Path Planning Based on the Improved RRT Algorithm for the Mining Truck

Planning a reasonable driving path for trucks in mining areas is a key point to improve mining efficiency. In this paper, a path planning method based on Rapidly-exploring Random Tree Star (RRT*) is proposed, and several optimizations are carried out in the algorithm. Firstly, the selection process...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 71; no. 2; pp. 3571 - 3587
Main Authors Wang, Dong, Zheng, Shutong, Ren, Yanxi, Du, Danjie
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2022
Subjects
Online AccessGet full text
ISSN1546-2226
1546-2218
1546-2226
DOI10.32604/cmc.2022.022183

Cover

Abstract Planning a reasonable driving path for trucks in mining areas is a key point to improve mining efficiency. In this paper, a path planning method based on Rapidly-exploring Random Tree Star (RRT*) is proposed, and several optimizations are carried out in the algorithm. Firstly, the selection process of growth target points is optimized. Secondly, the process of selecting the parent node is optimized and a Dubins curve is used to constraint it. Then, the expansion process from tree node to random point is optimized by the gravitational repulsion field method and dynamic step method. In the obstacle detection process, Dubins curve constraint is used, and the bidirectional RRT* algorithm is adopted to speed up the iteration of the algorithm. After that, the obtained paths are smoothed by using the greedy algorithm and cubic B-spline interpolation. In addition, to verify the superiority and correctness of the algorithm, an unmanned mining vehicle kinematic model in the form of front-wheel steering is developed based on the Ackermann steering principle and simulated for CoppeliaSim. In the simulation, the Stanley algorithm is used for path tracking and Reeds-Shepp curve to adjust the final parking attitude of the truck. Finally, the experimental comparison shows that the improved bidirectional RRT* algorithm performs well in the simulation experiment, and outperforms the common RRT* algorithm in various aspects.
AbstractList Planning a reasonable driving path for trucks in mining areas is a key point to improve mining efficiency. In this paper, a path planning method based on Rapidly-exploring Random Tree Star (RRT*) is proposed, and several optimizations are carried out in the algorithm. Firstly, the selection process of growth target points is optimized. Secondly, the process of selecting the parent node is optimized and a Dubins curve is used to constraint it. Then, the expansion process from tree node to random point is optimized by the gravitational repulsion field method and dynamic step method. In the obstacle detection process, Dubins curve constraint is used, and the bidirectional RRT* algorithm is adopted to speed up the iteration of the algorithm. After that, the obtained paths are smoothed by using the greedy algorithm and cubic B-spline interpolation. In addition, to verify the superiority and correctness of the algorithm, an unmanned mining vehicle kinematic model in the form of front-wheel steering is developed based on the Ackermann steering principle and simulated for CoppeliaSim. In the simulation, the Stanley algorithm is used for path tracking and Reeds-Shepp curve to adjust the final parking attitude of the truck. Finally, the experimental comparison shows that the improved bidirectional RRT* algorithm performs well in the simulation experiment, and outperforms the common RRT* algorithm in various aspects.
Author Ren, Yanxi
Zheng, Shutong
Wang, Dong
Du, Danjie
Author_xml – sequence: 1
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
– sequence: 2
  givenname: Shutong
  surname: Zheng
  fullname: Zheng, Shutong
– sequence: 3
  givenname: Yanxi
  surname: Ren
  fullname: Ren, Yanxi
– sequence: 4
  givenname: Danjie
  surname: Du
  fullname: Du, Danjie
BookMark eNqFUE1PAjEQbQwmAnr3uInnxX5td_eIRJQEI0HuTbe0UNxtsdvF8O9dWA_Ggx4mMy8z7-XNG4CedVYBcIvgiGAG6b2s5AhDjEdtoYxcgD5KKIsxxqz3Y74Cg7reQUgYyWEfTBcibKNFKaw1dhM9iFqtI2ejsFXRrNp7d2jxcrmKxuXGeRO2VaSdP69fzJmy8o18vwaXWpS1uvnuQ_A2fVxNnuP569NsMp7HElMSYqpRnupU0zRtcZHpQuWiwJIxgimWiAmYJWtJc50SDRMqdZbRdV4kRc6gIkOAOtXG7sXxU5Ql33tTCX_kCPJzDLyNgZ9i4F0MLeeu47S_fDSqDnznGm9bkxwzlLCMJsnpinVX0ru69kpzaYIIxtnghSn_koe_iP86-gK0K34P
CitedBy_id crossref_primary_10_3389_fnbot_2023_1268447
crossref_primary_10_1016_j_engappai_2024_108583
crossref_primary_10_1109_ACCESS_2024_3359643
crossref_primary_10_3390_drones8120760
crossref_primary_10_1515_jisys_2023_0219
Cites_doi 10.32604/cmc.2019.05848
10.32604/cmc.2020.010934
10.1023/A:1022842019374
10.1109/TII.2018.2797096
10.32604/csse.2019.34.259
10.1016/j.conengprac.2009.02.010
10.2140/pjm.1990.145.367
10.1109/TVT.2018.2869755
10.32604/cmc.2020.011740
10.1016/j.robot.2015.02.007
10.2112/SI82-041.1
10.1109/TPDS.2020.3041029
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.32604/cmc.2022.022183
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 3587
ExternalDocumentID 10.32604/cmc.2022.022183
10_32604_cmc_2022_022183
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
PUEGO
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c243t-4f197f7f477243b8fbe9ab2c663242c16a085dc49f73f054cf884d9b5b960e3
IEDL.DBID UNPAY
ISSN 1546-2226
1546-2218
IngestDate Tue Aug 19 22:16:29 EDT 2025
Sun Jun 29 16:53:47 EDT 2025
Thu Apr 24 23:06:16 EDT 2025
Wed Oct 01 02:39:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c243t-4f197f7f477243b8fbe9ab2c663242c16a085dc49f73f054cf884d9b5b960e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.techscience.com/cmc/v71n2/45809/pdf
PQID 2615684553
PQPubID 2048737
PageCount 17
ParticipantIDs unpaywall_primary_10_32604_cmc_2022_022183
proquest_journals_2615684553
crossref_citationtrail_10_32604_cmc_2022_022183
crossref_primary_10_32604_cmc_2022_022183
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Li (ref1) 2018; 14
Gumaei (ref10) 2020; 65
An (ref12) 2018; 82
Wang (ref18) 2017
Cheng (ref6) 2019
Shanmugavel (ref17) 2015
García (ref20) 2015
Deng (ref2) 2018; 67
Qureshi (ref5) 2015; 68
Shanmugavel (ref16) 2010; 18
Ahmed (ref7) 2019; 34
Alhussain (ref8) 2019; 59
Li (ref3) 2018; 14
Long (ref4) 2021; 32
Monroy-Pérez (ref15) 1998; 4
Zhang (ref14) 2021; 49
Hirakawa (ref19) 2019
Chhabra (ref9) 2020; 64
Alexander (ref11) 1990; 145
Li (ref13) 2010
References_xml – volume: 49
  start-page: 31
  year: 2021
  ident: ref14
  publication-title: Journal of Huazhong University of Science and Technology
– start-page: 494
  year: 2017
  ident: ref18
  article-title: Auxiliary unmanned driving route planning algorithm based on mining road
– volume: 59
  start-page: 805
  year: 2019
  ident: ref8
  article-title: A neural network-based trust management system for edge devices in peer-to-peer networks
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2019.05848
– volume: 64
  start-page: 813
  year: 2020
  ident: ref9
  article-title: Qos-aware energy-efficient task scheduling on hpc cloud infrastructures using swarm-intelligence meta-heuristics
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2020.010934
– start-page: 608
  year: 2019
  ident: ref19
  article-title: Scene context-aware rapidly-exploring random trees for global path planning
– volume: 4
  start-page: 249
  year: 1998
  ident: ref15
  article-title: Non-Euclidean dubins’ problem
  publication-title: Journal of Dynamical and Control Systems
  doi: 10.1023/A:1022842019374
– volume: 14
  start-page: 2598
  year: 2018
  ident: ref1
  article-title: Dynamic compressive wide-band spectrum sensing based on channel energy reconstruction in cognitive internet of things
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2797096
– volume: 34
  start-page: 259
  year: 2019
  ident: ref7
  article-title: A survey and systematic categorization of parallel k-means and fuzzy-c-means algorithms
  publication-title: Computer Systems Science and Engineering
  doi: 10.32604/csse.2019.34.259
– volume: 18
  start-page: 1084
  year: 2010
  ident: ref16
  article-title: Co-operative path planning of multiple UAVs using dubins paths with clothoid arcs
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2009.02.010
– start-page: 224
  year: 2015
  ident: ref17
  article-title: An experimental investigation into curvature uncertainties in executing piecewise continuous dubins curves in path planning
– volume: 145
  start-page: 367
  year: 1990
  ident: ref11
  article-title: Optimal paths for a car that goes both forwards and backwards optimal paths for a car that goes both forwards and backwards
  publication-title: Pacific Journal of Mathematics
  doi: 10.2140/pjm.1990.145.367
– volume: 67
  start-page: 10830
  year: 2018
  ident: ref2
  article-title: Dynamic spectrum sharing for hybrid access in OFDMA-based cognitive femtocell networks
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2018.2869755
– volume: 65
  start-page: 1033
  year: 2020
  ident: ref10
  article-title: Dl-har: Deep learning-based human activity recognition framework for edge computing
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2020.011740
– start-page: 370
  year: 2010
  ident: ref13
  article-title: The research on the path optimization of container truck based on ant colony algorithm and MAS
– volume: 14
  start-page: 3690
  year: 2018
  ident: ref3
  article-title: Consortium blockchain for secure energy trading in industrial internet of things
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 68
  start-page: 1
  year: 2015
  ident: ref5
  article-title: Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2015.02.007
– start-page: 1
  year: 2015
  ident: ref20
– volume: 82
  start-page: 288
  year: 2018
  ident: ref12
  article-title: Path optimization method of autonomous intelligent obstacle avoidance for multi-joint submarine robot
  publication-title: Journal of Coastal Research
  doi: 10.2112/SI82-041.1
– start-page: 7425
  year: 2019
  ident: ref6
  article-title: Bidirectional heuristic search for motion planning with an extend operator
– volume: 32
  start-page: 1629
  year: 2021
  ident: ref4
  article-title: A game-based approach for cost-aware task assignment with QoS constraint in collaborative edge and cloud environments
  publication-title: IEEE Transactions on Parallel and Distributed Systems
  doi: 10.1109/TPDS.2020.3041029
SSID ssj0036390
Score 2.3264444
Snippet Planning a reasonable driving path for trucks in mining areas is a key point to improve mining efficiency. In this paper, a path planning method based on...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3571
SubjectTerms Algorithms
Greedy algorithms
Interpolation
Iterative methods
Obstacle avoidance
Path planning
Path tracking
Simulation
Steering
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NT8IwFH9BOOjFbyOKpgcvmkzY1m7rwRgwEGICIYgJCTHLtq6aOAbyEeN_7-s-AC94bNb28N7re7-26-8HcGMyLh3P5pqnS6FRq6byoMc1bgtWC_VQ6gmJa6drtV_p85ANC9DN38Ko3yrznJgkajEJ1Bl5FZE-sxzKmPk4_dKUapS6Xc0lNLxMWkE8JBRjO1AyFDNWEUqNZrfXz3OzifU4eSLJqKUZWN3Si0uEMDVaDcaK0tAw7mvqi_m3UK3R5-4ynno_314UbRSi1iHsZwiS1FOXH0EhjI_hIFdnINliPQG3h-CO5KJEpIHlSpBJTBDxkfQoAdv9_mA0X07DWZI83kbVjQapR-9ogcXHmCCyTcZ1EjkJMsCA-DyFl1Zz8NTWMjkFLTCoudCo1LktbUkRUFPTd6Qfcs83AksxthuBbnkIv0RAubRNiUgukI5DBfeZj7uc0DyDYjyJw3MgXOjoXUyxAtGUYNKxqRQGtyRuj7AQ8jJUc8u5QcY0rgQvIhd3HImtXbS1q2ztprYuw-1qxDRl2djSt5I7w83W29xdR0cZ7lYO-neui-1zXcKe6pyeuFSguJgtwyvEIAv_OgusX9vo190
  priority: 102
  providerName: ProQuest
Title Path Planning Based on the Improved RRT Algorithm for the Mining Truck
URI https://www.proquest.com/docview/2615684553
https://www.techscience.com/cmc/v71n2/45809/pdf
UnpaywallVersion publishedVersion
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: ADMLS
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFH7R7eDJ-TNq5tKDF00YUFqgx824GBOXZW7JPBGgVM02tijT6F_vA4q_DhpvkJYG-r32fa-03wM4cbhQfugJI7SVNJhr5fNgKAzhSW4ldqLsQsT1uu9ejtnVhE_WwKzOwuTbKnP1Uj3_l6ca5rH57NkpNRn3LWEupVqHusuRfNegPu4POreFKipzDUqLFT19TfWPSaQoFsubwXiQ0raV13K-O6JPdrmxSpfh60s4m31xNL0GDKpXLPeXTNurLGrHbz_UG__xDVuwqUkn6ZRWsg1rSboDjSqhA9Hjexd6A-SDpMpjRLro4SRZpARJIilXH_B-OByRzuxu8fiQ3c8Jct6i-LpINEFGaCrTPbjpXYzOLw2daMGIKXMygylbeMpTDKk2cyJfRYkIIxq7uZY7jW03RGImYyaU5yjkeLHyfSZFxCOEIHH2oZYu0uQAiJA24o6Tr0SeJbnyPaYkFa7CwAldpDgEs-rzINYa5HkqjFmAsUiBUoAdFeQoBSVKh3D68cSy1N_4pW6zgjHQI_EpwAiRuz7jHIvPPqD9s62j_1RuQi17XCXHSE-yqAX17kV_MGxp03wH81jhfA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xOMCFx8KK8lh82D2AlG3jRxIfEOKpstAKlSIhIbCS2GalLWmhrRD_jR-34zyAvbAnjlZiH8aT-b6xM_MBfGdC2igOpRf7Vns8aLg4GEtPhlo0jG-snzdxbbWD5iX_dSWuJuClqoVxv1VWMTEP1LqfujPyOjJ9EURcCLY7ePCcapS7Xa0kNOJSWkHv5C3GysKOU_P8hCnccOfkEPf7B6XHR92DpleqDHgp5WzkcevL0IaWI8_kLIlsYmSc0DRwjcxp6gcxshKdcmlDZpHgpDaKuJaJSJD8G4arTsI0Z1xi6je9f9Q-71RIwBD984JMwQOPIpYW16RImBq8nt67BoqU_my4J-xfWHzjujPjbBA_P8W93jvYO16AuZKvkr3CwRZhwmRfYL7SgiBlaFgCdY5UklQSSGQfwVGTfkaQX5Li4ALHnU73ejgemMc8VN1c198NyF7vDu09-n1PkEfn81q5eAXpovv9WYaLTzDrV5jK-plZASK1j76EAV0jd9PCRiG3msrAYjKGsCtrUK8sp9Kyr7mT1-gpzG9yWyu0tXK2VoWta7D1OmNQ9PT44N31ajNU-XUP1Zsv1mD7dYP-u9bqx2ttwkyz2zpTZyft0zWYdROLs551mBo9js0Gsp9R8q10MgK3n-vVfwENFxNK
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDp7EnxGDpgcvmoxtXbutRzQSYgIhCAmelq1d1QCD4NDoX-_b1uGPg4bblnbN1u-173td-z2ELhzGlR963AhtJQ3qWtk8GHKDe5JZsR0rOxdx7fbczojejdl4C5nlWZhsW2WmXqrn_-JUw0yYr56dEJMy3-LmQqptVHUZkO8Kqo56_dZDropKXYOQfEVPXxP9YxIoikWzZiAeJKRpZbWcn47oi13urJJF-P4WTqffHE27hvrlKxb7SybNVRo1xccv9cYNvmEP7WrSiVuFleyjrTg5QLUyoQPW4_sQtfvAB3GZxwhfg4eTeJ5gIIm4WH2A-8FgiFvTx_nyOX2aYeC8eXE3TzSBh2AqkyN0374d3nQMnWjBEIQ6qUGVzT3lKQpUmzqRr6KYhxERbqblToTthkDMpKBceY4CjieU71PJIxYBBLFzjCrJPIlPEObSBtxh8pXAsyRTvkeVJNxVEDiBi-R1ZJZ9HgitQZ6lwpgGEIvkKAXQUUGGUlCgVEeX6ycWhf7GH3UbJYyBHokvAUSIzPUpY1B8tYb237ZON6ncQJV0uYrPgJ6k0bk2yU_vR9_i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+Planning+Based+on+the+Improved+RRT+Algorithm+for+the+Mining+Truck&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Wang%2C+Dong&rft.au=Zheng%2C+Shutong&rft.au=Ren%2C+Yanxi&rft.au=Du%2C+Danjie&rft.date=2022&rft.issn=1546-2226&rft.volume=71&rft.issue=2&rft.spage=3571&rft.epage=3587&rft_id=info:doi/10.32604%2Fcmc.2022.022183&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_022183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon