XTy-q-pAY576lOLQeR56bQmdYC-BarneRCbDGzMq1SmYPEPM92RcUrlLhDCYYzEDorBLJ0SdJpd3CdHj9006jO10ftR8VAfRuryVhFY_VjrMZI3UxU59v3wYZeHdrBu_iowoLlAgohIbZwahnfhuBt9b_p00Mhlt3e-t_pP6gvvMx1Zw
Cites_doi 10.1137/1.9780898718027
10.1016/j.aml.2006.04.004
10.1016/j.laa.2020.03.008
10.1016/S0024-3795(99)00191-3
10.1137/060678221
10.1016/S0024-3795(03)00370-7
10.1016/j.aml.2006.03.001
10.1002/nla.1680020208
10.1007/s11075-021-01226-2
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.1007/s11075-022-01472-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1416
ExternalDocumentID 10.1007/s11075-022-01472-y
10_1007_s11075_022_01472_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c244t-a3e40688c9a5aa604b2fd7466b25e73f378072885d9f4f272d270c4106a596213
IEDL.DBID C6C
ISSN 1017-1398
1572-9265
IngestDate Tue Aug 19 17:55:14 EDT 2025
Fri Jul 25 11:13:22 EDT 2025
Wed Oct 01 00:39:01 EDT 2025
Fri Feb 21 02:43:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Orthogonal matrix
65L70
35A01
Condition number
65L20
65L12
Symplectic matrix
Cholesky factorization
65L10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-a3e40688c9a5aa604b2fd7466b25e73f378072885d9f4f272d270c4106a596213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s11075-022-01472-y
PQID 2918609670
PQPubID 2043837
PageCount 16
ParticipantIDs unpaywall_primary_10_1007_s11075_022_01472_y
proquest_journals_2918609670
crossref_primary_10_1007_s11075_022_01472_y
springer_journals_10_1007_s11075_022_01472_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230700
2023-07-00
20230701
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 7
  year: 2023
  text: 20230700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Demmel, Higham, Schreiber (CR2) 1995; 2
Lin, Mehrmann, Xu (CR8) 1999; 302–303
Dopico, Johnson (CR3) 2009; 31
Benzi, Razouk (CR1) 2007; 20
Grover, Panwar, Reddy (CR4) 2020; 596
CR6
Xu (CR9) 2003; 368
Tam (CR7) 2006; 19
Higham (CR5) 2002
P Grover (1472_CR4) 2020; 596
NJ Higham (1472_CR5) 2002
TY Tam (1472_CR7) 2006; 19
1472_CR6
W-W Lin (1472_CR8) 1999; 302–303
M Benzi (1472_CR1) 2007; 20
H Xu (1472_CR9) 2003; 368
JM Demmel (1472_CR2) 1995; 2
FM Dopico (1472_CR3) 2009; 31
References_xml – year: 2002
  ident: CR5
  publication-title: Accuracy and Stability of Numerical Algorithms
  doi: 10.1137/1.9780898718027
– volume: 20
  start-page: 260
  year: 2007
  end-page: 265
  ident: CR1
  article-title: On the Iwasawa decomposition of a symplectic matrix
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2006.04.004
– volume: 596
  start-page: 203
  year: 2020
  end-page: 215
  ident: CR4
  article-title: Positivity properties of some special matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2020.03.008
– ident: CR6
– volume: 302–303
  start-page: 469
  year: 1999
  end-page: 533
  ident: CR8
  article-title: Canonical forms for Hamiltonian and symplectic matrices and pencils
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(99)00191-3
– volume: 31
  start-page: 650
  issue: 2
  year: 2009
  end-page: 673
  ident: CR3
  article-title: Parametrization of the matrix symplectic group and applications
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/060678221
– volume: 368
  start-page: 1
  year: 2003
  end-page: 24
  ident: CR9
  article-title: An SVD-like matrix decomposition and its applications
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(03)00370-7
– volume: 19
  start-page: 1421
  year: 2006
  end-page: 1424
  ident: CR7
  article-title: Computing Iwasawa decomposition of a symplectic matrix by Cholesky factorization
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2006.03.001
– volume: 2
  start-page: 173
  issue: 2
  year: 1995
  end-page: 190
  ident: CR2
  article-title: Stability of block LU factorization
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.1680020208
– volume: 302–303
  start-page: 469
  year: 1999
  ident: 1472_CR8
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(99)00191-3
– volume: 2
  start-page: 173
  issue: 2
  year: 1995
  ident: 1472_CR2
  publication-title: Numer. Linear Algebra Appl.
  doi: 10.1002/nla.1680020208
– volume: 596
  start-page: 203
  year: 2020
  ident: 1472_CR4
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2020.03.008
– volume-title: Accuracy and Stability of Numerical Algorithms
  year: 2002
  ident: 1472_CR5
  doi: 10.1137/1.9780898718027
– ident: 1472_CR6
  doi: 10.1007/s11075-021-01226-2
– volume: 19
  start-page: 1421
  year: 2006
  ident: 1472_CR7
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2006.03.001
– volume: 368
  start-page: 1
  year: 2003
  ident: 1472_CR9
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(03)00370-7
– volume: 20
  start-page: 260
  year: 2007
  ident: 1472_CR1
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2006.04.004
– volume: 31
  start-page: 650
  issue: 2
  year: 2009
  ident: 1472_CR3
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/060678221
SSID ssj0010027
Score 2.3379002
Snippet We analyze two algorithms for computing the symplectic factorization A = LL T of a given symmetric positive definite symplectic matrix A . The first algorithm...
We analyze two algorithms for computing the symplectic factorization A = LLT of a given symmetric positive definite symplectic matrix A. The first algorithm W1...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1401
SubjectTerms Algebra
Algorithms
Computation
Computer Science
Decomposition
Factorization
Floating point arithmetic
Lie groups
Mathematical analysis
Matrices (mathematics)
Numeric Computing
Numerical Analysis
Original Paper
Theory of Computation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BOCgHf6BGFM0O3qRxdN26HoxRAyEG0BhIuC3dup7IQAcx--9tt47phXhu0iZf19fv7fV7H8CtVAk1kS5BVDAXEdchiElpIxZiz3cEkQJrNfJ44g1n5HXuzmswKbUw-lllGRPzQC2Wkf5Hfo9Zz_cU36b24-oTadcoXV0tLTS4sVYQD3mLsT1oYN0Zqw6N5_7k_WNbV9BZWF7_VLFZcR_fyGgKMZ3KhLRaWT9VIBSj7O9VVfHPbcm0CfubZMWzb75Y_LqVBsdwaOik9VTs_wnU4qQFR4ZaWubgpi1ojrftWdNTQG-JFeV2DmoBSw1Yaaa7BGu9lDUaTa3ChcdINM9gNuhPX4bI-CagSF3Wa8SdmGgvmYhxl3PPJiGWghLPC7EbU0c61Lcp9n1XMEkkplhgakdEJYdce_H0nHOoJ8skvgCLhSx2JVVxQCWSMaYhJg5WjJEwLhyP0zbclRAFq6I9RlA1QtaABgrQIAc0yNrQKVEMzFFJg2pj29Atka2Gd83W3aL_j8Uvdy9-BQfaSb54iduB-vprE18rvrEOb8xH9APleMy_
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qPYgHq1WxUmUP3mzaNZvH5lh8UKQ-Di3U05J95KKsxW6R-uud7KNVEVE8T0jIJJl8w8w3A3Bi0KFmhjMiY8UJ4x4jyhiXqJAK34uZiallI9_cisGYXU_4pAYXFRcmz3avQpIFp8FWaUqz3jQ2vRXxDb0Wyyy2aQVMUrLoongN1gVHRF6H9fHtff8hD3SiEUaQkzPiOA5UVPCSO_P9RJ__pxXoXMZJN2Fjnk714lU_PX34iq4akFSbKDJQHrvzLOxGb1_qO_53l9uwVWJVp19crh2oJWkTGiVudUqrMGvC5s2y9utsF8hd6kR5rwhc10GBM1vYEsSWjOUMhyOnaPFT8j_3YHx1OTofkLIpA4kQCWREewmzjWoipbnWwmUhNbFkQoSUJ9IznvRdSX2fx8owQyWNqXQjhp6nto1-zrx9qKfPaXIAjgpVwo1EI4NeakJlSJlHEY4ypWNPaNmC0-oogmlReyNYVVm2uglQN0Gum2DRgnZ1WkH5DmcBVWe-QC9Nui3oVApfiX-arbM85V8sfvi34W2oZy_z5AjxTBYel9f1HW8_6jo
  priority: 102
  providerName: Unpaywall
Title On computing the symplectic LLT factorization
URI https://link.springer.com/article/10.1007/s11075-022-01472-y
https://www.proquest.com/docview/2918609670
https://link.springer.com/content/pdf/10.1007/s11075-022-01472-y.pdf
UnpaywallVersion publishedVersion
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1572-9265
  databaseCode: AFBBN
  dateStart: 19910201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1572-9265
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010027
  issn: 1572-9265
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4HGAHHgPEYEw9cIOIkqZJc9zQCoJtILRK41Slj5xQQXQT6r_H6doNEEJwaaSkciSnrr9Pjm2AU42EmmmXEZFIlzDXYURqbRMZUe45CdMJNdnIwxG_CdjtxJ1UZXJMLsy3-P1FbviJySE2FwiYoKRYhXV0UrwMzPKrRcTA8Ksysol_XUQ1XpUg87OMr05oiSwXwdAGbMyyV1W8q-fnT_7G34GtCiha3fnJ7sJKmjVhuwKNVmWSOU7VfRnquSY0hotarPkekPvMist3cE8LF6y8MCWBTXKUNRiMrXnLnSofcx8Cvz--uiFVkwQSo2eeEuWkzDSOiaVyleI2i6hOBOM8om4qHO0IzxbU89xEaqapoAkVdsyQCSrTeOfSOYC17CVLD8GSkUxdLdDokTWmVESUORThIZMqcbgSLTirtRa-zmthhMuqx0bHIeo4LHUcFi1o14oNK7vIQyovPY6sSdgtOK-VvVz-Tdr54kD-sPnR_6Qfw6ZpIz-_htuGtenbLD1BsDGNOrDq-dcdWO_6vd7IjNdPd30ce_3Rw2On_AbxGdAuzgWjh-7TBxnlzeA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOACHlqe6LQ8f4AQWwXbi-ICqlocW2F0QWiRuwYnjEwrbZhHKn-tv6zhxduGCuHC2ZEufJ_PI-JsPYNdiQS1sKKg0KqQi5IIqawOqUhbF3AhrmGMj9wdR905c3of3M_Cv5cK4Z5WtT6wdtXnK3D_yQ6aO4gjzbRn8HP2hTjXKdVdbCQ3tpRXMcT1izBM7rvLqBUu48vjiFO97j7Hzs-FJl3qVAZphaBtTzXPhlFcypUOto0CkzBopoihlYS655TIOJIvj0CgrLJPMMBlkAksp7ZRrjjjuOwvzgguFxd_877PBze2kj-GqvrrfirEAc63Y03Ya8h5WXo4d7Z5GCMlo9TY0TvPdSYt2CRaei5GuXvTj46soeL4MX3z6Sn419rYCM3mxCl99Kku8oyhXYak_GQdbrgG9LkhWy0fgAQQXSFm5qcSOn0V6vSFpVH88JXQd7j4FwQ2YK56K_BsQlao8tBL9DhauOZMpE5xhhiqUNjzSsgP7LUTJqBnHkUwHLztAEwQ0qQFNqg5stigm_tMsk6khdeCgRXa6_N5uBxP0P3D49_cP34GF7rDfS3oXg6sfsOhU7JtXwJswN_77nG9hrjNOt71BEXj4bBv-D07XB1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkYAOPAqIQoEMbNRqajtxPKJCVaAtDK3ULXIenqpQkVQo_x47zyIhBKsdnaXPse9O5-8-gFupEmoqLYpYwC1ELUIRl9JE3MO2QwIqA6zZyJOpPZrT54W12GDxZ6_dy5JkzmnQXZqipLcKZK8mvqmsRTOL9bMCyjBKt2GHKu-mNQwG9qCqI-isK6t3qrtYxTpOQZv52cZ311THm1WJtAl762gl0k-xXG54oeERHBTho3Gf7_cxbIVRCw6LUNIoDmqshkq1hnKsBc1J1aE1PgH0Ghl-9o1a01ATRpzqRsGaMmWMxzMjF-IpWJqnMB8-zgYjVEgnIF_56wQJElItJ-NzYQlhm9TDMmDUtj1shYxIwhyTYcexAi6pxAwHmJk-Vfmh0HI8fXIGjeg9Cs_B4B4PLcnUVaByyRAzD1OCVdBIuQiILVgb7krU3FXeIcOteyFrjF2FsZth7KZt6JTAusVpiV3M-46tcilmtqFbgl1P_2atW23IHxa_-J_1G9h9exi646fpyyXsa535_J1uBxrJxzq8UtFI4l1nP9wXevLQ7Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qPYgHq1WxUmUP3mzaNZvH5lh8UKQ-Di3U05J95KKsxW6R-uud7KNVEVE8T0jIJJl8w8w3A3Bi0KFmhjMiY8UJ4x4jyhiXqJAK34uZiallI9_cisGYXU_4pAYXFRcmz3avQpIFp8FWaUqz3jQ2vRXxDb0Wyyy2aQVMUrLoongN1gVHRF6H9fHtff8hD3SiEUaQkzPiOA5UVPCSO_P9RJ__pxXoXMZJN2Fjnk714lU_PX34iq4akFSbKDJQHrvzLOxGb1_qO_53l9uwVWJVp19crh2oJWkTGiVudUqrMGvC5s2y9utsF8hd6kR5rwhc10GBM1vYEsSWjOUMhyOnaPFT8j_3YHx1OTofkLIpA4kQCWREewmzjWoipbnWwmUhNbFkQoSUJ9IznvRdSX2fx8owQyWNqXQjhp6nto1-zrx9qKfPaXIAjgpVwo1EI4NeakJlSJlHEY4ypWNPaNmC0-oogmlReyNYVVm2uglQN0Gum2DRgnZ1WkH5DmcBVWe-QC9Nui3oVApfiX-arbM85V8sfvi34W2oZy_z5AjxTBYel9f1HW8_6jo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+computing+the+symplectic+LLT+factorization&rft.jtitle=Numerical+algorithms&rft.au=Bujok%2C+Maksymilian&rft.au=Smoktunowicz%2C+Alicja&rft.au=Borowik%2C+Grzegorz&rft.date=2023-07-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=93&rft.issue=3&rft.spage=1401&rft.epage=1416&rft_id=info:doi/10.1007%2Fs11075-022-01472-y&rft.externalDocID=10_1007_s11075_022_01472_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon