Optimal design of iron-cored coil sensor in magnetic flux leakage detection of thick-walled steel pipe

Thick-walled steel pipes, which bear high internal pressure, are widely applied in nuclear power and pressure pipelines. If there are defects in the inner wall, they are easy to expand and cause accidents. Therefore, the thick-walled steel pipe must be subject to non-destructive testing after produc...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 34; no. 8; p. 85123
Main Authors Wang, Rongbiao, Yu, Haozhi, Tang, Jian, Feng, Bo, Kang, Yihua, Song, Kai
Format Journal Article
LanguageEnglish
Published 01.08.2023
Online AccessGet full text
ISSN0957-0233
1361-6501
DOI10.1088/1361-6501/acd39c

Cover

Abstract Thick-walled steel pipes, which bear high internal pressure, are widely applied in nuclear power and pressure pipelines. If there are defects in the inner wall, they are easy to expand and cause accidents. Therefore, the thick-walled steel pipe must be subject to non-destructive testing after production. For the magnetic flux leakage (MFL) testing method, the detection sensitivity gradually decreases with the increase of wall thickness. To solve this problem, a new structure of MFL probe is proposed in this paper. The influence of the iron core permeability on the MFL signal is analyzed theoretically, and the effect of the core length and diameter on the MFL signal is analyzed by simulation. The variation of the MFL signal with the change of the iron core and coil lift-off is studied respectively. The simulation results are verified by experiments. It is found that the lift-off of the iron-cored coil is determined by the iron core position. Based on this phenomenon, an MFL array probe is designed, which can be used for online detection of thick-walled steel pipes to improve the detection sensitivity of inner wall defects.
AbstractList Thick-walled steel pipes, which bear high internal pressure, are widely applied in nuclear power and pressure pipelines. If there are defects in the inner wall, they are easy to expand and cause accidents. Therefore, the thick-walled steel pipe must be subject to non-destructive testing after production. For the magnetic flux leakage (MFL) testing method, the detection sensitivity gradually decreases with the increase of wall thickness. To solve this problem, a new structure of MFL probe is proposed in this paper. The influence of the iron core permeability on the MFL signal is analyzed theoretically, and the effect of the core length and diameter on the MFL signal is analyzed by simulation. The variation of the MFL signal with the change of the iron core and coil lift-off is studied respectively. The simulation results are verified by experiments. It is found that the lift-off of the iron-cored coil is determined by the iron core position. Based on this phenomenon, an MFL array probe is designed, which can be used for online detection of thick-walled steel pipes to improve the detection sensitivity of inner wall defects.
Author Kang, Yihua
Tang, Jian
Song, Kai
Wang, Rongbiao
Feng, Bo
Yu, Haozhi
Author_xml – sequence: 1
  givenname: Rongbiao
  orcidid: 0000-0002-5339-1522
  surname: Wang
  fullname: Wang, Rongbiao
– sequence: 2
  givenname: Haozhi
  surname: Yu
  fullname: Yu, Haozhi
– sequence: 3
  givenname: Jian
  orcidid: 0000-0001-9658-209X
  surname: Tang
  fullname: Tang, Jian
– sequence: 4
  givenname: Bo
  surname: Feng
  fullname: Feng, Bo
– sequence: 5
  givenname: Yihua
  surname: Kang
  fullname: Kang, Yihua
– sequence: 6
  givenname: Kai
  surname: Song
  fullname: Song, Kai
BookMark eNp10E1LAzEQgOEgFWyrd4_5A7GTZD-PUvwoFHrR85LNTmpsulmSiPrv3bXiQfAUGHiGybsgs973SMg1hxsOVbXisuCsyIGvlO5krc_I_Hc0I3Oo85KBkPKCLGJ8BYAS6npOzG5I9qgc7TDafU-9oTb4nmkfsKPaW0cj9tEHant6VPsek9XUuLcP6lAd1B5HmVAn679xerH6wN6VcyOPCdHRwQ54Sc6NchGvft4leb6_e1o_su3uYbO-3TItMplYxnVbcdWaNs9UWYi6BlkXxlQ5ZtoIgZhxzLGCgpsKjAQ-_tWIErtWtCIDuSTFaa8OPsaAptE2qem4FJR1DYdmqtVMaZopTXOqNUL4A4cwdgmf_5MvAntxKg
CitedBy_id crossref_primary_10_1088_1361_6501_ad296d
crossref_primary_10_1007_s11760_024_03666_4
crossref_primary_10_1016_j_jmmm_2025_172780
crossref_primary_10_1088_1361_6501_acf516
crossref_primary_10_1088_1361_6501_ad6023
crossref_primary_10_1109_JSEN_2023_3336066
crossref_primary_10_3390_mi15040550
Cites_doi 10.1002/9783527619269.ch6d
10.1109/JSEN.2015.2461432
10.1109/JSEN.2016.2567458
10.1016/j.sna.2017.08.009
10.3390/s17010201
10.1109/20.996326
10.1007/s10921-015-0320-x
10.1109/TIM.2020.3011782
10.1520/JTE20130133
10.1007/s10921-022-00859-0
10.1016/B978-0-444-89791-6.50097-4
10.3390/s19173763
10.1063/1.1714873
10.1109/TIM.2012.2199190
10.1109/TMAG.2017.2713042
10.1088/1361-6501/ac924a
10.1109/TIM.2022.3149102
10.1016/j.ndteint.2019.102208
10.1016/j.ndteint.2022.102781
10.1016/0963-8695(94)00003-3
10.1016/j.ultras.2004.02.013
10.1109/TMAG.2018.2809671
10.1109/TMAG.2015.2427272
10.1016/j.proeng.2014.11.054
10.1007/s10921-018-0499-8
10.1109/TMAG.2017.2713880
10.1016/j.ndteint.2022.102706
10.1016/j.ndteint.2023.102786
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1361-6501/acd39c
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10_1088_1361_6501_acd39c
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
ID FETCH-LOGICAL-c243t-41cb81abfb54a762990396ff85e4cf22ee41e5e8061f80f301cd3f27edb2b2403
ISSN 0957-0233
IngestDate Wed Oct 01 05:24:18 EDT 2025
Thu Apr 24 22:53:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c243t-41cb81abfb54a762990396ff85e4cf22ee41e5e8061f80f301cd3f27edb2b2403
ORCID 0000-0001-9658-209X
0000-0002-5339-1522
ParticipantIDs crossref_citationtrail_10_1088_1361_6501_acd39c
crossref_primary_10_1088_1361_6501_acd39c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2023
References Pham (mstacd39cbib8) 2018; 54
Peng (mstacd39cbib20) 2021; 70
Nourmohammadi (mstacd39cbib30) 2015; 15
Chen (mstacd39cbib3) 2020; 110
Zhang (mstacd39cbib12) 2019; 19
Tsukada (mstacd39cbib18) 2017; 53
Zhang (mstacd39cbib19) 2022; 71
Hesse (mstacd39cbib23) 2005; 5
Cheng (mstacd39cbib17) 2016; 16
Karuppasamy (mstacd39cbib14) 2015; 35
Li (mstacd39cbib27) 2018; 37
Wu (mstacd39cbib28) 2017; 17
Siqueira (mstacd39cbib2) 2004; 41
Ramos (mstacd39cbib25) 2014; 86
Pignotti (mstacd39cbib7) 1997; 1
Kang (mstacd39cbib5) 2012; 70
Park (mstacd39cbib10) 2002; 38
Kim (mstacd39cbib9) 2017; 53
Altschuler (mstacd39cbib15) 1995; 28
Zhao (mstacd39cbib16) 2022; 33
Xu (mstacd39cbib1) 2023; 135
Sun (mstacd39cbib4) 2010; 68
Kundu (mstacd39cbib6) 2003
Dehmel (mstacd39cbib29) 1989; 5
Bozorth (mstacd39cbib31) 1942; 13
Wang (mstacd39cbib22) 2022; 132
Ma (mstacd39cbib11) 2015; 51
Li (mstacd39cbib26) 2022; 41
Wu (mstacd39cbib32) 2015; 43
Lee (mstacd39cbib24) 2012; 61
Chang (mstacd39cbib13) 2017; 268
Brahim (mstacd39cbib21) 2023; 134
References_xml – volume: 5
  start-page: 205
  year: 1989
  ident: mstacd39cbib29
  article-title: Magnetic field sensors: induction coil (search coil) sensors
  publication-title: Sensors
  doi: 10.1002/9783527619269.ch6d
– volume: 15
  start-page: 6454
  year: 2015
  ident: mstacd39cbib30
  article-title: A generalized study of coil-core-aspect ratio optimization for noise reduction and SNR enhancement in search coil magnetometers at low frequencies
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2461432
– volume: 16
  start-page: 5548
  year: 2016
  ident: mstacd39cbib17
  article-title: Nondestructive testing of back-side local wall-thinning by means of low strength magnetization and highly sensitive magneto-impedance sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2567458
– volume: 70
  start-page: 821
  year: 2012
  ident: mstacd39cbib5
  article-title: The use of magnetic flux leakage testing method and apparatus for steel pipe
  publication-title: Mater. Eval.
– volume: 268
  start-page: 201
  year: 2017
  ident: mstacd39cbib13
  article-title: Effects of excitation system on the performance of magnetic-flux-leakage-type non-destructive testing
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2017.08.009
– volume: 17
  start-page: 201
  year: 2017
  ident: mstacd39cbib28
  article-title: A lift-off-tolerant magnetic flux leakage testing method for drill pipes at wellhead
  publication-title: Sensors
  doi: 10.3390/s17010201
– volume: 38
  start-page: 1277
  year: 2002
  ident: mstacd39cbib10
  article-title: Improvement of the sensor system in magnetic flux leakage-type nondestructive testing (NDT)
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.996326
– volume: 35
  start-page: 5
  year: 2015
  ident: mstacd39cbib14
  article-title: Model-based optimization of MFL testing of ferromagnetic steam generator tubes
  publication-title: J. Nondestruct. Eval.
  doi: 10.1007/s10921-015-0320-x
– volume: 70
  start-page: 1
  year: 2021
  ident: mstacd39cbib20
  article-title: Fastener tilt assessment based on magnetic field image obtained with array tunnel magnetoresistance sensors
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.3011782
– volume: 43
  year: 2015
  ident: mstacd39cbib32
  article-title: 3D FEM simulation and analysis on the best range of lift-off values in MFL testing
  publication-title: J. Test. Eval.
  doi: 10.1520/JTE20130133
– volume: 41
  start-page: 30
  year: 2022
  ident: mstacd39cbib26
  article-title: A spatial broadband magnetic flux leakage method for trans-scale defect detection
  publication-title: J. Nondestruct. Eval.
  doi: 10.1007/s10921-022-00859-0
– volume: 1
  start-page: 37
  year: 1997
  ident: mstacd39cbib7
  article-title: Importance of magnetic saturation effects in the detection of internal tube cracks by magnetic flux leakage
  publication-title: NDT&E Int.
  doi: 10.1016/B978-0-444-89791-6.50097-4
– volume: 19
  start-page: 3763
  year: 2019
  ident: mstacd39cbib12
  article-title: A sensor for broken wire detection of steel wire ropes based on the magnetic concentrating principle
  publication-title: Sensors
  doi: 10.3390/s19173763
– volume: 13
  start-page: 320
  year: 1942
  ident: mstacd39cbib31
  article-title: Demagnetizing factors of rods
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1714873
– volume: 61
  start-page: 2346
  year: 2012
  ident: mstacd39cbib24
  article-title: Nondestructive testing of train wheels using vertical magnetization and differential-type Hall-sensor array
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2012.2199190
– volume: 53
  start-page: 1
  year: 2017
  ident: mstacd39cbib9
  article-title: A new sensitive excitation technique in nondestructive inspection for underground pipelines by using differential coils
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2017.2713042
– volume: 33
  year: 2022
  ident: mstacd39cbib16
  article-title: Rotating alternating current field measurement testing system with TMR arrays for arbitrary-angle crack in nonferromagnetic pipes
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac924a
– volume: 68
  start-page: 452
  year: 2010
  ident: mstacd39cbib4
  article-title: High-speed magnetic flux leakage technique and apparatus based on orthogonal magnetization for steel pipe
  publication-title: Mater. Eval.
– volume: 71
  start-page: 1
  year: 2022
  ident: mstacd39cbib19
  article-title: Flexible probe with array tunneling magnetoresistance sensors for curved structure inspection
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3149102
– volume: 110
  year: 2020
  ident: mstacd39cbib3
  article-title: Investigation of the effect of a bend on pipe inspection using microwave NDT
  publication-title: NDT&E Int.
  doi: 10.1016/j.ndteint.2019.102208
– volume: 134
  year: 2023
  ident: mstacd39cbib21
  article-title: Ultrasensitive lightweight magnetic probe for non-destructive inspection of high-voltage overhead lines
  publication-title: NDT&E Int.
  doi: 10.1016/j.ndteint.2022.102781
– volume: 5
  start-page: 86
  year: 2005
  ident: mstacd39cbib23
  article-title: Usage of magnetic field sensors for low frequency eddy current testing
  publication-title: Meas. Sci. Rev.
– volume: 28
  start-page: 35
  year: 1995
  ident: mstacd39cbib15
  article-title: Nonlinear model of flaw detection in steel pipes by magnetic flux leakage
  publication-title: NDT&E Int.
  doi: 10.1016/0963-8695(94)00003-3
– volume: 41
  start-page: 785
  year: 2004
  ident: mstacd39cbib2
  article-title: The use of ultrasonic guided waves and wavelets analysis in pipe inspection
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2004.02.013
– volume: 54
  start-page: 1
  year: 2018
  ident: mstacd39cbib8
  article-title: Importance of magnetizing field on magnetic flux leakage signal of defects
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2018.2809671
– volume: 51
  start-page: 1
  year: 2015
  ident: mstacd39cbib11
  article-title: A method for improving SNR of drill pipe leakage flux testing signals by means of magnetic concentrating effect
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2015.2427272
– volume: 86
  start-page: 406
  year: 2014
  ident: mstacd39cbib25
  article-title: Present and future impact of magnetic sensors in NDE
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2014.11.054
– volume: 37
  start-page: 46
  year: 2018
  ident: mstacd39cbib27
  article-title: A new micro magnetic bridge probe in magnetic flux leakage for detecting micro-cracks
  publication-title: J. Nondestruct. Eval.
  doi: 10.1007/s10921-018-0499-8
– start-page: 243
  year: 2003
  ident: mstacd39cbib6
  article-title: A simple approach to the localization of flaws in large diameter steel cables
– volume: 53
  start-page: 1
  year: 2017
  ident: mstacd39cbib18
  article-title: Detection of inner cracks in thick steel plates using unsaturated AC magnetic flux leakage testing with a magnetic resistance gradiometer
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2017.2713880
– volume: 132
  year: 2022
  ident: mstacd39cbib22
  article-title: Multi-frequency imaging with non-linear calibration of magnetoresistance sensors for surface and buried defects inspection
  publication-title: NDT&E Int.
  doi: 10.1016/j.ndteint.2022.102706
– volume: 135
  year: 2023
  ident: mstacd39cbib1
  article-title: Detection, distinction, and quantification of pipeline surface and subsurface defects by DC magnetization scanning induction thermography
  publication-title: NDT&E Int.
  doi: 10.1016/j.ndteint.2023.102786
SSID ssj0007099
Score 2.4688032
Snippet Thick-walled steel pipes, which bear high internal pressure, are widely applied in nuclear power and pressure pipelines. If there are defects in the inner...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 85123
Title Optimal design of iron-cored coil sensor in magnetic flux leakage detection of thick-walled steel pipe
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1361-6501
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007099
  issn: 0957-0233
  databaseCode: IOP
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEF6OFcEXaatitco--GAJ6Wk2l7N5rKJUoVakhb6F7K0NPU0OPTko_Qf-687sbi5qC9aXEJZkSHa-zDeZnZkl5K3JTJYoXobAHzIExtchBxYI00ybOBMiEjY0cPg1OzhJvpymp5PJr1HW0qoVu_L61rqS_9EqjIFesUr2HprthcIAnIN-4QgahuM_6fgIvvdLXGWxaRi2-8NVU4fYmRKL1ap5sIS_VJtxHlyWZzUWLAZmvvqJm0VcYLaO0q2WndOIqe8X4Q_cXUUFoH09DxbV4rdcocMhpBh0FUEInvaWCL2zIt-b-kxUZdObl5Vlu7K5Pq-GsIHPCx5hFSbajr1vxoEJFvdpcUOEcQYQcH0udrWzr3EWheAURmMD7KOZDmh8ZE3BG3TFyH_ZebCNGHLopCGhSRXncmC1biX_D7LrUxDt4jvnBcooUEbhJDwgDxkQBO4C8vnoW0_qs73ct2107-RXvEHCtH-KqZMw8nBGrsrxOnni_zHovgPMBpnoepM8srm-crlJNrw9X9J3vun4zlNiPJaowxJtDB2wRBFL1GGJVjXtsEQRS9RjifZYwpvHWKIWSxSx9IycfPp4_OEg9HtwhJIlcQtfrxQ8KoURaVLCvIDzEueZMTzViTSMaZ1EOtUc3ELD9wzQBcyBYTOtBBPY6_E5WaubWr8g1CjNODdcxUwnscpLNdNRonIhTaKA_7fItJu3QvoG9bhPyry4S1dbZKe_Y-Gas9x57ct7XPuKPB4AvU3W2quVfg2-ZyveWFTcAJsvhG8
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+iron-cored+coil+sensor+in+magnetic+flux+leakage+detection+of+thick-walled+steel+pipe&rft.jtitle=Measurement+science+%26+technology&rft.au=Wang%2C+Rongbiao&rft.au=Yu%2C+Haozhi&rft.au=Tang%2C+Jian&rft.au=Feng%2C+Bo&rft.date=2023-08-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=34&rft.issue=8&rft.spage=85123&rft_id=info:doi/10.1088%2F1361-6501%2Facd39c&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_acd39c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon