A study of conformal almost Ricci solitons on Kenmotsu manifolds

The goal of this paper is to study conformal almost Ricci solitons within the framework of Kenmotsu manifolds. First, we demonstrate that if the potential vector field is Jacobi along the Reeb vector field, then the soliton reduces to a conformal Ricci soliton. If the manifold is η -Einstein Kenmots...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of geometric methods in modern physics Vol. 20; no. 4
Main Authors Sarkar, Sumanjit, Dey, Santu, Bhattacharyya, Arindam
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 30.03.2023
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0219-8878
1793-6977
DOI10.1142/S0219887823300015

Cover

Abstract The goal of this paper is to study conformal almost Ricci solitons within the framework of Kenmotsu manifolds. First, we demonstrate that if the potential vector field is Jacobi along the Reeb vector field, then the soliton reduces to a conformal Ricci soliton. If the manifold is η -Einstein Kenmotsu manifold, we show that either the manifold is of constant scalar curvature or the potential vector field is an infinitesimal contact transformation. In addition, if we consider the soliton vector field as a contact vector field, then either the gradient of λ is pointwise collinear with the Reeb vector field or the manifold becomes η -Einstein. Lastly, we develop an example of a conformal almost Ricci soliton on the Kenmotsu manifold.
AbstractList The goal of this paper is to study conformal almost Ricci solitons within the framework of Kenmotsu manifolds. First, we demonstrate that if the potential vector field is Jacobi along the Reeb vector field, then the soliton reduces to a conformal Ricci soliton. If the manifold is η-Einstein Kenmotsu manifold, we show that either the manifold is of constant scalar curvature or the potential vector field is an infinitesimal contact transformation. In addition, if we consider the soliton vector field as a contact vector field, then either the gradient of λ is pointwise collinear with the Reeb vector field or the manifold becomes η-Einstein. Lastly, we develop an example of a conformal almost Ricci soliton on the Kenmotsu manifold.
The goal of this paper is to study conformal almost Ricci solitons within the framework of Kenmotsu manifolds. First, we demonstrate that if the potential vector field is Jacobi along the Reeb vector field, then the soliton reduces to a conformal Ricci soliton. If the manifold is η -Einstein Kenmotsu manifold, we show that either the manifold is of constant scalar curvature or the potential vector field is an infinitesimal contact transformation. In addition, if we consider the soliton vector field as a contact vector field, then either the gradient of λ is pointwise collinear with the Reeb vector field or the manifold becomes η -Einstein. Lastly, we develop an example of a conformal almost Ricci soliton on the Kenmotsu manifold.
The goal of this paper is to study conformal almost Ricci solitons within the framework of Kenmotsu manifolds. First, we demonstrate that if the potential vector field is Jacobi along the Reeb vector field, then the soliton reduces to a conformal Ricci soliton. If the manifold is [Formula: see text]-Einstein Kenmotsu manifold, we show that either the manifold is of constant scalar curvature or the potential vector field is an infinitesimal contact transformation. In addition, if we consider the soliton vector field as a contact vector field, then either the gradient of [Formula: see text] is pointwise collinear with the Reeb vector field or the manifold becomes [Formula: see text]-Einstein. Lastly, we develop an example of a conformal almost Ricci soliton on the Kenmotsu manifold.
Author Dey, Santu
Sarkar, Sumanjit
Bhattacharyya, Arindam
Author_xml – sequence: 1
  givenname: Sumanjit
  surname: Sarkar
  fullname: Sarkar, Sumanjit
– sequence: 2
  givenname: Santu
  surname: Dey
  fullname: Dey, Santu
– sequence: 3
  givenname: Arindam
  surname: Bhattacharyya
  fullname: Bhattacharyya, Arindam
BookMark eNp9kE1LAzEQhoNUsK3-AG8Bz6uZ7Gaze7MUv7Ag-HFestkEUnYzNUmR_nu3VDxY8DQD7_vMwDMjE4_eEHIJ7Bqg4DdvjENdVbLiec4YA3FCpiDrPCtrKSdkuo-zfX5GZjGuGctBSjkltwsa07bbUbRUo7cYBtVT1Q8YE311WjsasXcJfaTo6bPxA6a4pYPyzmLfxXNyalUfzcXPnJOP-7v35WO2enl4Wi5WmeZFITLRtlwUVgrNCqmUaDUw1ZWa8VIVWlaKK1NBl3cKbNWVrTVFO24ll0LYWkM-J1eHu5uAn1sTU7PGbfDjy4ZXkANwwfnYkoeWDhhjMLbRLqnk0KegXN8Aa_a6miNdIwl_yE1wgwq7fxl2YL4wjCq0Mz456_Qveox8Az4gfPk
CitedBy_id crossref_primary_10_1142_S0219887823501438
crossref_primary_10_15672_hujms_1074722
crossref_primary_10_1007_s44198_023_00116_6
crossref_primary_10_1142_S0129055X23500125
crossref_primary_10_2989_16073606_2023_2224587
crossref_primary_10_1007_s10114_023_2233_4
Cites_doi 10.1007/s40065-019-00269-7
10.1515/ms-2017-0321
10.1515/ms-2017-0026
10.1142/0069
10.1142/S0129167X95000110
10.1007/s00605-014-0657-8
10.1016/j.geomphys.2016.12.010
10.3390/math8091592
10.2996/kmj/1138036310
10.1007/s00013-013-0524-1
10.2748/tmj/1178241594
10.1090/conm/071/954419
10.2748/tmj/1178243031
10.2298/FIL2115001S
10.1017/S0017089514000494
10.1007/978-0-8176-4959-3
10.1088/0264-9381/21/3/011
10.1016/j.geomphys.2021.104339
ContentType Journal Article
Copyright 2023, World Scientific Publishing Company
2023. World Scientific Publishing Company
Copyright_xml – notice: 2023, World Scientific Publishing Company
– notice: 2023. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0219887823300015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1793-6977
ExternalDocumentID 10_1142_S0219887823300015
S0219887823300015
GroupedDBID 0R~
4.4
5GY
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
HZ~
J9A
O9-
P2P
P71
RWJ
AAYXX
AMVHM
CITATION
ID FETCH-LOGICAL-c2445-5bb254f75c047aa5bc10ad6c026a4c78a2ae81d3da1f8d6bfe4b1f862755f9c13
ISSN 0219-8878
IngestDate Mon Jun 30 07:20:14 EDT 2025
Thu Apr 24 22:56:15 EDT 2025
Tue Jul 01 00:25:15 EDT 2025
Fri Aug 23 08:19:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Ricci flow
conformal Ricci flow
Kenmotsu manifold
conformal almost Ricci soliton
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2445-5bb254f75c047aa5bc10ad6c026a4c78a2ae81d3da1f8d6bfe4b1f862755f9c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5562-8730
PQID 2813112522
PQPubID 2049917
ParticipantIDs worldscientific_primary_S0219887823300015
crossref_citationtrail_10_1142_S0219887823300015
crossref_primary_10_1142_S0219887823300015
proquest_journals_2813112522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230330
2023-03-30
PublicationDateYYYYMMDD 2023-03-30
PublicationDate_xml – month: 03
  year: 2023
  text: 20230330
  day: 30
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of geometric methods in modern physics
PublicationYear 2023
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References Sarkar S. (S0219887823300015BIB018) 2022
Yano K. (S0219887823300015BIB025) 1970; 1
Guan D. Z.-D. (S0219887823300015BIB009) 1995; 6
S0219887823300015BIB015
S0219887823300015BIB013
S0219887823300015BIB012
S0219887823300015BIB011
S0219887823300015BIB010
Bagewadi C. S. (S0219887823300015BIB003) 2013; 2013
Sarkar S. (S0219887823300015BIB017) 2021; 35
Gomes J. N. (S0219887823300015BIB007) 2017; 114
Basu N. (S0219887823300015BIB014) 2015; 4
S0219887823300015BIB006
S0219887823300015BIB004
Ghosh A. (S0219887823300015BIB021) 2018; 55
S0219887823300015BIB008
Ganguly D. (S0219887823300015BIB016) 2021; 169
S0219887823300015BIB020
S0219887823300015BIB002
Pigola S. (S0219887823300015BIB005) 2011; 5
S0219887823300015BIB024
S0219887823300015BIB001
S0219887823300015BIB023
Ghosh A. (S0219887823300015BIB019) 2021; 2150130
S0219887823300015BIB022
References_xml – ident: S0219887823300015BIB015
  doi: 10.1007/s40065-019-00269-7
– ident: S0219887823300015BIB024
  doi: 10.1515/ms-2017-0321
– volume: 4
  start-page: 15
  year: 2015
  ident: S0219887823300015BIB014
  publication-title: Glob. J. Adv. Res. Class. Mod. Geom.
– ident: S0219887823300015BIB004
  doi: 10.1515/ms-2017-0026
– ident: S0219887823300015BIB022
  doi: 10.1142/0069
– volume: 2150130
  start-page: 19
  year: 2021
  ident: S0219887823300015BIB019
  publication-title: Asian-Eur. J. Math.
– volume: 6
  start-page: 371
  issue: 3
  year: 1995
  ident: S0219887823300015BIB009
  publication-title: Int. J. Math6.
  doi: 10.1142/S0129167X95000110
– ident: S0219887823300015BIB008
  doi: 10.1007/s00605-014-0657-8
– volume: 114
  start-page: 216
  year: 2017
  ident: S0219887823300015BIB007
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2016.12.010
– volume: 1
  volume-title: Integral Formulas in Riemannian Geometry
  year: 1970
  ident: S0219887823300015BIB025
– ident: S0219887823300015BIB011
  doi: 10.3390/math8091592
– ident: S0219887823300015BIB023
  doi: 10.2996/kmj/1138036310
– ident: S0219887823300015BIB006
  doi: 10.1007/s00013-013-0524-1
– ident: S0219887823300015BIB002
  doi: 10.2748/tmj/1178241594
– ident: S0219887823300015BIB012
  doi: 10.1090/conm/071/954419
– ident: S0219887823300015BIB001
  doi: 10.2748/tmj/1178243031
– volume: 2013
  start-page: 412593
  year: 2013
  ident: S0219887823300015BIB003
  publication-title: Int. Scholar. Res. Not. Geom.
– volume: 5
  start-page: 757
  issue: 10
  year: 2011
  ident: S0219887823300015BIB005
  publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci.
– volume: 35
  start-page: 5001
  issue: 15
  year: 2021
  ident: S0219887823300015BIB017
  publication-title: Filomat
  doi: 10.2298/FIL2115001S
– ident: S0219887823300015BIB010
  doi: 10.1017/S0017089514000494
– volume: 55
  start-page: 161
  issue: 1
  year: 2018
  ident: S0219887823300015BIB021
  publication-title: J. Korean Math. Soc.
– year: 2022
  ident: S0219887823300015BIB018
  publication-title: J. Geom. Phys.
– ident: S0219887823300015BIB020
  doi: 10.1007/978-0-8176-4959-3
– ident: S0219887823300015BIB013
  doi: 10.1088/0264-9381/21/3/011
– volume: 169
  start-page: 104339
  year: 2021
  ident: S0219887823300015BIB016
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2021.104339
SSID ssj0031777
Score 2.455468
Snippet The goal of this paper is to study conformal almost Ricci solitons within the framework of Kenmotsu manifolds. First, we demonstrate that if the potential...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Fields (mathematics)
Manifolds
Solitary waves
Title A study of conformal almost Ricci solitons on Kenmotsu manifolds
URI http://www.worldscientific.com/doi/abs/10.1142/S0219887823300015
https://www.proquest.com/docview/2813112522
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1793-6977
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0031777
  issn: 0219-8878
  databaseCode: AMVHM
  dateStart: 20050201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MKlvEWgoD0gJKi22Ou1ndyISqsINQWpCcrN2l3bJdDYJXYO5S_wp5l9eO2SqgIulmXZY2tnPDuPb2YQehWwGPY1EZM4HEnCBE-J8IcRCWM_9zLfywOu6p2np9Fkzj4uwkWv96uDWtrU4kD-vLGu5H-4CteAr6pK9h8464jCBTgH_sIROAzHv-Lx2HSHNdBwU1ekAMersqpVxbxc7lcK3qahboUqwQG-VBuFWF3m5YUp8W0s0-uhwU5DifOsXKmxW9JOm9YA2pUZoWbiIs4sP-Pr7wawfaZyA9-WDlPzwWLKgI8bFwH4yuuaq7KvqysT3V2rAMGqG4igga7M81p1p8E_WiNplFM3jnZYHux_rjOt71q0ktJxoDAJ6DmjgjOjg0FlkGhkp7tYJU29jjCym3U_ozr7DCQVRRoEulC83eia5P7pp-R4fnKSzI4Ws9eXP4gaQaZS9XYeyx20Q2GL8PpoZzz9Mpk2GztYWnqQp_tmmySH977beut1M6f1XXZ1I9zKrVLHmJndR7vWC8FjI1IPUC8rHqJ71iPBVt9Xj9D7MdYShsscOwnDRsKwljDcSBguC9xIGHYS9hjNj49mhxNiZ24QCYZeSEIhaMjyOJQeizkPhfQ9nkYSXHXOZDzklGfg4gQp9_NhGok8YwLOVK_rMB9JP3iC-kVZZE8RTmPKcio43AMnKr8MvjYXQcApGP2eGCCvWaJE2ob0ai7KRWKK5WmytaoD9NY9cmm6sdx2816z7on9a6qEDlV_KfUBA_TmD144kluknt1O6jm62_4Qe6hfrzfZC7BVa_HSytBvhmaVkQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+conformal+almost+Ricci+solitons+on+Kenmotsu+manifolds&rft.jtitle=International+journal+of+geometric+methods+in+modern+physics&rft.au=Sarkar%2C+Sumanjit&rft.au=Dey%2C+Santu&rft.au=Bhattacharyya%2C+Arindam&rft.date=2023-03-30&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0219-8878&rft.eissn=1793-6977&rft.volume=20&rft.issue=4&rft_id=info:doi/10.1142%2FS0219887823300015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-8878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-8878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-8878&client=summon