A Novel Learning Approach to Remove Oscillations in First‐Order Takagi–Sugeno Fuzzy System: Gradient Descent‐Based Neuro‐Fuzzy Algorithm Using Smoothing Group Lasso Regularization

As a universal approximator, the first order Takagi–Sugeno fuzzy system possesses the capability to approximate widespread nonlinear systems through a group of IF THEN fuzzy rules. Although group lasso regularization has the advantage of inducing group sparsity and handling variable selection issues...

Full description

Saved in:
Bibliographic Details
Published inAdvanced theory and simulations Vol. 7; no. 2
Main Authors Liu, Yan, Wang, Rui, Liu, Yuanquan, Shao, Qiang, Lv, Yan, Yu, Yan
Format Journal Article
LanguageEnglish
Published 01.02.2024
Subjects
Online AccessGet full text
ISSN2513-0390
2513-0390
DOI10.1002/adts.202300545

Cover

Abstract As a universal approximator, the first order Takagi–Sugeno fuzzy system possesses the capability to approximate widespread nonlinear systems through a group of IF THEN fuzzy rules. Although group lasso regularization has the advantage of inducing group sparsity and handling variable selection issues, it can lead to numerical oscillations and theoretical challenges in calculating the gradient at the origin when employed directly during training. The paper addresses the aforementioned obstacle by invoking a smoothing function to approximate group lasso regularization. On this basis, a gradient‐based neuro fuzzy learning algorithm with smoothing group lasso regularization for the first order Takagi–Sugeno fuzzy system is proposed. The convergence of the proposed algorithm is rigorously proved under gentle conditions. In addition, experimental outcomes acquired on two approximations and two classification simulations demonstrate that the proposed algorithm outperforms the algorithm with original group lasso regularization and L2 regularization in terms of error, pruned neurons, and accuracy. This is particularly evident in significant advancements in pruned neurons due to group sparsity. In comparison to the algorithm with L2 regularization, the proposed algorithm exhibits improvements of 6.3, 5.3, and 142.6 in pruned neurons during sin(πx)$(\pi x)$ function, Gabor function, and Sonar benchmark dataset simulations, respectively. A gradient‐based neuro‐fuzzy learning algorithm with smooth group lasso regularization for first‐order Takagi–Sugeno fuzzy system is proposed, in which smooth group lasso regularization can optimize the network structure by inducing group sparsity. The convergence of the proposed algorithm is rigorously proved. Two approximation and two classification simulations illustrate that the proposed algorithm exhibits better sparsity, convergence, and classification ability.
AbstractList As a universal approximator, the first order Takagi–Sugeno fuzzy system possesses the capability to approximate widespread nonlinear systems through a group of IF THEN fuzzy rules. Although group lasso regularization has the advantage of inducing group sparsity and handling variable selection issues, it can lead to numerical oscillations and theoretical challenges in calculating the gradient at the origin when employed directly during training. The paper addresses the aforementioned obstacle by invoking a smoothing function to approximate group lasso regularization. On this basis, a gradient‐based neuro fuzzy learning algorithm with smoothing group lasso regularization for the first order Takagi–Sugeno fuzzy system is proposed. The convergence of the proposed algorithm is rigorously proved under gentle conditions. In addition, experimental outcomes acquired on two approximations and two classification simulations demonstrate that the proposed algorithm outperforms the algorithm with original group lasso regularization and L 2 regularization in terms of error, pruned neurons, and accuracy. This is particularly evident in significant advancements in pruned neurons due to group sparsity. In comparison to the algorithm with L 2 regularization, the proposed algorithm exhibits improvements of 6.3, 5.3, and 142.6 in pruned neurons during sin function, Gabor function, and Sonar benchmark dataset simulations, respectively.
As a universal approximator, the first order Takagi–Sugeno fuzzy system possesses the capability to approximate widespread nonlinear systems through a group of IF THEN fuzzy rules. Although group lasso regularization has the advantage of inducing group sparsity and handling variable selection issues, it can lead to numerical oscillations and theoretical challenges in calculating the gradient at the origin when employed directly during training. The paper addresses the aforementioned obstacle by invoking a smoothing function to approximate group lasso regularization. On this basis, a gradient‐based neuro fuzzy learning algorithm with smoothing group lasso regularization for the first order Takagi–Sugeno fuzzy system is proposed. The convergence of the proposed algorithm is rigorously proved under gentle conditions. In addition, experimental outcomes acquired on two approximations and two classification simulations demonstrate that the proposed algorithm outperforms the algorithm with original group lasso regularization and L2 regularization in terms of error, pruned neurons, and accuracy. This is particularly evident in significant advancements in pruned neurons due to group sparsity. In comparison to the algorithm with L2 regularization, the proposed algorithm exhibits improvements of 6.3, 5.3, and 142.6 in pruned neurons during sin(πx)$(\pi x)$ function, Gabor function, and Sonar benchmark dataset simulations, respectively. A gradient‐based neuro‐fuzzy learning algorithm with smooth group lasso regularization for first‐order Takagi–Sugeno fuzzy system is proposed, in which smooth group lasso regularization can optimize the network structure by inducing group sparsity. The convergence of the proposed algorithm is rigorously proved. Two approximation and two classification simulations illustrate that the proposed algorithm exhibits better sparsity, convergence, and classification ability.
Author Liu, Yan
Lv, Yan
Shao, Qiang
Yu, Yan
Liu, Yuanquan
Wang, Rui
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0003-3998-4652
  surname: Liu
  fullname: Liu, Yan
  email: liuyan@dlpu.edu.cn
  organization: Dalian Polytechnic University
– sequence: 2
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  organization: Dalian Polytechnic University
– sequence: 3
  givenname: Yuanquan
  surname: Liu
  fullname: Liu, Yuanquan
  organization: Dalian Polytechnic University
– sequence: 4
  givenname: Qiang
  surname: Shao
  fullname: Shao, Qiang
  organization: Dalian Polytechnic University
– sequence: 5
  givenname: Yan
  surname: Lv
  fullname: Lv, Yan
  organization: Dalian Polytechnic University
– sequence: 6
  givenname: Yan
  surname: Yu
  fullname: Yu, Yan
  email: soie@dlpu.edu.cn
  organization: Dalian Polytechnic University
BookMark eNqFkM1OwkAUhSdGExHZup4XAKfTHxh3FQRNGkgE1s2lvS2jbYfMtBpY8QgmPo5vw5PYilF3ru65uee7OTkX5LRQBRJyZbGexRi_hrg0Pc64zZjruCekxV3L7jJbsNM_-px0jHliNWA5rM-sFvnw6VS9YEYDBF3IIqX-ZqMVRGtaKvqIeX2kMxPJLINSqsJQWdCx1KY87N9mOkZNF_AMqTzs3-dVioWi42q329L51pSY39CJhlhiUdIRmqieNXYLBmM6xUqrejva_SxVWpbrnC5Nk2KeK1WuGzXRqtrQAIxp8qRVBlruvrJckrMEMoOd79kmy_HdYnjfDWaTh6EfdCPuOG7XZQPm8UF_IOwk5okHzmoVu4OVg4nnWS4wROBCCBAW82wHVtyLhGPHbiwS7nFut0nv-DfSyhiNSbjRMge9DS0WNu2HTfvhT_s1II7Aq8xw-4879EeL-S_7CV2hknQ
Cites_doi 10.1002/adts.202200100
10.1002/adts.202100216
10.1109/TNNLS.2017.2748585
10.1111/j.1467-9868.2005.00532.x
10.1007/s41066-021-00297-9
10.1109/TCYB.2014.2323994
10.1016/j.neucom.2013.10.023
10.1109/TKDE.2019.2893266
10.1109/TMECH.2022.3214865
10.1109/TFUZZ.2011.2159011
10.1007/s11801-023-2053-x
10.1016/j.inffus.2022.10.027
10.1007/s41066-022-00320-7
10.1088/1361-6420/33/2/025010
10.1016/j.ins.2009.12.030
10.1016/j.asoc.2020.106275
10.1016/j.fss.2016.07.003
10.1016/j.jfranklin.2018.06.015
10.1016/j.neunet.2013.11.006
10.1016/j.jfranklin.2015.04.006
10.1162/089976600300015763
10.1109/JIOT.2021.3052016
10.1016/j.ins.2021.11.044
10.1089/big.2021.0064
10.3390/sym13071147
10.1016/j.neunet.2022.03.033
10.1002/cpe.7049
10.1002/adts.202200047
10.3389/fnins.2019.00509
10.1109/TSMC.1985.6313399
10.1016/j.asoc.2017.07.059
10.1109/TNNLS.2020.2980383
10.1016/j.asoc.2022.108836
10.1109/TCYB.2019.2950105
10.1109/TVT.2022.3169349
10.1016/j.ins.2022.06.071
10.1016/j.neunet.2022.10.011
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TFUZZ.2012.2224872
10.1016/j.ins.2016.11.020
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/adts.202300545
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
EISSN 2513-0390
EndPage n/a
ExternalDocumentID 10_1002_adts_202300545
ADTS202300545
Genre article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2018YFD0901002
– fundername: National Natural Science Foundation of China
  funderid: 61403056; 61671099
– fundername: Natural Science Foundation Guidance Project of Liaoning Province
  funderid: 2019‐ZD‐0128
GroupedDBID 0R~
1OC
33P
34L
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ABDBF
ACCFJ
ACCZN
ACGFS
ACPOU
ACUHS
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
AAMMB
AAYXX
ABJNI
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
ID FETCH-LOGICAL-c2445-50806287893fd2f6a4bbd58b4ef6615a0eea2999a910634ab26c943d5d9f26223
ISSN 2513-0390
IngestDate Thu Oct 09 00:21:23 EDT 2025
Wed Jan 22 16:16:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2445-50806287893fd2f6a4bbd58b4ef6615a0eea2999a910634ab26c943d5d9f26223
ORCID 0000-0003-3998-4652
PageCount 15
ParticipantIDs crossref_primary_10_1002_adts_202300545
wiley_primary_10_1002_adts_202300545_ADTS202300545
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Advanced theory and simulations
PublicationYear 2024
References 2021; 8
2017; 61
2017; 319
2022; 151
2021; 4
2023; 11
2019; 50
2013; 44
2022; 71
2019; 32
2019; 13
2023; 8
2023; 19
2017; 29
2020; 32
1996; 58
2010; 180
2011; 19
2014; 131
1985; SMC‐15
2023; 20
2022; 122
2015; 45
2022; 585
2021; 13
2023; 28
2006; 68
2022; 5
2000; 12
2018; 355
2022; 7
2017; 33
2020; 92
2015; 352
2022; 34
2023; 158
2017; 381
2022; 608
2001; 11
2014; 50
2012; 21
2023; 91
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_1_1
Tibshirani R. (e_1_2_11_35_1) 1996; 58
Ouifak H. (e_1_2_11_7_1) 2023; 20
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
Oliver N. (e_1_2_11_9_1) 2001; 11
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
Li H. (e_1_2_11_12_1) 2013; 44
References_xml – volume: 352
  start-page: 2951
  year: 2015
  publication-title: J. Franklin Inst.
– volume: 122
  year: 2022
  publication-title: Appl. Soft Comput.
– volume: 8
  year: 2021
  publication-title: IEEE Internet Things J.
– volume: 68
  start-page: 49
  year: 2006
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
– volume: 381
  start-page: 250
  year: 2017
  publication-title: Inf. Sci.
– volume: 355
  start-page: 6132
  year: 2018
  publication-title: J. Franklin Inst.
– volume: 32
  start-page: 659
  year: 2019
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 585
  start-page: 70
  year: 2022
  publication-title: Inf. Sci.
– volume: 21
  start-page: 789
  year: 2012
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 32
  start-page: 1110
  year: 2020
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 20
  year: 2023
  publication-title: Sci. Afr.
– volume: 12
  start-page: 709
  year: 2000
  publication-title: Neural Comput.
– volume: 50
  start-page: 72
  year: 2014
  publication-title: Neural Netw.
– volume: 58
  start-page: 267
  year: 1996
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
– volume: 13
  start-page: 509
  year: 2019
  publication-title: Front. Neurosci.
– volume: 19
  start-page: 1014
  year: 2011
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 11
  start-page: 105
  year: 2023
  publication-title: Big Data.
– volume: 158
  start-page: 59
  year: 2023
  publication-title: Neural Netw.
– volume: SMC‐15
  start-page: 116
  year: 1985
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 29
  start-page: 2012
  year: 2017
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 71
  start-page: 7023
  year: 2022
  publication-title: IEEE Trans. Veh Technol.
– volume: 4
  year: 2021
  publication-title: Adv. Theory Simul.
– volume: 608
  start-page: 313
  year: 2022
  publication-title: Inf. Sci.
– volume: 5
  year: 2022
  publication-title: Adv. Theory Simul.
– volume: 92
  year: 2020
  publication-title: Appl. Soft Comput.
– volume: 319
  start-page: 28
  year: 2017
  publication-title: Fuzzy Sets Syst.
– volume: 91
  start-page: 458
  year: 2023
  publication-title: Inf Fusion.
– volume: 8
  start-page: 131
  year: 2023
  publication-title: Granul. Comput.
– volume: 13
  start-page: 1147
  year: 2021
  publication-title: Symmetry
– volume: 151
  start-page: 211
  year: 2022
  publication-title: Neural Netw.
– volume: 19
  start-page: 284
  year: 2023
  publication-title: Optoelectron. Lett.
– volume: 11
  start-page: 294
  year: 2001
  publication-title: Ch
– volume: 45
  start-page: 229
  year: 2015
  publication-title: IEEE Trans. Cybern.
– volume: 32
  start-page: 659
  year: 2020
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 34
  year: 2022
  publication-title: Concurr Comput.
– volume: 28
  start-page: 838
  year: 2023
  publication-title: IEEE ASME Trans. Mechatron.
– volume: 50
  start-page: 1333
  year: 2019
  publication-title: IEEE Trans. Cybern.
– volume: 180
  start-page: 1630
  year: 2010
  publication-title: Inf. Sci.
– volume: 44
  start-page: 1111
  year: 2013
  publication-title: IEEE Trans. Cybern.
– volume: 131
  start-page: 208
  year: 2014
  publication-title: Neurocomputing
– volume: 7
  start-page: 813
  year: 2022
  publication-title: Granul. Comput.
– volume: 33
  year: 2017
  publication-title: Inverse Probl.
– volume: 61
  start-page: 354
  year: 2017
  publication-title: Appl. Soft Comput.
– ident: e_1_2_11_3_1
  doi: 10.1002/adts.202200100
– ident: e_1_2_11_4_1
  doi: 10.1002/adts.202100216
– ident: e_1_2_11_29_1
  doi: 10.1109/TNNLS.2017.2748585
– ident: e_1_2_11_38_1
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: e_1_2_11_21_1
  doi: 10.1007/s41066-021-00297-9
– ident: e_1_2_11_15_1
  doi: 10.1109/TCYB.2014.2323994
– ident: e_1_2_11_33_1
  doi: 10.1016/j.neucom.2013.10.023
– ident: e_1_2_11_42_1
  doi: 10.1109/TKDE.2019.2893266
– ident: e_1_2_11_27_1
  doi: 10.1109/TMECH.2022.3214865
– volume: 44
  start-page: 1111
  year: 2013
  ident: e_1_2_11_12_1
  publication-title: IEEE Trans. Cybern.
– ident: e_1_2_11_17_1
  doi: 10.1109/TFUZZ.2011.2159011
– ident: e_1_2_11_40_1
  doi: 10.1007/s11801-023-2053-x
– ident: e_1_2_11_1_1
  doi: 10.1016/j.inffus.2022.10.027
– ident: e_1_2_11_20_1
  doi: 10.1007/s41066-022-00320-7
– ident: e_1_2_11_31_1
  doi: 10.1088/1361-6420/33/2/025010
– volume: 11
  start-page: 294
  year: 2001
  ident: e_1_2_11_9_1
  publication-title: Ch
– ident: e_1_2_11_44_1
  doi: 10.1016/j.ins.2009.12.030
– ident: e_1_2_11_8_1
  doi: 10.1016/j.asoc.2020.106275
– ident: e_1_2_11_18_1
  doi: 10.1016/j.fss.2016.07.003
– ident: e_1_2_11_19_1
  doi: 10.1016/j.jfranklin.2018.06.015
– ident: e_1_2_11_34_1
  doi: 10.1016/j.neunet.2013.11.006
– ident: e_1_2_11_16_1
  doi: 10.1016/j.jfranklin.2015.04.006
– ident: e_1_2_11_41_1
  doi: 10.1162/089976600300015763
– ident: e_1_2_11_25_1
  doi: 10.1109/JIOT.2021.3052016
– ident: e_1_2_11_22_1
  doi: 10.1016/j.ins.2021.11.044
– ident: e_1_2_11_24_1
  doi: 10.1089/big.2021.0064
– ident: e_1_2_11_26_1
  doi: 10.3390/sym13071147
– ident: e_1_2_11_30_1
  doi: 10.1016/j.neunet.2022.03.033
– ident: e_1_2_11_5_1
  doi: 10.1002/cpe.7049
– ident: e_1_2_11_2_1
  doi: 10.1002/adts.202200047
– ident: e_1_2_11_6_1
  doi: 10.3389/fnins.2019.00509
– volume: 20
  year: 2023
  ident: e_1_2_11_7_1
  publication-title: Sci. Afr.
– ident: e_1_2_11_11_1
  doi: 10.1109/TSMC.1985.6313399
– ident: e_1_2_11_32_1
  doi: 10.1016/j.asoc.2017.07.059
– ident: e_1_2_11_36_1
  doi: 10.1109/TNNLS.2020.2980383
– ident: e_1_2_11_23_1
  doi: 10.1016/j.asoc.2022.108836
– ident: e_1_2_11_37_1
  doi: 10.1109/TCYB.2019.2950105
– ident: e_1_2_11_14_1
  doi: 10.1109/TVT.2022.3169349
– ident: e_1_2_11_10_1
  doi: 10.1016/j.ins.2022.06.071
– ident: e_1_2_11_28_1
  doi: 10.1016/j.neunet.2022.10.011
– volume: 58
  start-page: 267
  year: 1996
  ident: e_1_2_11_35_1
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_11_39_1
  doi: 10.1109/TKDE.2019.2893266
– ident: e_1_2_11_13_1
  doi: 10.1109/TFUZZ.2012.2224872
– ident: e_1_2_11_43_1
  doi: 10.1016/j.ins.2016.11.020
SSID ssj0002140701
Score 2.262153
Snippet As a universal approximator, the first order Takagi–Sugeno fuzzy system possesses the capability to approximate widespread nonlinear systems through a group of...
SourceID crossref
wiley
SourceType Index Database
Publisher
SubjectTerms convergence
first‐order Takagi–Sugeno fuzzy system
group lasso
smoothing approximation
Title A Novel Learning Approach to Remove Oscillations in First‐Order Takagi–Sugeno Fuzzy System: Gradient Descent‐Based Neuro‐Fuzzy Algorithm Using Smoothing Group Lasso Regularization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadts.202300545
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2513-0390
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0002140701
  issn: 2513-0390
  databaseCode: ABDBF
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2513-0390
  dateEnd: 20241031
  omitProxy: false
  ssIdentifier: ssj0002140701
  issn: 2513-0390
  databaseCode: ADMLS
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXIb1wQSBAlJfmgMTBcnHWj9jcHEqoUGlFk4reonW8di0Suw02Ejn1IyDxcfg2_RbcmN21NzZUPHqxkvXaeczPO7Ormf8S8iyJBoln23OTOS43HZ9Tkw1iz4wTIU4VRHQ4EAXO7w68vWPn7Yl70uv9aGUtVWW0M19fWVdyHatiG9pVVMn-h2X1TbEBX6N98YgWxuM_2Tg0DorPfNGIpKYiptQVUkd8iSeNQ_Rxi8UmZXycYbynUxwOhfKmMWUfWZo1jfakEsqtxrhar7_UkuZi4eDNSqaHlThGSQkofZMResLYkDIfuk1dHC7SYpWVp0tDpSZMlgWSode8jH0M3cU3TUUybF0R2g6XwyZDQdZbKqmoT9my3nJMTwf2s0q6kg3pH-pl8KMq-7VTxfLzatNzcsrkavF7fE7S9hoIdZq06WaoxCDNNi1bbTy6w69oq8f6YQtp2nL62iX-5lGUQi2LS6HtToW4v5K_7Ep3657un_sqpeHd6USfv0G2KDokq0-2wtHuaKwXCClOfYdy-279SxrRUYu-6H5IJ6hqT7JklDS9TW7V0xsIFat3SI_nd8n3ECSn0HAKDadQFqA4hTankOUgOb28-CoJBUXo5cU3xSZIvECx-RIaMqEmEy-TTIJkEt-p7ppGkDSCphEkjSBphC6N98jx-PX01Z5ZbxpizjFSdU2ccIiy4CHG4UlME485URS7fuTwBENRl1mcMwzBAoZxsmc7LKLePHDs2I2DhHoYLN8n_bzI-QMCc5yseLGPJxLXibkbWNwZRK7POI0GfpJsk-fNvz47U9owM6UCTmfCPjNtn21CpVH-0m3WIePhdS56RG5uHpDHpF-uKv4Ew-YyeloD9hM_dMOk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Learning+Approach+to+Remove+Oscillations+in+First%E2%80%90Order+Takagi%E2%80%93Sugeno+Fuzzy+System%3A+Gradient+Descent%E2%80%90Based+Neuro%E2%80%90Fuzzy+Algorithm+Using+Smoothing+Group+Lasso+Regularization&rft.jtitle=Advanced+theory+and+simulations&rft.au=Liu%2C+Yan&rft.au=Wang%2C+Rui&rft.au=Liu%2C+Yuanquan&rft.au=Shao%2C+Qiang&rft.date=2024-02-01&rft.issn=2513-0390&rft.eissn=2513-0390&rft.volume=7&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadts.202300545&rft.externalDBID=10.1002%252Fadts.202300545&rft.externalDocID=ADTS202300545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2513-0390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2513-0390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2513-0390&client=summon