High-dimensional disjoint factor analysis with its EM algorithm version
Vichi (Advances in Data Analysis and Classification, 11:563–591, 2017) proposed disjoint factor analysis (DFA), which is a factor analysis procedure subject to the constraint that variables are mutually disjoint. That is, in the DFA solution, each variable loads only a single factor among multiple o...
Saved in:
| Published in | Japanese journal of statistics and data science Vol. 4; no. 1; pp. 427 - 448 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Singapore
01.07.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2520-8756 2520-8764 |
| DOI | 10.1007/s42081-021-00119-x |
Cover
| Abstract | Vichi (Advances in Data Analysis and Classification, 11:563–591, 2017) proposed disjoint factor analysis (DFA), which is a factor analysis procedure subject to the constraint that variables are mutually disjoint. That is, in the DFA solution, each variable loads only a single factor among multiple ones. It implies that the variables are clustered into exclusive groups. Such variable clustering is considered useful for high-dimensional data with variables much more than observations. However, the feasibility of DFA for high-dimensional data has not been considered in Vichi (2017). Thus, one purpose of this paper is to show the feasibility and usefulness of DFA for high-dimensional data. Another purpose is to propose a new computational procedure for DFA, in which an EM algorithm is used. This procedure is called EM-DFA in particular, which can serve the same original purpose as in Vichi (2017) but more efficiently. Numerical studies demonstrate that both DFA and EM-DFA can cluster variables fairly well, with EM-DFA more computationally efficient. |
|---|---|
| AbstractList | Vichi (Advances in Data Analysis and Classification, 11:563–591, 2017) proposed disjoint factor analysis (DFA), which is a factor analysis procedure subject to the constraint that variables are mutually disjoint. That is, in the DFA solution, each variable loads only a single factor among multiple ones. It implies that the variables are clustered into exclusive groups. Such variable clustering is considered useful for high-dimensional data with variables much more than observations. However, the feasibility of DFA for high-dimensional data has not been considered in Vichi (2017). Thus, one purpose of this paper is to show the feasibility and usefulness of DFA for high-dimensional data. Another purpose is to propose a new computational procedure for DFA, in which an EM algorithm is used. This procedure is called EM-DFA in particular, which can serve the same original purpose as in Vichi (2017) but more efficiently. Numerical studies demonstrate that both DFA and EM-DFA can cluster variables fairly well, with EM-DFA more computationally efficient. |
| Author | Adachi, Kohei Cai, Jingyu |
| Author_xml | – sequence: 1 givenname: Jingyu orcidid: 0000-0002-8726-3991 surname: Cai fullname: Cai, Jingyu email: caijingyu10@yahoo.co.jp organization: Graduate School of Human Sciences, Osaka University – sequence: 2 givenname: Kohei surname: Adachi fullname: Adachi, Kohei organization: Graduate School of Human Sciences, Osaka University |
| BookMark | eNp9kMFOwzAMhiM0JMbYC3DKCwSSNE3dI5rGNmmIC5yj0KRdpq1BcYHt7ckY4sjBsv3Lv2V_12TUx94Tciv4neC8ukclOQjGZQ4uRM0OF2QsS8kZVFqN_upSX5Ep4pZzLqtCVRLGZLEM3Ya5sPc9htjbHXUBtzH0A21tM8REbRaPGJB-hWFDw4B0_kTtrosp93v66dPJeEMuW7tDP_3NE_L6OH-ZLdn6ebGaPaxZI5UaGHjrnKz1m5Zga9CNV1oVXjkrnCwLK8CBzOcB8DbLWjoHvvEN1BW0RemKCZHnvU2KiMm35j2FvU1HI7g50TBnGibTMD80zCGbirMJ83Df-WS28SPlv_A_1zei_GVJ |
| Cites_doi | 10.1007/s11634-017-0284-z 10.1007/s11336-017-9600-y 10.1007/s11336-012-9299-8 10.1007/BF02289162 10.1007/s11222-014-9458-0 10.1007/BF02289658 10.1016/j.csda.2008.05.028 10.1007/BF02293851 10.1007/s11634-016-0263-9 10.1007/s00180-015-0608-4 10.1002/9781119970583 10.1007/BF02294359 10.1177/001316446002000116 10.1016/j.csda.2016.01.012 10.1137/1.9780898718348 10.1093/bioinformatics/17.9.763 10.1002/wics.1458 10.1111/j.2517-6161.1977.tb01600.x |
| ContentType | Journal Article |
| Copyright | Japanese Federation of Statistical Science Associations 2021 |
| Copyright_xml | – notice: Japanese Federation of Statistical Science Associations 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s42081-021-00119-x |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Economics Law Statistics Physics Computer Science |
| EISSN | 2520-8764 |
| EndPage | 448 |
| ExternalDocumentID | 10_1007_s42081_021_00119_x |
| GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AASML AATNV AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADKNI ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AXYYD BGNMA CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c244t-8eadd296b628a986ce4643e4da1d253a18d82002880f3e462dd8ecec8978f35d3 |
| ISSN | 2520-8756 |
| IngestDate | Wed Oct 01 04:42:23 EDT 2025 Fri Feb 21 02:48:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | High-dimensional data Variable clustering EM algorithm Disjoint factor analysis |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c244t-8eadd296b628a986ce4643e4da1d253a18d82002880f3e462dd8ecec8978f35d3 |
| ORCID | 0000-0002-8726-3991 |
| PageCount | 22 |
| ParticipantIDs | crossref_primary_10_1007_s42081_021_00119_x springer_journals_10_1007_s42081_021_00119_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210700 2021-07-00 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | Japanese journal of statistics and data science |
| PublicationTitleAbbrev | Jpn J Stat Data Sci |
| PublicationYear | 2021 |
| Publisher | Springer Singapore |
| Publisher_xml | – name: Springer Singapore |
| References | Akaike (CR7) 1987; 52 Dempster, Laird, Rubin (CR9) 1977; 39 Seber (CR19) 2008 Yanai, Ichikawa, Rao, Sinharay (CR23) 2007 CR3 Osgood, Suci, Tannenbaum (CR17) 1957 Vichi (CR21) 2017; 11 Adachi, Trendafilov (CR6) 2018; 83 Bartholomew, Knott, Moustaki (CR8) 2011 Gan, Ma, Wu (CR10) 2007 Rubin, Thayer (CR18) 1982; 47 Adachi, Trendafilov (CR5) 2018; 12 Kaiser (CR14) 1960; 20 Koch (CR15) 2014 Adachi, Trendafilov (CR4) 2016; 31 Guttman (CR11) 1954; 19 Adachi, Sakata (CR2) 2016 Hirose, Yamamoto (CR12) 2015; 25 Jöreskog (CR13) 1967; 32 Adachi (CR1) 2013; 78 Stegeman (CR20) 2016; 99 Vichi, Saporta (CR22) 2009; 53 Yeung, Ruzzo (CR24) 2001; 17 Konishi, Kitagawa (CR16) 2007 119_CR3 A Stegeman (119_CR20) 2016; 99 KY Yeung (119_CR24) 2001; 17 K Adachi (119_CR1) 2013; 78 K Hirose (119_CR12) 2015; 25 M Vichi (119_CR22) 2009; 53 H Akaike (119_CR7) 1987; 52 H Yanai (119_CR23) 2007 K Adachi (119_CR6) 2018; 83 HF Kaiser (119_CR14) 1960; 20 D Bartholomew (119_CR8) 2011 S Konishi (119_CR16) 2007 G Gan (119_CR10) 2007 DB Rubin (119_CR18) 1982; 47 K Adachi (119_CR5) 2018; 12 I Koch (119_CR15) 2014 K Adachi (119_CR2) 2016 GAF Seber (119_CR19) 2008 AP Dempster (119_CR9) 1977; 39 L Guttman (119_CR11) 1954; 19 M Vichi (119_CR21) 2017; 11 K Adachi (119_CR4) 2016; 31 CE Osgood (119_CR17) 1957 KG Jöreskog (119_CR13) 1967; 32 |
| References_xml | – start-page: 257 year: 2007 end-page: 296 ident: CR23 article-title: Factor analysis publication-title: Handbook of statistics, vol. 26: Psychometrics – volume: 12 start-page: 559 year: 2018 end-page: 585 ident: CR5 article-title: Sparsest factor analysis for clustering variables: A matrix decomposition approach publication-title: Advances in Data Analysis and Classification doi: 10.1007/s11634-017-0284-z – year: 2007 ident: CR16 publication-title: Information criteria and statistical modeling – year: 1957 ident: CR17 publication-title: The measurement of meaning – year: 2008 ident: CR19 publication-title: A matrix handbook for statisticians – ident: CR3 – volume: 83 start-page: 407 year: 2018 end-page: 424 ident: CR6 article-title: Some mathematical properties of the matrix decomposition solution in factor analysis publication-title: Psychometrika doi: 10.1007/s11336-017-9600-y – year: 2014 ident: CR15 publication-title: Analysis of multivariate and high-dimensional data – volume: 78 start-page: 380 year: 2013 end-page: 394 ident: CR1 article-title: Factor analysis with EM algorithm never gives improper solutions when sample covariance and initial parameter matrices are proper publication-title: Psychometrika doi: 10.1007/s11336-012-9299-8 – volume: 19 start-page: 149 year: 1954 end-page: 160 ident: CR11 article-title: Some necessary conditions for common-factor analysis publication-title: Psychometrika doi: 10.1007/BF02289162 – volume: 25 start-page: 863 year: 2015 end-page: 875 ident: CR12 article-title: Sparse estimation via nonconcave penalized likelihood in factor analysis model publication-title: Statistics and Computing doi: 10.1007/s11222-014-9458-0 – volume: 32 start-page: 443 year: 1967 end-page: 482 ident: CR13 article-title: Some contributions to maximum likelihood factor analysis publication-title: Psychometrika doi: 10.1007/BF02289658 – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: CR9 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society: Series B – volume: 53 start-page: 3194 year: 2009 end-page: 3208 ident: CR22 article-title: Clustering and disjoint principal component analysis with cross-loadings publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2008.05.028 – start-page: 1 year: 2016 end-page: 21 ident: CR2 article-title: Three-way principal component analysis with its applications to psychology publication-title: Applied matrix and tensor variate data analysis – volume: 47 start-page: 69 year: 1982 end-page: 76 ident: CR18 article-title: EM algorithms for ML factor analysis publication-title: Psychometrika doi: 10.1007/BF02293851 – volume: 11 start-page: 563 year: 2017 end-page: 591 ident: CR21 article-title: Disjoint factor analysis with cross-loadings publication-title: Advances in Data Analysis and Classification doi: 10.1007/s11634-016-0263-9 – volume: 31 start-page: 1403 year: 2016 end-page: 1427 ident: CR4 article-title: Sparse principal component analysis subject to prespecified cardinality of loadings publication-title: Computational Statistics doi: 10.1007/s00180-015-0608-4 – year: 2011 ident: CR8 publication-title: Latent variable models and factor analysis: A unified approach (Third Edition) doi: 10.1002/9781119970583 – volume: 52 start-page: 317 year: 1987 end-page: 332 ident: CR7 article-title: Factor analysis and AIC publication-title: Psychometrika doi: 10.1007/BF02294359 – volume: 20 start-page: 141 year: 1960 end-page: 151 ident: CR14 article-title: The application of electronic computers to factor analysis publication-title: Educational and Psychological Measurements doi: 10.1177/001316446002000116 – volume: 99 start-page: 189 year: 2016 end-page: 203 ident: CR20 article-title: A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2016.01.012 – year: 2007 ident: CR10 publication-title: Data clustering: Theory, algorithms, and applications doi: 10.1137/1.9780898718348 – volume: 17 start-page: 763 year: 2001 end-page: 774 ident: CR24 article-title: Principal component analysis for clustering gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.9.763 – volume: 12 start-page: 559 year: 2018 ident: 119_CR5 publication-title: Advances in Data Analysis and Classification doi: 10.1007/s11634-017-0284-z – volume-title: Information criteria and statistical modeling year: 2007 ident: 119_CR16 – volume: 31 start-page: 1403 year: 2016 ident: 119_CR4 publication-title: Computational Statistics doi: 10.1007/s00180-015-0608-4 – volume: 52 start-page: 317 year: 1987 ident: 119_CR7 publication-title: Psychometrika doi: 10.1007/BF02294359 – volume: 78 start-page: 380 year: 2013 ident: 119_CR1 publication-title: Psychometrika doi: 10.1007/s11336-012-9299-8 – volume: 83 start-page: 407 year: 2018 ident: 119_CR6 publication-title: Psychometrika doi: 10.1007/s11336-017-9600-y – volume-title: A matrix handbook for statisticians year: 2008 ident: 119_CR19 – volume: 20 start-page: 141 year: 1960 ident: 119_CR14 publication-title: Educational and Psychological Measurements doi: 10.1177/001316446002000116 – volume: 11 start-page: 563 year: 2017 ident: 119_CR21 publication-title: Advances in Data Analysis and Classification doi: 10.1007/s11634-016-0263-9 – start-page: 1 volume-title: Applied matrix and tensor variate data analysis year: 2016 ident: 119_CR2 – volume: 32 start-page: 443 year: 1967 ident: 119_CR13 publication-title: Psychometrika doi: 10.1007/BF02289658 – volume-title: Analysis of multivariate and high-dimensional data year: 2014 ident: 119_CR15 – volume: 19 start-page: 149 year: 1954 ident: 119_CR11 publication-title: Psychometrika doi: 10.1007/BF02289162 – ident: 119_CR3 doi: 10.1002/wics.1458 – volume-title: Data clustering: Theory, algorithms, and applications year: 2007 ident: 119_CR10 doi: 10.1137/1.9780898718348 – volume: 39 start-page: 1 year: 1977 ident: 119_CR9 publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 25 start-page: 863 year: 2015 ident: 119_CR12 publication-title: Statistics and Computing doi: 10.1007/s11222-014-9458-0 – volume: 99 start-page: 189 year: 2016 ident: 119_CR20 publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2016.01.012 – volume: 47 start-page: 69 year: 1982 ident: 119_CR18 publication-title: Psychometrika doi: 10.1007/BF02293851 – volume-title: The measurement of meaning year: 1957 ident: 119_CR17 – volume: 53 start-page: 3194 year: 2009 ident: 119_CR22 publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2008.05.028 – volume: 17 start-page: 763 year: 2001 ident: 119_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.9.763 – volume-title: Latent variable models and factor analysis: A unified approach (Third Edition) year: 2011 ident: 119_CR8 doi: 10.1002/9781119970583 – start-page: 257 volume-title: Handbook of statistics, vol. 26: Psychometrics year: 2007 ident: 119_CR23 |
| SSID | ssj0002734728 |
| Score | 2.15156 |
| Snippet | Vichi (Advances in Data Analysis and Classification, 11:563–591, 2017) proposed disjoint factor analysis (DFA), which is a factor analysis procedure subject to... |
| SourceID | crossref springer |
| SourceType | Index Database Publisher |
| StartPage | 427 |
| SubjectTerms | Chemistry and Earth Sciences Computer Science Economics Finance Health Sciences Humanities Insurance Law Management Mathematics and Statistics Medicine Original Paper Physics Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs Statistics for Business Statistics for Engineering Statistics for Life Sciences Statistics for Social Sciences |
| Title | High-dimensional disjoint factor analysis with its EM algorithm version |
| URI | https://link.springer.com/article/10.1007/s42081-021-00119-x |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2520-8764 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734728 issn: 2520-8756 databaseCode: AFBBN dateStart: 20180601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5tRWy8bJBtGmNMfuAty0QcJ3EfAZUhtPICSLxVju1sTKNFtOzXX78720nadUxjL1XrWm2a-3q-s7_7DmDHcF1mZVUnKhV5InBOUuUckxUMNTQhqnKJ4vCkODoXxxf5RUfIdNUls-qd_vnHupL_sSqOoV2pSvYelm0_FAfwOdoXH9HC-PhPNiaSRmJIn99ra9Bxy-fJJcktuTY6sWokR9x2K50RDIax-vJxcoOvr-KvfrNsIUDFxZOaUs5LSlDR0ZyeM5FK47BydkcYjhVwjAvhj9uOA0BMTedKJp_s5fwGA09bMuriBmN8Sj26MSmwnYviOSafmPEEMev5Ma9N3vhYsQQl7y-FFwYIS6_woptLXt0TOabEBMCroyskpbrke7eGtczCVoXZTR7hZMfa61OescLR8-_2YGXvcH__pN2JI4Gf0jXhbX9OqK5yNZZL37oYwSwen7uo5GwdnoR0gu15bGzAAzuO4GnTqoMFzx3B46YAfRrBww_qWwSPhoFVEcGqowHTW2unramfwfvf4cUaeDEPL9bAixG8GMKLDYashRcL8HoO54eDs4OjJPTdSDQGe7NEoncxvF9UBZeqLwttBcatVhiVGp5nKpVGErcHXX-NwwU3RlptteyXss5yk72A3ngyti-B6VpaWardUmdS1NSrtFZc1qXKTVrL0m5C3NzL0bWXVxndbcJNeNvc7lH4F0z_Mv3V_aZvwVoH_9fQm93c2m2MOGfVmwCZXxfsfMQ |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-dimensional+disjoint+factor+analysis+with+its+EM+algorithm+version&rft.jtitle=Japanese+journal+of+statistics+and+data+science&rft.au=Cai%2C+Jingyu&rft.au=Adachi%2C+Kohei&rft.date=2021-07-01&rft.pub=Springer+Singapore&rft.issn=2520-8756&rft.eissn=2520-8764&rft.volume=4&rft.issue=1&rft.spage=427&rft.epage=448&rft_id=info:doi/10.1007%2Fs42081-021-00119-x&rft.externalDocID=10_1007_s42081_021_00119_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8756&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8756&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8756&client=summon |