A Novel Learning Approach to Remove Oscillations in First‐Order Takagi–Sugeno Fuzzy System: Gradient Descent‐Based Neuro‐Fuzzy Algorithm Using Smoothing Group Lasso Regularization
As a universal approximator, the first order Takagi–Sugeno fuzzy system possesses the capability to approximate widespread nonlinear systems through a group of IF THEN fuzzy rules. Although group lasso regularization has the advantage of inducing group sparsity and handling variable selection issues...
Saved in:
| Published in | Advanced theory and simulations Vol. 7; no. 2 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.02.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2513-0390 2513-0390 |
| DOI | 10.1002/adts.202300545 |
Cover
| Abstract | As a universal approximator, the first order Takagi–Sugeno fuzzy system possesses the capability to approximate widespread nonlinear systems through a group of IF THEN fuzzy rules. Although group lasso regularization has the advantage of inducing group sparsity and handling variable selection issues, it can lead to numerical oscillations and theoretical challenges in calculating the gradient at the origin when employed directly during training. The paper addresses the aforementioned obstacle by invoking a smoothing function to approximate group lasso regularization. On this basis, a gradient‐based neuro fuzzy learning algorithm with smoothing group lasso regularization for the first order Takagi–Sugeno fuzzy system is proposed. The convergence of the proposed algorithm is rigorously proved under gentle conditions. In addition, experimental outcomes acquired on two approximations and two classification simulations demonstrate that the proposed algorithm outperforms the algorithm with original group lasso regularization and L2 regularization in terms of error, pruned neurons, and accuracy. This is particularly evident in significant advancements in pruned neurons due to group sparsity. In comparison to the algorithm with L2 regularization, the proposed algorithm exhibits improvements of 6.3, 5.3, and 142.6 in pruned neurons during sin(πx)$(\pi x)$ function, Gabor function, and Sonar benchmark dataset simulations, respectively.
A gradient‐based neuro‐fuzzy learning algorithm with smooth group lasso regularization for first‐order Takagi–Sugeno fuzzy system is proposed, in which smooth group lasso regularization can optimize the network structure by inducing group sparsity. The convergence of the proposed algorithm is rigorously proved. Two approximation and two classification simulations illustrate that the proposed algorithm exhibits better sparsity, convergence, and classification ability. |
|---|---|
| AbstractList | As a universal approximator, the first order Takagi–Sugeno fuzzy system possesses the capability to approximate widespread nonlinear systems through a group of IF THEN fuzzy rules. Although group lasso regularization has the advantage of inducing group sparsity and handling variable selection issues, it can lead to numerical oscillations and theoretical challenges in calculating the gradient at the origin when employed directly during training. The paper addresses the aforementioned obstacle by invoking a smoothing function to approximate group lasso regularization. On this basis, a gradient‐based neuro fuzzy learning algorithm with smoothing group lasso regularization for the first order Takagi–Sugeno fuzzy system is proposed. The convergence of the proposed algorithm is rigorously proved under gentle conditions. In addition, experimental outcomes acquired on two approximations and two classification simulations demonstrate that the proposed algorithm outperforms the algorithm with original group lasso regularization and L 2 regularization in terms of error, pruned neurons, and accuracy. This is particularly evident in significant advancements in pruned neurons due to group sparsity. In comparison to the algorithm with L 2 regularization, the proposed algorithm exhibits improvements of 6.3, 5.3, and 142.6 in pruned neurons during sin function, Gabor function, and Sonar benchmark dataset simulations, respectively. As a universal approximator, the first order Takagi–Sugeno fuzzy system possesses the capability to approximate widespread nonlinear systems through a group of IF THEN fuzzy rules. Although group lasso regularization has the advantage of inducing group sparsity and handling variable selection issues, it can lead to numerical oscillations and theoretical challenges in calculating the gradient at the origin when employed directly during training. The paper addresses the aforementioned obstacle by invoking a smoothing function to approximate group lasso regularization. On this basis, a gradient‐based neuro fuzzy learning algorithm with smoothing group lasso regularization for the first order Takagi–Sugeno fuzzy system is proposed. The convergence of the proposed algorithm is rigorously proved under gentle conditions. In addition, experimental outcomes acquired on two approximations and two classification simulations demonstrate that the proposed algorithm outperforms the algorithm with original group lasso regularization and L2 regularization in terms of error, pruned neurons, and accuracy. This is particularly evident in significant advancements in pruned neurons due to group sparsity. In comparison to the algorithm with L2 regularization, the proposed algorithm exhibits improvements of 6.3, 5.3, and 142.6 in pruned neurons during sin(πx)$(\pi x)$ function, Gabor function, and Sonar benchmark dataset simulations, respectively. A gradient‐based neuro‐fuzzy learning algorithm with smooth group lasso regularization for first‐order Takagi–Sugeno fuzzy system is proposed, in which smooth group lasso regularization can optimize the network structure by inducing group sparsity. The convergence of the proposed algorithm is rigorously proved. Two approximation and two classification simulations illustrate that the proposed algorithm exhibits better sparsity, convergence, and classification ability. |
| Author | Liu, Yan Lv, Yan Shao, Qiang Yu, Yan Liu, Yuanquan Wang, Rui |
| Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0003-3998-4652 surname: Liu fullname: Liu, Yan email: liuyan@dlpu.edu.cn organization: Dalian Polytechnic University – sequence: 2 givenname: Rui surname: Wang fullname: Wang, Rui organization: Dalian Polytechnic University – sequence: 3 givenname: Yuanquan surname: Liu fullname: Liu, Yuanquan organization: Dalian Polytechnic University – sequence: 4 givenname: Qiang surname: Shao fullname: Shao, Qiang organization: Dalian Polytechnic University – sequence: 5 givenname: Yan surname: Lv fullname: Lv, Yan organization: Dalian Polytechnic University – sequence: 6 givenname: Yan surname: Yu fullname: Yu, Yan email: soie@dlpu.edu.cn organization: Dalian Polytechnic University |
| BookMark | eNqFkM1OwkAUhSdGExHZup4XAKfTHxh3FQRNGkgE1s2lvS2jbYfMtBpY8QgmPo5vw5PYilF3ru65uee7OTkX5LRQBRJyZbGexRi_hrg0Pc64zZjruCekxV3L7jJbsNM_-px0jHliNWA5rM-sFvnw6VS9YEYDBF3IIqX-ZqMVRGtaKvqIeX2kMxPJLINSqsJQWdCx1KY87N9mOkZNF_AMqTzs3-dVioWi42q329L51pSY39CJhlhiUdIRmqieNXYLBmM6xUqrejva_SxVWpbrnC5Nk2KeK1WuGzXRqtrQAIxp8qRVBlruvrJckrMEMoOd79kmy_HdYnjfDWaTh6EfdCPuOG7XZQPm8UF_IOwk5okHzmoVu4OVg4nnWS4wROBCCBAW82wHVtyLhGPHbiwS7nFut0nv-DfSyhiNSbjRMge9DS0WNu2HTfvhT_s1II7Aq8xw-4879EeL-S_7CV2hknQ |
| Cites_doi | 10.1002/adts.202200100 10.1002/adts.202100216 10.1109/TNNLS.2017.2748585 10.1111/j.1467-9868.2005.00532.x 10.1007/s41066-021-00297-9 10.1109/TCYB.2014.2323994 10.1016/j.neucom.2013.10.023 10.1109/TKDE.2019.2893266 10.1109/TMECH.2022.3214865 10.1109/TFUZZ.2011.2159011 10.1007/s11801-023-2053-x 10.1016/j.inffus.2022.10.027 10.1007/s41066-022-00320-7 10.1088/1361-6420/33/2/025010 10.1016/j.ins.2009.12.030 10.1016/j.asoc.2020.106275 10.1016/j.fss.2016.07.003 10.1016/j.jfranklin.2018.06.015 10.1016/j.neunet.2013.11.006 10.1016/j.jfranklin.2015.04.006 10.1162/089976600300015763 10.1109/JIOT.2021.3052016 10.1016/j.ins.2021.11.044 10.1089/big.2021.0064 10.3390/sym13071147 10.1016/j.neunet.2022.03.033 10.1002/cpe.7049 10.1002/adts.202200047 10.3389/fnins.2019.00509 10.1109/TSMC.1985.6313399 10.1016/j.asoc.2017.07.059 10.1109/TNNLS.2020.2980383 10.1016/j.asoc.2022.108836 10.1109/TCYB.2019.2950105 10.1109/TVT.2022.3169349 10.1016/j.ins.2022.06.071 10.1016/j.neunet.2022.10.011 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TFUZZ.2012.2224872 10.1016/j.ins.2016.11.020 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION |
| DOI | 10.1002/adts.202300545 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2513-0390 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adts_202300545 ADTS202300545 |
| Genre | article |
| GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2018YFD0901002 – fundername: National Natural Science Foundation of China funderid: 61403056; 61671099 – fundername: Natural Science Foundation Guidance Project of Liaoning Province funderid: 2019‐ZD‐0128 |
| GroupedDBID | 0R~ 1OC 33P 34L AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ABDBF ACCFJ ACCZN ACGFS ACPOU ACUHS ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW AAMMB AAYXX ABJNI ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION |
| ID | FETCH-LOGICAL-c2445-50806287893fd2f6a4bbd58b4ef6615a0eea2999a910634ab26c943d5d9f26223 |
| ISSN | 2513-0390 |
| IngestDate | Thu Oct 09 00:21:23 EDT 2025 Wed Jan 22 16:16:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2445-50806287893fd2f6a4bbd58b4ef6615a0eea2999a910634ab26c943d5d9f26223 |
| ORCID | 0000-0003-3998-4652 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1002_adts_202300545 wiley_primary_10_1002_adts_202300545_ADTS202300545 |
| PublicationCentury | 2000 |
| PublicationDate | February 2024 2024-02-00 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced theory and simulations |
| PublicationYear | 2024 |
| References | 2021; 8 2017; 61 2017; 319 2022; 151 2021; 4 2023; 11 2019; 50 2013; 44 2022; 71 2019; 32 2019; 13 2023; 8 2023; 19 2017; 29 2020; 32 1996; 58 2010; 180 2011; 19 2014; 131 1985; SMC‐15 2023; 20 2022; 122 2015; 45 2022; 585 2021; 13 2023; 28 2006; 68 2022; 5 2000; 12 2018; 355 2022; 7 2017; 33 2020; 92 2015; 352 2022; 34 2023; 158 2017; 381 2022; 608 2001; 11 2014; 50 2012; 21 2023; 91 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 e_1_2_11_1_1 Tibshirani R. (e_1_2_11_35_1) 1996; 58 Ouifak H. (e_1_2_11_7_1) 2023; 20 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 Oliver N. (e_1_2_11_9_1) 2001; 11 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 Li H. (e_1_2_11_12_1) 2013; 44 |
| References_xml | – volume: 352 start-page: 2951 year: 2015 publication-title: J. Franklin Inst. – volume: 122 year: 2022 publication-title: Appl. Soft Comput. – volume: 8 year: 2021 publication-title: IEEE Internet Things J. – volume: 68 start-page: 49 year: 2006 publication-title: J. R. Stat. Soc. Ser. B (Methodological) – volume: 381 start-page: 250 year: 2017 publication-title: Inf. Sci. – volume: 355 start-page: 6132 year: 2018 publication-title: J. Franklin Inst. – volume: 32 start-page: 659 year: 2019 publication-title: IEEE Trans. Knowl. Data Eng. – volume: 585 start-page: 70 year: 2022 publication-title: Inf. Sci. – volume: 21 start-page: 789 year: 2012 publication-title: IEEE Trans. Fuzzy Syst. – volume: 32 start-page: 1110 year: 2020 publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 20 year: 2023 publication-title: Sci. Afr. – volume: 12 start-page: 709 year: 2000 publication-title: Neural Comput. – volume: 50 start-page: 72 year: 2014 publication-title: Neural Netw. – volume: 58 start-page: 267 year: 1996 publication-title: J. R. Stat. Soc. Ser. B (Methodological) – volume: 13 start-page: 509 year: 2019 publication-title: Front. Neurosci. – volume: 19 start-page: 1014 year: 2011 publication-title: IEEE Trans. Fuzzy Syst. – volume: 11 start-page: 105 year: 2023 publication-title: Big Data. – volume: 158 start-page: 59 year: 2023 publication-title: Neural Netw. – volume: SMC‐15 start-page: 116 year: 1985 publication-title: IEEE Trans. Syst. Man Cybern. – volume: 29 start-page: 2012 year: 2017 publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 71 start-page: 7023 year: 2022 publication-title: IEEE Trans. Veh Technol. – volume: 4 year: 2021 publication-title: Adv. Theory Simul. – volume: 608 start-page: 313 year: 2022 publication-title: Inf. Sci. – volume: 5 year: 2022 publication-title: Adv. Theory Simul. – volume: 92 year: 2020 publication-title: Appl. Soft Comput. – volume: 319 start-page: 28 year: 2017 publication-title: Fuzzy Sets Syst. – volume: 91 start-page: 458 year: 2023 publication-title: Inf Fusion. – volume: 8 start-page: 131 year: 2023 publication-title: Granul. Comput. – volume: 13 start-page: 1147 year: 2021 publication-title: Symmetry – volume: 151 start-page: 211 year: 2022 publication-title: Neural Netw. – volume: 19 start-page: 284 year: 2023 publication-title: Optoelectron. Lett. – volume: 11 start-page: 294 year: 2001 publication-title: Ch – volume: 45 start-page: 229 year: 2015 publication-title: IEEE Trans. Cybern. – volume: 32 start-page: 659 year: 2020 publication-title: IEEE Trans. Knowl. Data Eng. – volume: 34 year: 2022 publication-title: Concurr Comput. – volume: 28 start-page: 838 year: 2023 publication-title: IEEE ASME Trans. Mechatron. – volume: 50 start-page: 1333 year: 2019 publication-title: IEEE Trans. Cybern. – volume: 180 start-page: 1630 year: 2010 publication-title: Inf. Sci. – volume: 44 start-page: 1111 year: 2013 publication-title: IEEE Trans. Cybern. – volume: 131 start-page: 208 year: 2014 publication-title: Neurocomputing – volume: 7 start-page: 813 year: 2022 publication-title: Granul. Comput. – volume: 33 year: 2017 publication-title: Inverse Probl. – volume: 61 start-page: 354 year: 2017 publication-title: Appl. Soft Comput. – ident: e_1_2_11_3_1 doi: 10.1002/adts.202200100 – ident: e_1_2_11_4_1 doi: 10.1002/adts.202100216 – ident: e_1_2_11_29_1 doi: 10.1109/TNNLS.2017.2748585 – ident: e_1_2_11_38_1 doi: 10.1111/j.1467-9868.2005.00532.x – ident: e_1_2_11_21_1 doi: 10.1007/s41066-021-00297-9 – ident: e_1_2_11_15_1 doi: 10.1109/TCYB.2014.2323994 – ident: e_1_2_11_33_1 doi: 10.1016/j.neucom.2013.10.023 – ident: e_1_2_11_42_1 doi: 10.1109/TKDE.2019.2893266 – ident: e_1_2_11_27_1 doi: 10.1109/TMECH.2022.3214865 – volume: 44 start-page: 1111 year: 2013 ident: e_1_2_11_12_1 publication-title: IEEE Trans. Cybern. – ident: e_1_2_11_17_1 doi: 10.1109/TFUZZ.2011.2159011 – ident: e_1_2_11_40_1 doi: 10.1007/s11801-023-2053-x – ident: e_1_2_11_1_1 doi: 10.1016/j.inffus.2022.10.027 – ident: e_1_2_11_20_1 doi: 10.1007/s41066-022-00320-7 – ident: e_1_2_11_31_1 doi: 10.1088/1361-6420/33/2/025010 – volume: 11 start-page: 294 year: 2001 ident: e_1_2_11_9_1 publication-title: Ch – ident: e_1_2_11_44_1 doi: 10.1016/j.ins.2009.12.030 – ident: e_1_2_11_8_1 doi: 10.1016/j.asoc.2020.106275 – ident: e_1_2_11_18_1 doi: 10.1016/j.fss.2016.07.003 – ident: e_1_2_11_19_1 doi: 10.1016/j.jfranklin.2018.06.015 – ident: e_1_2_11_34_1 doi: 10.1016/j.neunet.2013.11.006 – ident: e_1_2_11_16_1 doi: 10.1016/j.jfranklin.2015.04.006 – ident: e_1_2_11_41_1 doi: 10.1162/089976600300015763 – ident: e_1_2_11_25_1 doi: 10.1109/JIOT.2021.3052016 – ident: e_1_2_11_22_1 doi: 10.1016/j.ins.2021.11.044 – ident: e_1_2_11_24_1 doi: 10.1089/big.2021.0064 – ident: e_1_2_11_26_1 doi: 10.3390/sym13071147 – ident: e_1_2_11_30_1 doi: 10.1016/j.neunet.2022.03.033 – ident: e_1_2_11_5_1 doi: 10.1002/cpe.7049 – ident: e_1_2_11_2_1 doi: 10.1002/adts.202200047 – ident: e_1_2_11_6_1 doi: 10.3389/fnins.2019.00509 – volume: 20 year: 2023 ident: e_1_2_11_7_1 publication-title: Sci. Afr. – ident: e_1_2_11_11_1 doi: 10.1109/TSMC.1985.6313399 – ident: e_1_2_11_32_1 doi: 10.1016/j.asoc.2017.07.059 – ident: e_1_2_11_36_1 doi: 10.1109/TNNLS.2020.2980383 – ident: e_1_2_11_23_1 doi: 10.1016/j.asoc.2022.108836 – ident: e_1_2_11_37_1 doi: 10.1109/TCYB.2019.2950105 – ident: e_1_2_11_14_1 doi: 10.1109/TVT.2022.3169349 – ident: e_1_2_11_10_1 doi: 10.1016/j.ins.2022.06.071 – ident: e_1_2_11_28_1 doi: 10.1016/j.neunet.2022.10.011 – volume: 58 start-page: 267 year: 1996 ident: e_1_2_11_35_1 publication-title: J. R. Stat. Soc. Ser. B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_2_11_39_1 doi: 10.1109/TKDE.2019.2893266 – ident: e_1_2_11_13_1 doi: 10.1109/TFUZZ.2012.2224872 – ident: e_1_2_11_43_1 doi: 10.1016/j.ins.2016.11.020 |
| SSID | ssj0002140701 |
| Score | 2.262153 |
| Snippet | As a universal approximator, the first order Takagi–Sugeno fuzzy system possesses the capability to approximate widespread nonlinear systems through a group of... |
| SourceID | crossref wiley |
| SourceType | Index Database Publisher |
| SubjectTerms | convergence first‐order Takagi–Sugeno fuzzy system group lasso smoothing approximation |
| Title | A Novel Learning Approach to Remove Oscillations in First‐Order Takagi–Sugeno Fuzzy System: Gradient Descent‐Based Neuro‐Fuzzy Algorithm Using Smoothing Group Lasso Regularization |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadts.202300545 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2513-0390 dateEnd: 20241031 omitProxy: true ssIdentifier: ssj0002140701 issn: 2513-0390 databaseCode: ABDBF dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2513-0390 dateEnd: 20241031 omitProxy: false ssIdentifier: ssj0002140701 issn: 2513-0390 databaseCode: ADMLS dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXIb1wQSBAlJfmgMTBcnHWj9jcHEqoUGlFk4reonW8di0Suw02Ejn1IyDxcfg2_RbcmN21NzZUPHqxkvXaeczPO7Ormf8S8iyJBoln23OTOS43HZ9Tkw1iz4wTIU4VRHQ4EAXO7w68vWPn7Yl70uv9aGUtVWW0M19fWVdyHatiG9pVVMn-h2X1TbEBX6N98YgWxuM_2Tg0DorPfNGIpKYiptQVUkd8iSeNQ_Rxi8UmZXycYbynUxwOhfKmMWUfWZo1jfakEsqtxrhar7_UkuZi4eDNSqaHlThGSQkofZMResLYkDIfuk1dHC7SYpWVp0tDpSZMlgWSode8jH0M3cU3TUUybF0R2g6XwyZDQdZbKqmoT9my3nJMTwf2s0q6kg3pH-pl8KMq-7VTxfLzatNzcsrkavF7fE7S9hoIdZq06WaoxCDNNi1bbTy6w69oq8f6YQtp2nL62iX-5lGUQi2LS6HtToW4v5K_7Ep3657un_sqpeHd6USfv0G2KDokq0-2wtHuaKwXCClOfYdy-279SxrRUYu-6H5IJ6hqT7JklDS9TW7V0xsIFat3SI_nd8n3ECSn0HAKDadQFqA4hTankOUgOb28-CoJBUXo5cU3xSZIvECx-RIaMqEmEy-TTIJkEt-p7ppGkDSCphEkjSBphC6N98jx-PX01Z5ZbxpizjFSdU2ccIiy4CHG4UlME485URS7fuTwBENRl1mcMwzBAoZxsmc7LKLePHDs2I2DhHoYLN8n_bzI-QMCc5yseLGPJxLXibkbWNwZRK7POI0GfpJsk-fNvz47U9owM6UCTmfCPjNtn21CpVH-0m3WIePhdS56RG5uHpDHpF-uKv4Ew-YyeloD9hM_dMOk |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Learning+Approach+to+Remove+Oscillations+in+First%E2%80%90Order+Takagi%E2%80%93Sugeno+Fuzzy+System%3A+Gradient+Descent%E2%80%90Based+Neuro%E2%80%90Fuzzy+Algorithm+Using+Smoothing+Group+Lasso+Regularization&rft.jtitle=Advanced+theory+and+simulations&rft.au=Liu%2C+Yan&rft.au=Wang%2C+Rui&rft.au=Liu%2C+Yuanquan&rft.au=Shao%2C+Qiang&rft.date=2024-02-01&rft.issn=2513-0390&rft.eissn=2513-0390&rft.volume=7&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadts.202300545&rft.externalDBID=10.1002%252Fadts.202300545&rft.externalDocID=ADTS202300545 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2513-0390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2513-0390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2513-0390&client=summon |