Optimal design of iron-cored coil sensor in magnetic flux leakage detection of thick-walled steel pipe
Thick-walled steel pipes, which bear high internal pressure, are widely applied in nuclear power and pressure pipelines. If there are defects in the inner wall, they are easy to expand and cause accidents. Therefore, the thick-walled steel pipe must be subject to non-destructive testing after produc...
Saved in:
| Published in | Measurement science & technology Vol. 34; no. 8; p. 85123 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.08.2023
|
| Online Access | Get full text |
| ISSN | 0957-0233 1361-6501 |
| DOI | 10.1088/1361-6501/acd39c |
Cover
| Abstract | Thick-walled steel pipes, which bear high internal pressure, are widely applied in nuclear power and pressure pipelines. If there are defects in the inner wall, they are easy to expand and cause accidents. Therefore, the thick-walled steel pipe must be subject to non-destructive testing after production. For the magnetic flux leakage (MFL) testing method, the detection sensitivity gradually decreases with the increase of wall thickness. To solve this problem, a new structure of MFL probe is proposed in this paper. The influence of the iron core permeability on the MFL signal is analyzed theoretically, and the effect of the core length and diameter on the MFL signal is analyzed by simulation. The variation of the MFL signal with the change of the iron core and coil lift-off is studied respectively. The simulation results are verified by experiments. It is found that the lift-off of the iron-cored coil is determined by the iron core position. Based on this phenomenon, an MFL array probe is designed, which can be used for online detection of thick-walled steel pipes to improve the detection sensitivity of inner wall defects. |
|---|---|
| AbstractList | Thick-walled steel pipes, which bear high internal pressure, are widely applied in nuclear power and pressure pipelines. If there are defects in the inner wall, they are easy to expand and cause accidents. Therefore, the thick-walled steel pipe must be subject to non-destructive testing after production. For the magnetic flux leakage (MFL) testing method, the detection sensitivity gradually decreases with the increase of wall thickness. To solve this problem, a new structure of MFL probe is proposed in this paper. The influence of the iron core permeability on the MFL signal is analyzed theoretically, and the effect of the core length and diameter on the MFL signal is analyzed by simulation. The variation of the MFL signal with the change of the iron core and coil lift-off is studied respectively. The simulation results are verified by experiments. It is found that the lift-off of the iron-cored coil is determined by the iron core position. Based on this phenomenon, an MFL array probe is designed, which can be used for online detection of thick-walled steel pipes to improve the detection sensitivity of inner wall defects. |
| Author | Kang, Yihua Tang, Jian Song, Kai Wang, Rongbiao Feng, Bo Yu, Haozhi |
| Author_xml | – sequence: 1 givenname: Rongbiao orcidid: 0000-0002-5339-1522 surname: Wang fullname: Wang, Rongbiao – sequence: 2 givenname: Haozhi surname: Yu fullname: Yu, Haozhi – sequence: 3 givenname: Jian orcidid: 0000-0001-9658-209X surname: Tang fullname: Tang, Jian – sequence: 4 givenname: Bo surname: Feng fullname: Feng, Bo – sequence: 5 givenname: Yihua surname: Kang fullname: Kang, Yihua – sequence: 6 givenname: Kai surname: Song fullname: Song, Kai |
| BookMark | eNp10E1LAzEQgOEgFWyrd4_5A7GTZD-PUvwoFHrR85LNTmpsulmSiPrv3bXiQfAUGHiGybsgs973SMg1hxsOVbXisuCsyIGvlO5krc_I_Hc0I3Oo85KBkPKCLGJ8BYAS6npOzG5I9qgc7TDafU-9oTb4nmkfsKPaW0cj9tEHant6VPsek9XUuLcP6lAd1B5HmVAn679xerH6wN6VcyOPCdHRwQ54Sc6NchGvft4leb6_e1o_su3uYbO-3TItMplYxnVbcdWaNs9UWYi6BlkXxlQ5ZtoIgZhxzLGCgpsKjAQ-_tWIErtWtCIDuSTFaa8OPsaAptE2qem4FJR1DYdmqtVMaZopTXOqNUL4A4cwdgmf_5MvAntxKg |
| CitedBy_id | crossref_primary_10_1088_1361_6501_ad296d crossref_primary_10_1007_s11760_024_03666_4 crossref_primary_10_1016_j_jmmm_2025_172780 crossref_primary_10_1088_1361_6501_acf516 crossref_primary_10_1088_1361_6501_ad6023 crossref_primary_10_1109_JSEN_2023_3336066 crossref_primary_10_3390_mi15040550 |
| Cites_doi | 10.1002/9783527619269.ch6d 10.1109/JSEN.2015.2461432 10.1109/JSEN.2016.2567458 10.1016/j.sna.2017.08.009 10.3390/s17010201 10.1109/20.996326 10.1007/s10921-015-0320-x 10.1109/TIM.2020.3011782 10.1520/JTE20130133 10.1007/s10921-022-00859-0 10.1016/B978-0-444-89791-6.50097-4 10.3390/s19173763 10.1063/1.1714873 10.1109/TIM.2012.2199190 10.1109/TMAG.2017.2713042 10.1088/1361-6501/ac924a 10.1109/TIM.2022.3149102 10.1016/j.ndteint.2019.102208 10.1016/j.ndteint.2022.102781 10.1016/0963-8695(94)00003-3 10.1016/j.ultras.2004.02.013 10.1109/TMAG.2018.2809671 10.1109/TMAG.2015.2427272 10.1016/j.proeng.2014.11.054 10.1007/s10921-018-0499-8 10.1109/TMAG.2017.2713880 10.1016/j.ndteint.2022.102706 10.1016/j.ndteint.2023.102786 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1088/1361-6501/acd39c |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1361-6501 |
| ExternalDocumentID | 10_1088_1361_6501_acd39c |
| GroupedDBID | -DZ -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI AAYXX ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP ADEQX AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ W28 WH7 XPP YQT ZMT ~02 |
| ID | FETCH-LOGICAL-c243t-41cb81abfb54a762990396ff85e4cf22ee41e5e8061f80f301cd3f27edb2b2403 |
| ISSN | 0957-0233 |
| IngestDate | Wed Oct 01 05:24:18 EDT 2025 Thu Apr 24 22:53:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c243t-41cb81abfb54a762990396ff85e4cf22ee41e5e8061f80f301cd3f27edb2b2403 |
| ORCID | 0000-0001-9658-209X 0000-0002-5339-1522 |
| ParticipantIDs | crossref_citationtrail_10_1088_1361_6501_acd39c crossref_primary_10_1088_1361_6501_acd39c |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Measurement science & technology |
| PublicationYear | 2023 |
| References | Pham (mstacd39cbib8) 2018; 54 Peng (mstacd39cbib20) 2021; 70 Nourmohammadi (mstacd39cbib30) 2015; 15 Chen (mstacd39cbib3) 2020; 110 Zhang (mstacd39cbib12) 2019; 19 Tsukada (mstacd39cbib18) 2017; 53 Zhang (mstacd39cbib19) 2022; 71 Hesse (mstacd39cbib23) 2005; 5 Cheng (mstacd39cbib17) 2016; 16 Karuppasamy (mstacd39cbib14) 2015; 35 Li (mstacd39cbib27) 2018; 37 Wu (mstacd39cbib28) 2017; 17 Siqueira (mstacd39cbib2) 2004; 41 Ramos (mstacd39cbib25) 2014; 86 Pignotti (mstacd39cbib7) 1997; 1 Kang (mstacd39cbib5) 2012; 70 Park (mstacd39cbib10) 2002; 38 Kim (mstacd39cbib9) 2017; 53 Altschuler (mstacd39cbib15) 1995; 28 Zhao (mstacd39cbib16) 2022; 33 Xu (mstacd39cbib1) 2023; 135 Sun (mstacd39cbib4) 2010; 68 Kundu (mstacd39cbib6) 2003 Dehmel (mstacd39cbib29) 1989; 5 Bozorth (mstacd39cbib31) 1942; 13 Wang (mstacd39cbib22) 2022; 132 Ma (mstacd39cbib11) 2015; 51 Li (mstacd39cbib26) 2022; 41 Wu (mstacd39cbib32) 2015; 43 Lee (mstacd39cbib24) 2012; 61 Chang (mstacd39cbib13) 2017; 268 Brahim (mstacd39cbib21) 2023; 134 |
| References_xml | – volume: 5 start-page: 205 year: 1989 ident: mstacd39cbib29 article-title: Magnetic field sensors: induction coil (search coil) sensors publication-title: Sensors doi: 10.1002/9783527619269.ch6d – volume: 15 start-page: 6454 year: 2015 ident: mstacd39cbib30 article-title: A generalized study of coil-core-aspect ratio optimization for noise reduction and SNR enhancement in search coil magnetometers at low frequencies publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2461432 – volume: 16 start-page: 5548 year: 2016 ident: mstacd39cbib17 article-title: Nondestructive testing of back-side local wall-thinning by means of low strength magnetization and highly sensitive magneto-impedance sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2567458 – volume: 70 start-page: 821 year: 2012 ident: mstacd39cbib5 article-title: The use of magnetic flux leakage testing method and apparatus for steel pipe publication-title: Mater. Eval. – volume: 268 start-page: 201 year: 2017 ident: mstacd39cbib13 article-title: Effects of excitation system on the performance of magnetic-flux-leakage-type non-destructive testing publication-title: Sens. Actuators A doi: 10.1016/j.sna.2017.08.009 – volume: 17 start-page: 201 year: 2017 ident: mstacd39cbib28 article-title: A lift-off-tolerant magnetic flux leakage testing method for drill pipes at wellhead publication-title: Sensors doi: 10.3390/s17010201 – volume: 38 start-page: 1277 year: 2002 ident: mstacd39cbib10 article-title: Improvement of the sensor system in magnetic flux leakage-type nondestructive testing (NDT) publication-title: IEEE Trans. Magn. doi: 10.1109/20.996326 – volume: 35 start-page: 5 year: 2015 ident: mstacd39cbib14 article-title: Model-based optimization of MFL testing of ferromagnetic steam generator tubes publication-title: J. Nondestruct. Eval. doi: 10.1007/s10921-015-0320-x – volume: 70 start-page: 1 year: 2021 ident: mstacd39cbib20 article-title: Fastener tilt assessment based on magnetic field image obtained with array tunnel magnetoresistance sensors publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.3011782 – volume: 43 year: 2015 ident: mstacd39cbib32 article-title: 3D FEM simulation and analysis on the best range of lift-off values in MFL testing publication-title: J. Test. Eval. doi: 10.1520/JTE20130133 – volume: 41 start-page: 30 year: 2022 ident: mstacd39cbib26 article-title: A spatial broadband magnetic flux leakage method for trans-scale defect detection publication-title: J. Nondestruct. Eval. doi: 10.1007/s10921-022-00859-0 – volume: 1 start-page: 37 year: 1997 ident: mstacd39cbib7 article-title: Importance of magnetic saturation effects in the detection of internal tube cracks by magnetic flux leakage publication-title: NDT&E Int. doi: 10.1016/B978-0-444-89791-6.50097-4 – volume: 19 start-page: 3763 year: 2019 ident: mstacd39cbib12 article-title: A sensor for broken wire detection of steel wire ropes based on the magnetic concentrating principle publication-title: Sensors doi: 10.3390/s19173763 – volume: 13 start-page: 320 year: 1942 ident: mstacd39cbib31 article-title: Demagnetizing factors of rods publication-title: J. Appl. Phys. doi: 10.1063/1.1714873 – volume: 61 start-page: 2346 year: 2012 ident: mstacd39cbib24 article-title: Nondestructive testing of train wheels using vertical magnetization and differential-type Hall-sensor array publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2012.2199190 – volume: 53 start-page: 1 year: 2017 ident: mstacd39cbib9 article-title: A new sensitive excitation technique in nondestructive inspection for underground pipelines by using differential coils publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2017.2713042 – volume: 33 year: 2022 ident: mstacd39cbib16 article-title: Rotating alternating current field measurement testing system with TMR arrays for arbitrary-angle crack in nonferromagnetic pipes publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac924a – volume: 68 start-page: 452 year: 2010 ident: mstacd39cbib4 article-title: High-speed magnetic flux leakage technique and apparatus based on orthogonal magnetization for steel pipe publication-title: Mater. Eval. – volume: 71 start-page: 1 year: 2022 ident: mstacd39cbib19 article-title: Flexible probe with array tunneling magnetoresistance sensors for curved structure inspection publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3149102 – volume: 110 year: 2020 ident: mstacd39cbib3 article-title: Investigation of the effect of a bend on pipe inspection using microwave NDT publication-title: NDT&E Int. doi: 10.1016/j.ndteint.2019.102208 – volume: 134 year: 2023 ident: mstacd39cbib21 article-title: Ultrasensitive lightweight magnetic probe for non-destructive inspection of high-voltage overhead lines publication-title: NDT&E Int. doi: 10.1016/j.ndteint.2022.102781 – volume: 5 start-page: 86 year: 2005 ident: mstacd39cbib23 article-title: Usage of magnetic field sensors for low frequency eddy current testing publication-title: Meas. Sci. Rev. – volume: 28 start-page: 35 year: 1995 ident: mstacd39cbib15 article-title: Nonlinear model of flaw detection in steel pipes by magnetic flux leakage publication-title: NDT&E Int. doi: 10.1016/0963-8695(94)00003-3 – volume: 41 start-page: 785 year: 2004 ident: mstacd39cbib2 article-title: The use of ultrasonic guided waves and wavelets analysis in pipe inspection publication-title: Ultrasonics doi: 10.1016/j.ultras.2004.02.013 – volume: 54 start-page: 1 year: 2018 ident: mstacd39cbib8 article-title: Importance of magnetizing field on magnetic flux leakage signal of defects publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2018.2809671 – volume: 51 start-page: 1 year: 2015 ident: mstacd39cbib11 article-title: A method for improving SNR of drill pipe leakage flux testing signals by means of magnetic concentrating effect publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2015.2427272 – volume: 86 start-page: 406 year: 2014 ident: mstacd39cbib25 article-title: Present and future impact of magnetic sensors in NDE publication-title: Proc. Eng. doi: 10.1016/j.proeng.2014.11.054 – volume: 37 start-page: 46 year: 2018 ident: mstacd39cbib27 article-title: A new micro magnetic bridge probe in magnetic flux leakage for detecting micro-cracks publication-title: J. Nondestruct. Eval. doi: 10.1007/s10921-018-0499-8 – start-page: 243 year: 2003 ident: mstacd39cbib6 article-title: A simple approach to the localization of flaws in large diameter steel cables – volume: 53 start-page: 1 year: 2017 ident: mstacd39cbib18 article-title: Detection of inner cracks in thick steel plates using unsaturated AC magnetic flux leakage testing with a magnetic resistance gradiometer publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2017.2713880 – volume: 132 year: 2022 ident: mstacd39cbib22 article-title: Multi-frequency imaging with non-linear calibration of magnetoresistance sensors for surface and buried defects inspection publication-title: NDT&E Int. doi: 10.1016/j.ndteint.2022.102706 – volume: 135 year: 2023 ident: mstacd39cbib1 article-title: Detection, distinction, and quantification of pipeline surface and subsurface defects by DC magnetization scanning induction thermography publication-title: NDT&E Int. doi: 10.1016/j.ndteint.2023.102786 |
| SSID | ssj0007099 |
| Score | 2.4688032 |
| Snippet | Thick-walled steel pipes, which bear high internal pressure, are widely applied in nuclear power and pressure pipelines. If there are defects in the inner... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 85123 |
| Title | Optimal design of iron-cored coil sensor in magnetic flux leakage detection of thick-walled steel pipe |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1361-6501 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007099 issn: 0957-0233 databaseCode: IOP dateStart: 19900101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEF6OFcEXaatitco--GAJ6Wk2l7N5rKJUoVakhb6F7K0NPU0OPTko_Qf-687sbi5qC9aXEJZkSHa-zDeZnZkl5K3JTJYoXobAHzIExtchBxYI00ybOBMiEjY0cPg1OzhJvpymp5PJr1HW0qoVu_L61rqS_9EqjIFesUr2HprthcIAnIN-4QgahuM_6fgIvvdLXGWxaRi2-8NVU4fYmRKL1ap5sIS_VJtxHlyWZzUWLAZmvvqJm0VcYLaO0q2WndOIqe8X4Q_cXUUFoH09DxbV4rdcocMhpBh0FUEInvaWCL2zIt-b-kxUZdObl5Vlu7K5Pq-GsIHPCx5hFSbajr1vxoEJFvdpcUOEcQYQcH0udrWzr3EWheAURmMD7KOZDmh8ZE3BG3TFyH_ZebCNGHLopCGhSRXncmC1biX_D7LrUxDt4jvnBcooUEbhJDwgDxkQBO4C8vnoW0_qs73ct2107-RXvEHCtH-KqZMw8nBGrsrxOnni_zHovgPMBpnoepM8srm-crlJNrw9X9J3vun4zlNiPJaowxJtDB2wRBFL1GGJVjXtsEQRS9RjifZYwpvHWKIWSxSx9IycfPp4_OEg9HtwhJIlcQtfrxQ8KoURaVLCvIDzEueZMTzViTSMaZ1EOtUc3ELD9wzQBcyBYTOtBBPY6_E5WaubWr8g1CjNODdcxUwnscpLNdNRonIhTaKA_7fItJu3QvoG9bhPyry4S1dbZKe_Y-Gas9x57ct7XPuKPB4AvU3W2quVfg2-ZyveWFTcAJsvhG8 |
| linkProvider | IOP Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+iron-cored+coil+sensor+in+magnetic+flux+leakage+detection+of+thick-walled+steel+pipe&rft.jtitle=Measurement+science+%26+technology&rft.au=Wang%2C+Rongbiao&rft.au=Yu%2C+Haozhi&rft.au=Tang%2C+Jian&rft.au=Feng%2C+Bo&rft.date=2023-08-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=34&rft.issue=8&rft.spage=85123&rft_id=info:doi/10.1088%2F1361-6501%2Facd39c&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_acd39c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon |