Path Planning Based on the Improved RRT Algorithm for the Mining Truck
Planning a reasonable driving path for trucks in mining areas is a key point to improve mining efficiency. In this paper, a path planning method based on Rapidly-exploring Random Tree Star (RRT*) is proposed, and several optimizations are carried out in the algorithm. Firstly, the selection process...
Saved in:
| Published in | Computers, materials & continua Vol. 71; no. 2; pp. 3571 - 3587 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Henderson
Tech Science Press
2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1546-2226 1546-2218 1546-2226 |
| DOI | 10.32604/cmc.2022.022183 |
Cover
| Abstract | Planning a reasonable driving path for trucks in mining areas is a key point to improve mining efficiency. In this paper, a path planning method based on Rapidly-exploring Random Tree Star (RRT*) is proposed, and several optimizations are carried out in the algorithm. Firstly, the selection process of growth target points is optimized. Secondly, the process of selecting the parent node is optimized and a Dubins curve is used to constraint it. Then, the expansion process from tree node to random point is optimized by the gravitational repulsion field method and dynamic step method. In the obstacle detection process, Dubins curve constraint is used, and the bidirectional RRT* algorithm is adopted to speed up the iteration of the algorithm. After that, the obtained paths are smoothed by using the greedy algorithm and cubic B-spline interpolation. In addition, to verify the superiority and correctness of the algorithm, an unmanned mining vehicle kinematic model in the form of front-wheel steering is developed based on the Ackermann steering principle and simulated for CoppeliaSim. In the simulation, the Stanley algorithm is used for path tracking and Reeds-Shepp curve to adjust the final parking attitude of the truck. Finally, the experimental comparison shows that the improved bidirectional RRT* algorithm performs well in the simulation experiment, and outperforms the common RRT* algorithm in various aspects. |
|---|---|
| AbstractList | Planning a reasonable driving path for trucks in mining areas is a key point to improve mining efficiency. In this paper, a path planning method based on Rapidly-exploring Random Tree Star (RRT*) is proposed, and several optimizations are carried out in the algorithm. Firstly, the selection process of growth target points is optimized. Secondly, the process of selecting the parent node is optimized and a Dubins curve is used to constraint it. Then, the expansion process from tree node to random point is optimized by the gravitational repulsion field method and dynamic step method. In the obstacle detection process, Dubins curve constraint is used, and the bidirectional RRT* algorithm is adopted to speed up the iteration of the algorithm. After that, the obtained paths are smoothed by using the greedy algorithm and cubic B-spline interpolation. In addition, to verify the superiority and correctness of the algorithm, an unmanned mining vehicle kinematic model in the form of front-wheel steering is developed based on the Ackermann steering principle and simulated for CoppeliaSim. In the simulation, the Stanley algorithm is used for path tracking and Reeds-Shepp curve to adjust the final parking attitude of the truck. Finally, the experimental comparison shows that the improved bidirectional RRT* algorithm performs well in the simulation experiment, and outperforms the common RRT* algorithm in various aspects. |
| Author | Ren, Yanxi Zheng, Shutong Wang, Dong Du, Danjie |
| Author_xml | – sequence: 1 givenname: Dong surname: Wang fullname: Wang, Dong – sequence: 2 givenname: Shutong surname: Zheng fullname: Zheng, Shutong – sequence: 3 givenname: Yanxi surname: Ren fullname: Ren, Yanxi – sequence: 4 givenname: Danjie surname: Du fullname: Du, Danjie |
| BookMark | eNqFUE1PAjEQbQwmAnr3uInnxX5td_eIRJQEI0HuTbe0UNxtsdvF8O9dWA_Ggx4mMy8z7-XNG4CedVYBcIvgiGAG6b2s5AhDjEdtoYxcgD5KKIsxxqz3Y74Cg7reQUgYyWEfTBcibKNFKaw1dhM9iFqtI2ejsFXRrNp7d2jxcrmKxuXGeRO2VaSdP69fzJmy8o18vwaXWpS1uvnuQ_A2fVxNnuP569NsMp7HElMSYqpRnupU0zRtcZHpQuWiwJIxgimWiAmYJWtJc50SDRMqdZbRdV4kRc6gIkOAOtXG7sXxU5Ql33tTCX_kCPJzDLyNgZ9i4F0MLeeu47S_fDSqDnznGm9bkxwzlLCMJsnpinVX0ru69kpzaYIIxtnghSn_koe_iP86-gK0K34P |
| CitedBy_id | crossref_primary_10_3389_fnbot_2023_1268447 crossref_primary_10_1016_j_engappai_2024_108583 crossref_primary_10_1109_ACCESS_2024_3359643 crossref_primary_10_3390_drones8120760 crossref_primary_10_1515_jisys_2023_0219 |
| Cites_doi | 10.32604/cmc.2019.05848 10.32604/cmc.2020.010934 10.1023/A:1022842019374 10.1109/TII.2018.2797096 10.32604/csse.2019.34.259 10.1016/j.conengprac.2009.02.010 10.2140/pjm.1990.145.367 10.1109/TVT.2018.2869755 10.32604/cmc.2020.011740 10.1016/j.robot.2015.02.007 10.2112/SI82-041.1 10.1109/TPDS.2020.3041029 |
| ContentType | Journal Article |
| Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.32604/cmc.2022.022183 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1546-2226 |
| EndPage | 3587 |
| ExternalDocumentID | 10.32604/cmc.2022.022183 10_32604_cmc_2022_022183 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY PUEGO RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c243t-4f197f7f477243b8fbe9ab2c663242c16a085dc49f73f054cf884d9b5b960e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1546-2226 1546-2218 |
| IngestDate | Tue Aug 19 22:16:29 EDT 2025 Sun Jun 29 16:53:47 EDT 2025 Thu Apr 24 23:06:16 EDT 2025 Wed Oct 01 02:39:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c243t-4f197f7f477243b8fbe9ab2c663242c16a085dc49f73f054cf884d9b5b960e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.techscience.com/cmc/v71n2/45809/pdf |
| PQID | 2615684553 |
| PQPubID | 2048737 |
| PageCount | 17 |
| ParticipantIDs | unpaywall_primary_10_32604_cmc_2022_022183 proquest_journals_2615684553 crossref_citationtrail_10_32604_cmc_2022_022183 crossref_primary_10_32604_cmc_2022_022183 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computers, materials & continua |
| PublicationYear | 2022 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Li (ref1) 2018; 14 Gumaei (ref10) 2020; 65 An (ref12) 2018; 82 Wang (ref18) 2017 Cheng (ref6) 2019 Shanmugavel (ref17) 2015 García (ref20) 2015 Deng (ref2) 2018; 67 Qureshi (ref5) 2015; 68 Shanmugavel (ref16) 2010; 18 Ahmed (ref7) 2019; 34 Alhussain (ref8) 2019; 59 Li (ref3) 2018; 14 Long (ref4) 2021; 32 Monroy-Pérez (ref15) 1998; 4 Zhang (ref14) 2021; 49 Hirakawa (ref19) 2019 Chhabra (ref9) 2020; 64 Alexander (ref11) 1990; 145 Li (ref13) 2010 |
| References_xml | – volume: 49 start-page: 31 year: 2021 ident: ref14 publication-title: Journal of Huazhong University of Science and Technology – start-page: 494 year: 2017 ident: ref18 article-title: Auxiliary unmanned driving route planning algorithm based on mining road – volume: 59 start-page: 805 year: 2019 ident: ref8 article-title: A neural network-based trust management system for edge devices in peer-to-peer networks publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2019.05848 – volume: 64 start-page: 813 year: 2020 ident: ref9 article-title: Qos-aware energy-efficient task scheduling on hpc cloud infrastructures using swarm-intelligence