Photometric classification of quasars from ALHAMBRA survey using random forest

Context . Given the current era of big data in astronomy, machine-learning-based methods have begun to be applied over recent years to identify or classify objects, such as quasars, galaxies, and stars, from full-sky photometric surveys. Aims . Here we systematically evaluate the performance of rand...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 673; p. A48
Main Authors Arroquia-Cuadros, Benjamín, Sánchez, Néstor, Gómez, Vicent, Blay, Pere, Martinez-Badenes, Vicent, Nieves-Seoane, Lorena
Format Journal Article
LanguageEnglish
Published 01.05.2023
Online AccessGet full text
ISSN0004-6361
1432-0746
1432-0746
DOI10.1051/0004-6361/202245531

Cover

Abstract Context . Given the current era of big data in astronomy, machine-learning-based methods have begun to be applied over recent years to identify or classify objects, such as quasars, galaxies, and stars, from full-sky photometric surveys. Aims . Here we systematically evaluate the performance of random forests (RFs) in classifying quasars using either magnitudes or colours – both from broad- and narrow-band filters – as features. Methods . The working data consist of photometry from the ALHAMBRA Gold Catalogue, which we cross-matched with the Sloan Digital Sky Survey (SDSS) and the Million Quasars Catalogue (Milliquas) for objects labelled as quasars, galaxies, or stars. An RF classifier is trained and tested to evaluate the effects of varying the free parameters and using narrow or broad-band magnitudes or colours on final accuracy and precision. Results . Best performances of the classifier yielded global accuracy and quasar precision of around 0.9. Varying free model parameters (within reasonable ranges of values) has no significant effects on the final classification. Using colours instead of magnitudes as features results in better performances of the classifier, especially when using colours from the ALHAMBRA survey. Colours that contribute the most to the classification are those containing the near-infrared JHK bands.
AbstractList Context . Given the current era of big data in astronomy, machine-learning-based methods have begun to be applied over recent years to identify or classify objects, such as quasars, galaxies, and stars, from full-sky photometric surveys. Aims . Here we systematically evaluate the performance of random forests (RFs) in classifying quasars using either magnitudes or colours – both from broad- and narrow-band filters – as features. Methods . The working data consist of photometry from the ALHAMBRA Gold Catalogue, which we cross-matched with the Sloan Digital Sky Survey (SDSS) and the Million Quasars Catalogue (Milliquas) for objects labelled as quasars, galaxies, or stars. An RF classifier is trained and tested to evaluate the effects of varying the free parameters and using narrow or broad-band magnitudes or colours on final accuracy and precision. Results . Best performances of the classifier yielded global accuracy and quasar precision of around 0.9. Varying free model parameters (within reasonable ranges of values) has no significant effects on the final classification. Using colours instead of magnitudes as features results in better performances of the classifier, especially when using colours from the ALHAMBRA survey. Colours that contribute the most to the classification are those containing the near-infrared JHK bands.
Author Nieves-Seoane, Lorena
Sánchez, Néstor
Gómez, Vicent
Martinez-Badenes, Vicent
Arroquia-Cuadros, Benjamín
Blay, Pere
Author_xml – sequence: 1
  givenname: Benjamín
  surname: Arroquia-Cuadros
  fullname: Arroquia-Cuadros, Benjamín
– sequence: 2
  givenname: Néstor
  orcidid: 0000-0002-0042-3180
  surname: Sánchez
  fullname: Sánchez, Néstor
– sequence: 3
  givenname: Vicent
  surname: Gómez
  fullname: Gómez, Vicent
– sequence: 4
  givenname: Pere
  surname: Blay
  fullname: Blay, Pere
– sequence: 5
  givenname: Vicent
  surname: Martinez-Badenes
  fullname: Martinez-Badenes, Vicent
– sequence: 6
  givenname: Lorena
  surname: Nieves-Seoane
  fullname: Nieves-Seoane, Lorena
BookMark eNqNkM1OwzAQhC1UJNrCE3DxC4R6bcdxj6ECihR-hOAcLf6BoDQudkLVt6dVUc-cRquZb6WZCRl1oXOEXAK7ApbDjDEmMyUUzDjjXOa5gBMyBil4xgqpRmR8TJyRSUpfu5ODFmPy-PwZ-rByfWwMNS2m1PjGYN-EjgZPvwdMGBP1MaxoWS3Lh-uXkqYh_rgtHVLTfdCInd2ZPkSX-nNy6rFN7uJPp-Tt9uZ1scyqp7v7RVllhkvZZ5AXau4MKJwLzbhiCFygZdZYZxQw6bWGXINnoC34d4neWlsI0Npaqb2YEnn4O3Rr3G6wbet1bFYYtzWwer9JvW9c7xvXx012mDhgJoaUovP_on4BxE9lcw
Cites_doi 10.3847/1538-4365/ac4414
10.1051/0004-6361/202142254
10.3847/1538-3881/aaf009
10.1051/0004-6361/202243135
10.1093/mnras/stu387
10.1086/507440
10.1088/0004-6256/136/3/1325
10.1088/0004-6256/140/6/1868
10.1051/0004-6361/201834794
10.3847/1538-4357/ac6bee
10.1111/j.1365-2966.2012.21191.x
10.1086/498708
10.1051/0004-6361/202040131
10.1080/01431161.2018.1433343
10.3847/1538-4365/ab20d0
10.1051/0004-6361/201525752
10.1016/j.ascom.2019.100313
10.1086/497363
10.1093/mnras/stab1835
10.1086/301513
10.1051/0004-6361/201936770
10.3847/1538-3881/ac0254
10.1093/mnras/stv063
10.1023/A:1010933404324
10.1051/0004-6361/201629165
10.1051/0004-6361/200913508
10.3390/rs13030368
10.1017/CBO9780511812651
10.1007/978-0-387-21706-2
10.1093/mnras/stab1867
10.1051/0004-6361/202039684
10.1088/0004-6256/141/6/189
10.1093/mnras/stab1650
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1051/0004-6361/202245531
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10.1051/0004-6361/202245531
10_1051_0004_6361_202245531
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
ADTOC
UNPAY
ID FETCH-LOGICAL-c244t-15769ec16a9380260a123ad0dcdec6104f881581f018d1fb4afddd73188dd48f3
IEDL.DBID UNPAY
ISSN 0004-6361
1432-0746
IngestDate Tue Aug 19 23:47:36 EDT 2025
Wed Oct 01 04:31:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-15769ec16a9380260a123ad0dcdec6104f881581f018d1fb4afddd73188dd48f3
ORCID 0000-0002-0042-3180
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.aanda.org/articles/aa/pdf/forth/aa45531-22.pdf
ParticipantIDs unpaywall_primary_10_1051_0004_6361_202245531
crossref_primary_10_1051_0004_6361_202245531
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2023
References Khramtsov (R12) 2021; 651
Vasconcellos (R31) 2011; 141
Breiman (R5) 2001; 45
Ramezan (R25) 2021; 13
Glikman (R10) 2022; 934
Clarke (R7) 2020; 639
Kovàcs (R13) 2015; 448
Suchkov (R29) 2005; 130
Abdurro’uf (R1) 2022; 259
Nakoneczny (R21) 2019; 624
Taylor (R30) 2005; 347
Wright (R35) 2010; 140
Krakowski (R14) 2016; 596
R26
Wang (R33) 2022; 659
Wenzl (R34) 2021; 162
Pedregosa (R23) 2011; 12
Molino (R19) 2014; 441
Li (R15) 2021; 506
Moles (R18) 2008; 136
R4
York (R37) 2000; 120
R9
Nakazono (R20) 2021; 507
Bai (R2) 2019; 157
Cunha (R8) 2022; 666
Makhija (R16) 2019; 29
Schindler (R27) 2019; 243
R32
Guarneri (R11) 2021; 506
Maxwell (R17) 2018; 39
Skrutskie (R28) 2006; 131
Yèche (R36) 2010; 523
Carrasco (R6) 2015; 584
Ball (R3) 2006; 650
Nakoneczny (R22) 2021; 649
Peng (R24) 2012; 425
References_xml – volume: 259
  start-page: 35
  year: 2022
  ident: R1
  publication-title: ApJS
  doi: 10.3847/1538-4365/ac4414
– volume: 659
  start-page: A144
  year: 2022
  ident: R33
  publication-title: A&A
  doi: 10.1051/0004-6361/202142254
– volume: 157
  start-page: 9
  year: 2019
  ident: R2
  publication-title: AJ
  doi: 10.3847/1538-3881/aaf009
– volume: 666
  start-page: A87
  year: 2022
  ident: R8
  publication-title: A&A
  doi: 10.1051/0004-6361/202243135
– volume: 441
  start-page: 2891
  year: 2014
  ident: R19
  publication-title: MNRAS
  doi: 10.1093/mnras/stu387
– volume: 650
  start-page: 497
  year: 2006
  ident: R3
  publication-title: ApJ
  doi: 10.1086/507440
– volume: 136
  start-page: 1325
  year: 2008
  ident: R18
  publication-title: AJ
  doi: 10.1088/0004-6256/136/3/1325
– volume: 140
  start-page: 1868
  year: 2010
  ident: R35
  publication-title: AJ
  doi: 10.1088/0004-6256/140/6/1868
– volume: 624
  start-page: A13
  year: 2019
  ident: R21
  publication-title: A&A
  doi: 10.1051/0004-6361/201834794
– volume: 934
  start-page: 119
  year: 2022
  ident: R10
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac6bee
– volume: 425
  start-page: 2599
  year: 2012
  ident: R24
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21191.x
– volume: 131
  start-page: 1163
  year: 2006
  ident: R28
  publication-title: AJ
  doi: 10.1086/498708
– volume: 12
  start-page: 2825
  year: 2011
  ident: R23
  publication-title: J. Mach. Learn. Res.
– ident: R9
– volume: 651
  start-page: A69
  year: 2021
  ident: R12
  publication-title: A&A
  doi: 10.1051/0004-6361/202040131
– volume: 39
  start-page: 2784
  year: 2018
  ident: R17
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431161.2018.1433343
– volume: 243
  start-page: 5
  year: 2019
  ident: R27
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab20d0
– volume: 347
  start-page: 29
  year: 2005
  ident: R30
  publication-title: Astronomical Society of the Pacific Conference Series
– volume: 584
  start-page: A44
  year: 2015
  ident: R6
  publication-title: A&A
  doi: 10.1051/0004-6361/201525752
– volume: 29
  start-page: 100313
  year: 2019
  ident: R16
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2019.100313
– volume: 130
  start-page: 2439
  year: 2005
  ident: R29
  publication-title: AJ
  doi: 10.1086/497363
– volume: 507
  start-page: 5847
  year: 2021
  ident: R20
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1835
– volume: 120
  start-page: 1579
  year: 2000
  ident: R37
  publication-title: AJ
  doi: 10.1086/301513
– volume: 639
  start-page: A84
  year: 2020
  ident: R7
  publication-title: A&A
  doi: 10.1051/0004-6361/201936770
– volume: 162
  start-page: 72
  year: 2021
  ident: R34
  publication-title: AJ
  doi: 10.3847/1538-3881/ac0254
– volume: 448
  start-page: 1305
  year: 2015
  ident: R13
  publication-title: MNRAS
  doi: 10.1093/mnras/stv063
– volume: 45
  start-page: 5
  year: 2001
  ident: R5
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 596
  start-page: A39
  year: 2016
  ident: R14
  publication-title: A&A
  doi: 10.1051/0004-6361/201629165
– volume: 523
  start-page: A14
  year: 2010
  ident: R36
  publication-title: A&A
  doi: 10.1051/0004-6361/200913508
– volume: 13
  start-page: 368
  year: 2021
  ident: R25
  publication-title: Rem. Sens.
  doi: 10.3390/rs13030368
– ident: R26
  doi: 10.1017/CBO9780511812651
– ident: R32
  doi: 10.1007/978-0-387-21706-2
– volume: 506
  start-page: 2471
  year: 2021
  ident: R11
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1867
– volume: 649
  start-page: A81
  year: 2021
  ident: R22
  publication-title: A&A
  doi: 10.1051/0004-6361/202039684
– volume: 141
  start-page: 189
  year: 2011
  ident: R31
  publication-title: AJ
  doi: 10.1088/0004-6256/141/6/189
– ident: R4
– volume: 506
  start-page: 1651
  year: 2021
  ident: R15
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1650
SSID ssj0002183
Score 2.421434
Snippet Context . Given the current era of big data in astronomy, machine-learning-based methods have begun to be applied over recent years to identify or classify...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage A48
Title Photometric classification of quasars from ALHAMBRA survey using random forest
URI https://www.aanda.org/articles/aa/pdf/forth/aa45531-22.pdf
UnpaywallVersion publishedVersion
Volume 673
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAHI
  databaseName: EDP Open
  customDbUrl:
  eissn: 1432-0746
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002183
  issn: 0004-6361
  databaseCode: GI~
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.edp-open.org/
  providerName: EDP
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6CogkuwNgQjB_yYdpppnXspMkxQkBBUPVAJaYdKsc_QAKajiSbyoG_nec4rRgn4ObIT5GjZ-f7nt_nZ4DvJmIZi7XFhZRxiohvaBIKQQ2S865GyOX1CbmLftQbirOr8KpRVRaNrFK6GNrXCG7EYW0p2xNt29blMvBBhDh1aIAxobaLsBSFyMNbsDTsD9Jfnu8KGnFfLFVwJ68U0azkUMja834X-gf1y_6DpeVqPJHTf_Lu7gXWHK_B79kovcTk9qAqswP1-KqA48c-Yx1WGwpKUm_-GRbMeAO20sJtiuf3U_KD1G2_51FswKeBb32B_uAmL_N7dwmXIsrxbic0qn1Lckv-VLLAOJm4IyskPe856U5Kiurhr5kSJ7C_JoiMGjtxaIhGX2F4fHR52KPNhQxUIQsoKcPgJDGKRTLhsStGJhH3pO5opY1CHiZsHLMwZraD7mc2E9Jqrbv424i1FrHlm9Aa52OzBSRQkZJdFUjekQKNMqW56MqYq8TaJIi24efMH6OJr7sxqvPlIXP5cjFy7hvN3bcNdO6zt9h_e6f9Dqy4e-a90nEXWuVDZfaQjZTZPiyenD7tN5PvGXyN2YQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH60CaO7bF3XkewXOoyepiayZMc-mtISxhZyWKBlhyDrRwtN7Cy2V9K_fk-WE9ad2t5k9DAyT_L3Pb1PTwBfTMQyFmuLCynjFBHf0CQUghok5yONkMubE3I_JtF4Jr5dhpetqrJsZZXSxdC-RnArDhtIOVhpO7Aul4EPIsSpQwOMCbXdh24UIg_vQHc2maZXnu8KGnFfLFVwJ68U0bbkUMgGu34X-gfNyx7A0kGdr-TmTi4W_2DNxWv4tR2ll5jcntZVdqru_yvg-LzPOIRXLQUlqTd_A3smP4JeWrpN8WK5ISekafs9j_IIXkx96y1MpjdFVSzdJVyKKMe7ndCo8S0pLPldyxLjZOKOrJD0-9hJd1JS1us_ZkOcwP6aIDJq7MShIRodw-zi_OfZmLYXMlCFLKCiDIOTxCgWyYTHrhiZRNyTeqiVNgp5mLBxzMKY2SG6n9lMSKu1HuFvI9ZaxJa_g05e5KYHJFCRkiMVSD6UAo0ypbkYyZirxNokiPrwdeuP-crX3Zg3-fKQuXy5mDv3zXfu6wPd-ewx9u-faP8BXrp75r3S8SN0qnVtPiEbqbLP7bT7C2hH2FU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photometric+classification+of+quasars+from+ALHAMBRA+survey+using+random+forest&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Arroquia-Cuadros%2C+Benjam%C3%ADn&rft.au=S%C3%A1nchez%2C+N%C3%A9stor&rft.au=G%C3%B3mez%2C+Vicent&rft.au=Blay%2C+Pere&rft.date=2023-05-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=673&rft.spage=A48&rft_id=info:doi/10.1051%2F0004-6361%2F202245531&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202245531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon