A study of conformal almost Ricci solitons on Kenmotsu manifolds
The goal of this paper is to study conformal almost Ricci solitons within the framework of Kenmotsu manifolds. First, we demonstrate that if the potential vector field is Jacobi along the Reeb vector field, then the soliton reduces to a conformal Ricci soliton. If the manifold is η -Einstein Kenmots...
        Saved in:
      
    
          | Published in | International journal of geometric methods in modern physics Vol. 20; no. 4 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          World Scientific Publishing Company
    
        30.03.2023
     World Scientific Publishing Co. Pte., Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0219-8878 1793-6977  | 
| DOI | 10.1142/S0219887823300015 | 
Cover
| Abstract | The goal of this paper is to study conformal almost Ricci solitons within the framework of Kenmotsu manifolds. First, we demonstrate that if the potential vector field is Jacobi along the Reeb vector field, then the soliton reduces to a conformal Ricci soliton. If the manifold is
η
-Einstein Kenmotsu manifold, we show that either the manifold is of constant scalar curvature or the potential vector field is an infinitesimal contact transformation. In addition, if we consider the soliton vector field as a contact vector field, then either the gradient of
λ
is pointwise collinear with the Reeb vector field or the manifold becomes
η
-Einstein. Lastly, we develop an example of a conformal almost Ricci soliton on the Kenmotsu manifold. | 
    
|---|---|
| AbstractList | The goal of this paper is to study conformal almost Ricci solitons within the framework of Kenmotsu manifolds. First, we demonstrate that if the potential vector field is Jacobi along the Reeb vector field, then the soliton reduces to a conformal Ricci soliton. If the manifold is η-Einstein Kenmotsu manifold, we show that either the manifold is of constant scalar curvature or the potential vector field is an infinitesimal contact transformation. In addition, if we consider the soliton vector field as a contact vector field, then either the gradient of λ is pointwise collinear with the Reeb vector field or the manifold becomes η-Einstein. Lastly, we develop an example of a conformal almost Ricci soliton on the Kenmotsu manifold. The goal of this paper is to study conformal almost Ricci solitons within the framework of Kenmotsu manifolds. First, we demonstrate that if the potential vector field is Jacobi along the Reeb vector field, then the soliton reduces to a conformal Ricci soliton. If the manifold is η -Einstein Kenmotsu manifold, we show that either the manifold is of constant scalar curvature or the potential vector field is an infinitesimal contact transformation. In addition, if we consider the soliton vector field as a contact vector field, then either the gradient of λ is pointwise collinear with the Reeb vector field or the manifold becomes η -Einstein. Lastly, we develop an example of a conformal almost Ricci soliton on the Kenmotsu manifold. The goal of this paper is to study conformal almost Ricci solitons within the framework of Kenmotsu manifolds. First, we demonstrate that if the potential vector field is Jacobi along the Reeb vector field, then the soliton reduces to a conformal Ricci soliton. If the manifold is [Formula: see text]-Einstein Kenmotsu manifold, we show that either the manifold is of constant scalar curvature or the potential vector field is an infinitesimal contact transformation. In addition, if we consider the soliton vector field as a contact vector field, then either the gradient of [Formula: see text] is pointwise collinear with the Reeb vector field or the manifold becomes [Formula: see text]-Einstein. Lastly, we develop an example of a conformal almost Ricci soliton on the Kenmotsu manifold.  | 
    
| Author | Dey, Santu Sarkar, Sumanjit Bhattacharyya, Arindam  | 
    
| Author_xml | – sequence: 1 givenname: Sumanjit surname: Sarkar fullname: Sarkar, Sumanjit – sequence: 2 givenname: Santu surname: Dey fullname: Dey, Santu – sequence: 3 givenname: Arindam surname: Bhattacharyya fullname: Bhattacharyya, Arindam  | 
    
| BookMark | eNp9kE1LAzEQhoNUsK3-AG8Bz6uZ7Gaze7MUv7Ag-HFestkEUnYzNUmR_nu3VDxY8DQD7_vMwDMjE4_eEHIJ7Bqg4DdvjENdVbLiec4YA3FCpiDrPCtrKSdkuo-zfX5GZjGuGctBSjkltwsa07bbUbRUo7cYBtVT1Q8YE311WjsasXcJfaTo6bPxA6a4pYPyzmLfxXNyalUfzcXPnJOP-7v35WO2enl4Wi5WmeZFITLRtlwUVgrNCqmUaDUw1ZWa8VIVWlaKK1NBl3cKbNWVrTVFO24ll0LYWkM-J1eHu5uAn1sTU7PGbfDjy4ZXkANwwfnYkoeWDhhjMLbRLqnk0KegXN8Aa_a6miNdIwl_yE1wgwq7fxl2YL4wjCq0Mz456_Qveox8Az4gfPk | 
    
| CitedBy_id | crossref_primary_10_1142_S0219887823501438 crossref_primary_10_15672_hujms_1074722 crossref_primary_10_1007_s44198_023_00116_6 crossref_primary_10_1142_S0129055X23500125 crossref_primary_10_2989_16073606_2023_2224587 crossref_primary_10_1007_s10114_023_2233_4  | 
    
| Cites_doi | 10.1007/s40065-019-00269-7 10.1515/ms-2017-0321 10.1515/ms-2017-0026 10.1142/0069 10.1142/S0129167X95000110 10.1007/s00605-014-0657-8 10.1016/j.geomphys.2016.12.010 10.3390/math8091592 10.2996/kmj/1138036310 10.1007/s00013-013-0524-1 10.2748/tmj/1178241594 10.1090/conm/071/954419 10.2748/tmj/1178243031 10.2298/FIL2115001S 10.1017/S0017089514000494 10.1007/978-0-8176-4959-3 10.1088/0264-9381/21/3/011 10.1016/j.geomphys.2021.104339  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023, World Scientific Publishing Company 2023. World Scientific Publishing Company  | 
    
| Copyright_xml | – notice: 2023, World Scientific Publishing Company – notice: 2023. World Scientific Publishing Company  | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1142/S0219887823300015 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences | 
    
| EISSN | 1793-6977 | 
    
| ExternalDocumentID | 10_1142_S0219887823300015 S0219887823300015  | 
    
| GroupedDBID | 0R~ 4.4 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS HZ~ J9A O9- P2P P71 RWJ AAYXX AMVHM CITATION  | 
    
| ID | FETCH-LOGICAL-c2445-5bb254f75c047aa5bc10ad6c026a4c78a2ae81d3da1f8d6bfe4b1f862755f9c13 | 
    
| ISSN | 0219-8878 | 
    
| IngestDate | Mon Jun 30 07:20:14 EDT 2025 Thu Apr 24 22:56:15 EDT 2025 Tue Jul 01 00:25:15 EDT 2025 Fri Aug 23 08:19:27 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Ricci flow conformal Ricci flow Kenmotsu manifold conformal almost Ricci soliton  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c2445-5bb254f75c047aa5bc10ad6c026a4c78a2ae81d3da1f8d6bfe4b1f862755f9c13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-5562-8730 | 
    
| PQID | 2813112522 | 
    
| PQPubID | 2049917 | 
    
| ParticipantIDs | worldscientific_primary_S0219887823300015 crossref_citationtrail_10_1142_S0219887823300015 crossref_primary_10_1142_S0219887823300015 proquest_journals_2813112522  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230330 2023-03-30  | 
    
| PublicationDateYYYYMMDD | 2023-03-30 | 
    
| PublicationDate_xml | – month: 03 year: 2023 text: 20230330 day: 30  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Singapore | 
    
| PublicationPlace_xml | – name: Singapore | 
    
| PublicationTitle | International journal of geometric methods in modern physics | 
    
| PublicationYear | 2023 | 
    
| Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd  | 
    
| Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd  | 
    
| References | Sarkar S. (S0219887823300015BIB018) 2022 Yano K. (S0219887823300015BIB025) 1970; 1 Guan D. Z.-D. (S0219887823300015BIB009) 1995; 6 S0219887823300015BIB015 S0219887823300015BIB013 S0219887823300015BIB012 S0219887823300015BIB011 S0219887823300015BIB010 Bagewadi C. S. (S0219887823300015BIB003) 2013; 2013 Sarkar S. (S0219887823300015BIB017) 2021; 35 Gomes J. N. (S0219887823300015BIB007) 2017; 114 Basu N. (S0219887823300015BIB014) 2015; 4 S0219887823300015BIB006 S0219887823300015BIB004 Ghosh A. (S0219887823300015BIB021) 2018; 55 S0219887823300015BIB008 Ganguly D. (S0219887823300015BIB016) 2021; 169 S0219887823300015BIB020 S0219887823300015BIB002 Pigola S. (S0219887823300015BIB005) 2011; 5 S0219887823300015BIB024 S0219887823300015BIB001 S0219887823300015BIB023 Ghosh A. (S0219887823300015BIB019) 2021; 2150130 S0219887823300015BIB022  | 
    
| References_xml | – ident: S0219887823300015BIB015 doi: 10.1007/s40065-019-00269-7 – ident: S0219887823300015BIB024 doi: 10.1515/ms-2017-0321 – volume: 4 start-page: 15 year: 2015 ident: S0219887823300015BIB014 publication-title: Glob. J. Adv. Res. Class. Mod. Geom. – ident: S0219887823300015BIB004 doi: 10.1515/ms-2017-0026 – ident: S0219887823300015BIB022 doi: 10.1142/0069 – volume: 2150130 start-page: 19 year: 2021 ident: S0219887823300015BIB019 publication-title: Asian-Eur. J. Math. – volume: 6 start-page: 371 issue: 3 year: 1995 ident: S0219887823300015BIB009 publication-title: Int. J. Math6. doi: 10.1142/S0129167X95000110 – ident: S0219887823300015BIB008 doi: 10.1007/s00605-014-0657-8 – volume: 114 start-page: 216 year: 2017 ident: S0219887823300015BIB007 publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2016.12.010 – volume: 1 volume-title: Integral Formulas in Riemannian Geometry year: 1970 ident: S0219887823300015BIB025 – ident: S0219887823300015BIB011 doi: 10.3390/math8091592 – ident: S0219887823300015BIB023 doi: 10.2996/kmj/1138036310 – ident: S0219887823300015BIB006 doi: 10.1007/s00013-013-0524-1 – ident: S0219887823300015BIB002 doi: 10.2748/tmj/1178241594 – ident: S0219887823300015BIB012 doi: 10.1090/conm/071/954419 – ident: S0219887823300015BIB001 doi: 10.2748/tmj/1178243031 – volume: 2013 start-page: 412593 year: 2013 ident: S0219887823300015BIB003 publication-title: Int. Scholar. Res. Not. Geom. – volume: 5 start-page: 757 issue: 10 year: 2011 ident: S0219887823300015BIB005 publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci. – volume: 35 start-page: 5001 issue: 15 year: 2021 ident: S0219887823300015BIB017 publication-title: Filomat doi: 10.2298/FIL2115001S – ident: S0219887823300015BIB010 doi: 10.1017/S0017089514000494 – volume: 55 start-page: 161 issue: 1 year: 2018 ident: S0219887823300015BIB021 publication-title: J. Korean Math. Soc. – year: 2022 ident: S0219887823300015BIB018 publication-title: J. Geom. Phys. – ident: S0219887823300015BIB020 doi: 10.1007/978-0-8176-4959-3 – ident: S0219887823300015BIB013 doi: 10.1088/0264-9381/21/3/011 – volume: 169 start-page: 104339 year: 2021 ident: S0219887823300015BIB016 publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2021.104339  | 
    
| SSID | ssj0031777 | 
    
| Score | 2.455468 | 
    
| Snippet | The goal of this paper is to study conformal almost Ricci solitons within the framework of Kenmotsu manifolds. First, we demonstrate that if the potential... | 
    
| SourceID | proquest crossref worldscientific  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Fields (mathematics) Manifolds Solitary waves  | 
    
| Title | A study of conformal almost Ricci solitons on Kenmotsu manifolds | 
    
| URI | http://www.worldscientific.com/doi/abs/10.1142/S0219887823300015 https://www.proquest.com/docview/2813112522  | 
    
| Volume | 20 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1793-6977 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0031777 issn: 0219-8878 databaseCode: AMVHM dateStart: 20050201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MKlvEWgoD0gJKi22Ou1ndyISqsINQWpCcrN2l3bJdDYJXYO5S_wp5l9eO2SqgIulmXZY2tnPDuPb2YQehWwGPY1EZM4HEnCBE-J8IcRCWM_9zLfywOu6p2np9Fkzj4uwkWv96uDWtrU4kD-vLGu5H-4CteAr6pK9h8464jCBTgH_sIROAzHv-Lx2HSHNdBwU1ekAMersqpVxbxc7lcK3qahboUqwQG-VBuFWF3m5YUp8W0s0-uhwU5DifOsXKmxW9JOm9YA2pUZoWbiIs4sP-Pr7wawfaZyA9-WDlPzwWLKgI8bFwH4yuuaq7KvqysT3V2rAMGqG4igga7M81p1p8E_WiNplFM3jnZYHux_rjOt71q0ktJxoDAJ6DmjgjOjg0FlkGhkp7tYJU29jjCym3U_ozr7DCQVRRoEulC83eia5P7pp-R4fnKSzI4Ws9eXP4gaQaZS9XYeyx20Q2GL8PpoZzz9Mpk2GztYWnqQp_tmmySH977beut1M6f1XXZ1I9zKrVLHmJndR7vWC8FjI1IPUC8rHqJ71iPBVt9Xj9D7MdYShsscOwnDRsKwljDcSBguC9xIGHYS9hjNj49mhxNiZ24QCYZeSEIhaMjyOJQeizkPhfQ9nkYSXHXOZDzklGfg4gQp9_NhGok8YwLOVK_rMB9JP3iC-kVZZE8RTmPKcio43AMnKr8MvjYXQcApGP2eGCCvWaJE2ob0ai7KRWKK5WmytaoD9NY9cmm6sdx2816z7on9a6qEDlV_KfUBA_TmD144kluknt1O6jm62_4Qe6hfrzfZC7BVa_HSytBvhmaVkQ | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+conformal+almost+Ricci+solitons+on+Kenmotsu+manifolds&rft.jtitle=International+journal+of+geometric+methods+in+modern+physics&rft.au=Sarkar%2C+Sumanjit&rft.au=Dey%2C+Santu&rft.au=Bhattacharyya%2C+Arindam&rft.date=2023-03-30&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0219-8878&rft.eissn=1793-6977&rft.volume=20&rft.issue=4&rft_id=info:doi/10.1142%2FS0219887823300015&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-8878&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-8878&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-8878&client=summon |