meta-heuristics publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2020.010934 – start-page: 608 year: 2019 ident: ref19 article-title: Scene context-aware rapidly-exploring random trees for global path planning – volume: 4 start-page: 249 year: 1998 ident: ref15 article-title: Non-Euclidean dubins’ problem publication-title: Journal of Dynamical and Control Systems doi: 10.1023/A:1022842019374 – volume: 14 start-page: 2598 year: 2018 ident: ref1 article-title: Dynamic compressive wide-band spectrum sensing based on channel energy reconstruction in cognitive internet of things publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2797096 – volume: 34 start-page: 259 year: 2019 ident: ref7 article-title: A survey and systematic categorization of parallel k-means and fuzzy-c-means algorithms publication-title: Computer Systems Science and Engineering doi: 10.32604/csse.2019.34.259 – volume: 18 start-page: 1084 year: 2010 ident: ref16 article-title: Co-operative path planning of multiple UAVs using dubins paths with clothoid arcs publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2009.02.010 – start-page: 224 year: 2015 ident: ref17 article-title: An experimental investigation into curvature uncertainties in executing piecewise continuous dubins curves in path planning – volume: 145 start-page: 367 year: 1990 ident: ref11 article-title: Optimal paths for a car that goes both forwards and backwards optimal paths for a car that goes both forwards and backwards publication-title: Pacific Journal of Mathematics doi: 10.2140/pjm.1990.145.367 – volume: 67 start-page: 10830 year: 2018 ident: ref2 article-title: Dynamic spectrum sharing for hybrid access in OFDMA-based cognitive femtocell networks publication-title: IEEE Transactions on Vehicular Technology doi: 10.1109/TVT.2018.2869755 – volume: 65 start-page: 1033 year: 2020 ident: ref10 article-title: Dl-har: Deep learning-based human activity recognition framework for edge computing publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2020.011740 – start-page: 370 year: 2010 ident: ref13 article-title: The research on the path optimization of container truck based on ant colony algorithm and MAS – volume: 14 start-page: 3690 year: 2018 ident: ref3 article-title: Consortium blockchain for secure energy trading in industrial internet of things publication-title: IEEE Transactions on Industrial Informatics – volume: 68 start-page: 1 year: 2015 ident: ref5 article-title: Intelligent bidirectional rapidly-exploring random trees for optimal motion planning in complex cluttered environments publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2015.02.007 – start-page: 1 year: 2015 ident: ref20 – volume: 82 start-page: 288 year: 2018 ident: ref12 article-title: Path optimization method of autonomous intelligent obstacle avoidance for multi-joint submarine robot publication-title: Journal of Coastal Research doi: 10.2112/SI82-041.1 – start-page: 7425 year: 2019 ident: ref6 article-title: Bidirectional heuristic search for motion planning with an extend operator – volume: 32 start-page: 1629 year: 2021 ident: ref4 article-title: A game-based approach for cost-aware task assignment with QoS constraint in collaborative edge and cloud environments publication-title: IEEE Transactions on Parallel and Distributed Systems doi: 10.1109/TPDS.2020.3041029 |
| SSID | ssj0036390 |
| Score | 2.3264444 |
| Snippet | Planning a reasonable driving path for trucks in mining areas is a key point to improve mining efficiency. In this paper, a path planning method based on... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 3571 |
| SubjectTerms | Algorithms Greedy algorithms Interpolation Iterative methods Obstacle avoidance Path planning Path tracking Simulation Steering |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NT8IwFH9BOOjFbyOKpgcvmkzY1m7rwRgwEGICIYgJCTHLtq6aOAbyEeN_7-s-AC94bNb28N7re7-26-8HcGMyLh3P5pqnS6FRq6byoMc1bgtWC_VQ6gmJa6drtV_p85ANC9DN38Ko3yrznJgkajEJ1Bl5FZE-sxzKmPk4_dKUapS6Xc0lNLxMWkE8JBRjO1AyFDNWEUqNZrfXz3OzifU4eSLJqKUZWN3Si0uEMDVaDcaK0tAw7mvqi_m3UK3R5-4ynno_314UbRSi1iHsZwiS1FOXH0EhjI_hIFdnINliPQG3h-CO5KJEpIHlSpBJTBDxkfQoAdv9_mA0X07DWZI83kbVjQapR-9ogcXHmCCyTcZ1EjkJMsCA-DyFl1Zz8NTWMjkFLTCoudCo1LktbUkRUFPTd6Qfcs83AksxthuBbnkIv0RAubRNiUgukI5DBfeZj7uc0DyDYjyJw3MgXOjoXUyxAtGUYNKxqRQGtyRuj7AQ8jJUc8u5QcY0rgQvIhd3HImtXbS1q2ztprYuw-1qxDRl2djSt5I7w83W29xdR0cZ7lYO-neui-1zXcKe6pyeuFSguJgtwyvEIAv_OgusX9vo190 priority: 102 providerName: ProQuest |
| Title | Path Planning Based on the Improved RRT Algorithm for the Mining Truck |
| URI | https://www.proquest.com/docview/2615684553 https://www.techscience.com/cmc/v71n2/45809/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: ADMLS dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1546-2226 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFH7R7eDJ-TNq5tKDF00YUFqgx824GBOXZW7JPBGgVM02tijT6F_vA4q_DhpvkJYG-r32fa-03wM4cbhQfugJI7SVNJhr5fNgKAzhSW4ldqLsQsT1uu9ejtnVhE_WwKzOwuTbKnP1Uj3_l6ca5rH57NkpNRn3LWEupVqHusuRfNegPu4POreFKipzDUqLFT19TfWPSaQoFsubwXiQ0raV13K-O6JPdrmxSpfh60s4m31xNL0GDKpXLPeXTNurLGrHbz_UG__xDVuwqUkn6ZRWsg1rSboDjSqhA9Hjexd6A-SDpMpjRLro4SRZpARJIilXH_B-OByRzuxu8fiQ3c8Jct6i-LpINEFGaCrTPbjpXYzOLw2daMGIKXMygylbeMpTDKk2cyJfRYkIIxq7uZY7jW03RGImYyaU5yjkeLHyfSZFxCOEIHH2oZYu0uQAiJA24o6Tr0SeJbnyPaYkFa7CwAldpDgEs-rzINYa5HkqjFmAsUiBUoAdFeQoBSVKh3D68cSy1N_4pW6zgjHQI_EpwAiRuz7jHIvPPqD9s62j_1RuQi17XCXHSE-yqAX17kV_MGxp03wH81jhfA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xOMCFx8KK8lh82D2AlG3jRxIfEOKpstAKlSIhIbCS2GalLWmhrRD_jR-34zyAvbAnjlZiH8aT-b6xM_MBfGdC2igOpRf7Vns8aLg4GEtPhlo0jG-snzdxbbWD5iX_dSWuJuClqoVxv1VWMTEP1LqfujPyOjJ9EURcCLY7ePCcapS7Xa0kNOJSWkHv5C3GysKOU_P8hCnccOfkEPf7B6XHR92DpleqDHgp5WzkcevL0IaWI8_kLIlsYmSc0DRwjcxp6gcxshKdcmlDZpHgpDaKuJaJSJD8G4arTsI0Z1xi6je9f9Q-71RIwBD984JMwQOPIpYW16RImBq8nt67BoqU_my4J-xfWHzjujPjbBA_P8W93jvYO16AuZKvkr3CwRZhwmRfYL7SgiBlaFgCdY5UklQSSGQfwVGTfkaQX5Li4ALHnU73ejgemMc8VN1c198NyF7vDu09-n1PkEfn81q5eAXpovv9WYaLTzDrV5jK-plZASK1j76EAV0jd9PCRiG3msrAYjKGsCtrUK8sp9Kyr7mT1-gpzG9yWyu0tXK2VoWta7D1OmNQ9PT44N31ajNU-XUP1Zsv1mD7dYP-u9bqx2ttwkyz2zpTZyft0zWYdROLs551mBo9js0Gsp9R8q10MgK3n-vVfwENFxNK |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UDp7EnxGDpgcvmoxtXbutRzQSYgIhCAmelq1d1QCD4NDoX-_b1uGPg4bblnbN1u-173td-z2ELhzGlR963AhtJQ3qWtk8GHKDe5JZsR0rOxdx7fbczojejdl4C5nlWZhsW2WmXqrn_-JUw0yYr56dEJMy3-LmQqptVHUZkO8Kqo56_dZDropKXYOQfEVPXxP9YxIoikWzZiAeJKRpZbWcn47oi13urJJF-P4WTqffHE27hvrlKxb7SybNVRo1xccv9cYNvmEP7WrSiVuFleyjrTg5QLUyoQPW4_sQtfvAB3GZxwhfg4eTeJ5gIIm4WH2A-8FgiFvTx_nyOX2aYeC8eXE3TzSBh2AqkyN0374d3nQMnWjBEIQ6qUGVzT3lKQpUmzqRr6KYhxERbqblToTthkDMpKBceY4CjieU71PJIxYBBLFzjCrJPIlPEObSBtxh8pXAsyRTvkeVJNxVEDiBi-R1ZJZ9HgitQZ6lwpgGEIvkKAXQUUGGUlCgVEeX6ycWhf7GH3UbJYyBHokvAUSIzPUpY1B8tYb237ZON6ncQJV0uYrPgJ6k0bk2yU_vR9_i |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+Planning+Based+on+the+Improved+RRT+Algorithm+for+the+Mining+Truck&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Wang%2C+Dong&rft.au=Zheng%2C+Shutong&rft.au=Ren%2C+Yanxi&rft.au=Du%2C+Danjie&rft.date=2022&rft.issn=1546-2226&rft.volume=71&rft.issue=2&rft.spage=3571&rft.epage=3587&rft_id=info:doi/10.32604%2Fcmc.2022.022183&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_022183 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |