Salp Swarm Algorithm with Multilevel Thresholding Based Brain Tumor Segmentation Model
Biomedical image processing acts as an essential part of several medical applications in supporting computer aided disease diagnosis. Magnetic Resonance Image (MRI) is a commonly utilized imaging tool used to save glioma for clinical examination. Biomedical image segmentation plays a vital role in h...
Saved in:
| Published in | Computers, materials & continua Vol. 74; no. 3; pp. 6775 - 6788 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Henderson
Tech Science Press
2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1546-2226 1546-2218 1546-2226 |
| DOI | 10.32604/cmc.2023.030814 |
Cover
| Abstract | Biomedical image processing acts as an essential part of several medical applications in supporting computer aided disease diagnosis. Magnetic Resonance Image (MRI) is a commonly utilized imaging tool used to save glioma for clinical examination. Biomedical image segmentation plays a vital role in healthcare decision making process which also helps to identify the affected regions in the MRI. Though numerous segmentation models are available in the literature, it is still needed to develop effective segmentation models for BT. This study develops a salp swarm algorithm with multi-level thresholding based brain tumor segmentation (SSAMLT-BTS) model. The presented SSAMLT-BTS model initially employs bilateral filtering based on noise removal and skull stripping as a pre-processing phase. In addition, Otsu thresholding approach is applied to segment the biomedical images and the optimum threshold values are chosen by the use of SSA. Finally, active contour (AC) technique is used to identify the suspicious regions in the medical image. A comprehensive experimental analysis of the SSAMLT-BTS model is performed using benchmark dataset and the outcomes are inspected in many aspects. The simulation outcomes reported the improved outcomes of the SSAMLT-BTS model over recent approaches with maximum accuracy of 95.95%. |
|---|---|
| AbstractList | Biomedical image processing acts as an essential part of several medical applications in supporting computer aided disease diagnosis. Magnetic Resonance Image (MRI) is a commonly utilized imaging tool used to save glioma for clinical examination. Biomedical image segmentation plays a vital role in healthcare decision making process which also helps to identify the affected regions in the MRI. Though numerous segmentation models are available in the literature, it is still needed to develop effective segmentation models for BT. This study develops a salp swarm algorithm with multi-level thresholding based brain tumor segmentation (SSAMLT-BTS) model. The presented SSAMLT-BTS model initially employs bilateral filtering based on noise removal and skull stripping as a pre-processing phase. In addition, Otsu thresholding approach is applied to segment the biomedical images and the optimum threshold values are chosen by the use of SSA. Finally, active contour (AC) technique is used to identify the suspicious regions in the medical image. A comprehensive experimental analysis of the SSAMLT-BTS model is performed using benchmark dataset and the outcomes are inspected in many aspects. The simulation outcomes reported the improved outcomes of the SSAMLT-BTS model over recent approaches with maximum accuracy of 95.95%. |
| Author | T. Halawani, Hanan |
| Author_xml | – sequence: 1 givenname: Hanan surname: Halawani fullname: Halawani, Hanan |
| BookMark | eNqFkL1PwzAQxS1UJEphZ7TE3OIvnGZsK76kVgwtrJblnNtUjh2chKr_PYYwIAZY7t3w3tPd7xwNfPCA0BUlE84kETemMhNGGJ8QTqZUnKAhvRVyzBiTgx_7GTpvmj0hXPKcDNHrWrsarw86VnjmtiGW7a7ChzTxqnNt6eAdHN7sIjS74IrSb_FcN1DgedSlx5uuChGvYVuBb3VbBo9XoQB3gU6tdg1cfusIvdzfbRaP4-Xzw9NithwbJng75pYJI4w1GbCCZ0IaQUEyAdPcskJqQXVGjBRAtUlCKLWZ4ExDYRkTVvMRon1v52t9PGjnVB3LSsejokR9gVEJjPoEo3owKXPdZ-oY3jpoWrUPXfTpTMVpnk-5SGSSS_YuE0PTRLDKlP2Hbfrc_VVPfgX_vegDW-6GNA |
| CitedBy_id | crossref_primary_10_1016_j_ajpath_2024_10_008 crossref_primary_10_1109_ACCESS_2024_3460797 |
| Cites_doi | 10.1109/TMI.2014.2377694 10.1155/2020/8836195 10.1016/j.eswa.2021.115651 10.2991/ijcis.d.210518.001 10.1007/s11042-021-10641-5 10.1142/9789812772381_0032 10.3390/s22020523 10.1016/j.eswa.2018.06.041 10.1007/s00371-019-01633-6 10.1016/j.neucom.2012.05.036 10.1016/j.advengsoft.2017.07.002 10.1016/j.patrec.2017.05.028 10.1016/j.bspc.2022.103647 10.1016/j.compmedimag.2019.04.001 10.1016/j.procs.2017.12.017 10.3390/jimaging7020022 10.1155/2022/2794326 |
| ContentType | Journal Article |
| Copyright | 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.32604/cmc.2023.030814 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1546-2226 |
| EndPage | 6788 |
| ExternalDocumentID | 10.32604/cmc.2023.030814 10_32604_cmc_2023_030814 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY PUEGO RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC COVID DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c243t-3f24c4cfc7e2d3746c41e624e89f2d6a41a70c64e1acc64011f7432aedf224fa3 |
| IEDL.DBID | BENPR |
| ISSN | 1546-2226 1546-2218 |
| IngestDate | Tue Aug 19 20:24:32 EDT 2025 Mon Jun 30 11:05:12 EDT 2025 Thu Apr 24 23:02:48 EDT 2025 Wed Oct 01 02:39:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c243t-3f24c4cfc7e2d3746c41e624e89f2d6a41a70c64e1acc64011f7432aedf224fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3199834390?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3199834390 |
| PQPubID | 2048737 |
| PageCount | 14 |
| ParticipantIDs | unpaywall_primary_10_32604_cmc_2023_030814 proquest_journals_3199834390 crossref_citationtrail_10_32604_cmc_2023_030814 crossref_primary_10_32604_cmc_2023_030814 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-00-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computers, materials & continua |
| PublicationYear | 2023 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Mahajan (ref6) 2022; 2 Rajinikanth (ref19) 2017; 94 Islam (ref15) 2022; 22 Cinar (ref11) 2022; 76 Houssein (ref17) 2021; 185 Nuechterlein (ref1) 2018; 11384 Mahajan (ref3) 2021; 80 Gui (ref8) 2020; 36 Zhou (ref10) 2013; 116 Devkota (ref2) 2018; 125 Mirjalili (ref18) 2017; 114 Mahajan (ref4) 2022; 2022 Wang (ref12) 2019; 75 Lim (ref13) 2018; 112 Wang (ref7) 2021; 14 Khotanlou (ref16) 2006 Menze (ref20) 2015; 34 Mahajan (ref5) 2021 Biratu (ref14) 2021; 7 Wang (ref9) 2020; 2020 |
| References_xml | – volume: 34 start-page: 1993 year: 2015 ident: ref20 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2014.2377694 – volume: 2020 start-page: 1 year: 2020 ident: ref9 article-title: A novel image classification approach via dense-mobilenet models publication-title: Mobile Information Systems doi: 10.1155/2020/8836195 – volume: 185 start-page: 115651 year: 2021 ident: ref17 article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115651 – volume: 14 start-page: 1607 year: 2021 ident: ref7 article-title: Detecting COVID-19 patients in X-ray images based on MAI-nets publication-title: International Journal of Computational Intelligence Systems doi: 10.2991/ijcis.d.210518.001 – volume: 80 start-page: 19335 year: 2021 ident: ref3 article-title: Image segmentation using multilevel thresholding based on type II fuzzy entropy and marine predators algorithm publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-021-10641-5 – start-page: 198 year: 2006 ident: ref16 publication-title: Advances in Pattern Recognition doi: 10.1142/9789812772381_0032 – volume: 22 start-page: 523 year: 2022 ident: ref15 article-title: A deep learning framework for segmenting brain tumors using MRI and synthetically generated CT images publication-title: Sensors doi: 10.3390/s22020523 – volume: 2 start-page: 47 year: 2022 ident: ref6 article-title: Image segmentation and optimization techniques: A short overview publication-title: Medicon Engineering Themes – volume: 112 start-page: 288 year: 2018 ident: ref13 article-title: A multi-phase semi-automatic approach for multisequence brain tumor image segmentation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.06.041 – volume: 36 start-page: 469 year: 2020 ident: ref8 article-title: Joint learning of visual and spatial features for edit propagation from a single image publication-title: The Visual Computer doi: 10.1007/s00371-019-01633-6 – volume: 116 start-page: 260 year: 2013 ident: ref10 article-title: Local binary pattern (LBP) and local phase quantization (LBQ) based on gabor filter for face representation publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.05.036 – volume: 114 start-page: 163 year: 2017 ident: ref18 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.07.002 – volume: 94 start-page: 87 year: 2017 ident: ref19 article-title: Entropy based segmentation of tumor from brain MR images–A study with teaching learning based optimization publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2017.05.028 – volume: 76 start-page: 103647 year: 2022 ident: ref11 article-title: A hybrid densenet121-UNet model for brain tumor segmentation from MR images publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2022.103647 – volume: 75 start-page: 56 year: 2019 ident: ref12 article-title: Multimodal brain tumor image segmentation using WRN-PPNet publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2019.04.001 – volume: 125 start-page: 115 year: 2018 ident: ref2 article-title: Image segmentation for early stage brain tumor detection using mathematical morphological reconstruction publication-title: Procedia Computer Science doi: 10.1016/j.procs.2017.12.017 – year: 2021 ident: ref5 article-title: Hybrid method to supervise feature selection using signal processing and complex algebra techniques publication-title: Multimedia Tools and Applications – volume: 7 start-page: 22 year: 2021 ident: ref14 article-title: Enhanced region growing for brain tumor mr image segmentation publication-title: Journal of Imaging doi: 10.3390/jimaging7020022 – volume: 2022 start-page: 1 year: 2022 ident: ref4 article-title: An efficient adaptive salp swarm algorithm using type ii fuzzy entropy for multilevel thresholding image segmentation publication-title: Computational and Mathematical Methods in Medicine doi: 10.1155/2022/2794326 – volume: 11384 start-page: 245 year: 2018 ident: ref1 article-title: 3D-ESPNet with pyramidal refinement for volumetric brain tumor image segmentation |
| SSID | ssj0036390 |
| Score | 2.279011 |
| Snippet | Biomedical image processing acts as an essential part of several medical applications in supporting computer aided disease diagnosis. Magnetic Resonance Image... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 6775 |
| SubjectTerms | Algorithms Brain Brain cancer Image processing Image segmentation Magnetic resonance imaging Medical imaging Tumors |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a3YETY3yIooF82AUkp4n96rTHrmKaJm2a1BaVk-U49kAkadWmmsZfj504hXEA7cApceQP2X7x-z3b7_cATm2uxlaMFGWpjilyjGkmYkUV82xYNkuGxhuKV9fiYoGXy-HyAJadL4xnI4o8fWlQAM1i7T9uB7rU3lTng_nsRk6vpjRFuk9I7nQbPkxF69w-gUMxdCi9B4eL65vJl4Y-FQVlrNn6C-8snGA6LBOjbyjyDUVxU81DjfULhj7dVWt1f6eK4jeNdH4E911f2oso36NdnUX6xx80j_-js8_hWYCxZNLK3TEcmOoFHHUhIkhYMV7C55kq1mR2pzYlmRS3q823-mtJ_OYvaVx_C39nicydQG3DORg5c3o1J2c-dAWZ78qVq83clsFFqiI-eFvxChbnn-bTCxpCOVDNkNeUW4YatdWpYTlPUWhMjGBoRmPLcqEwUWmsBZpEafdwi4510IYpk1uHMazir6FXrSrzBkiCTlek1sbZOHfFlEpt1pLksKFCO-rDoJsuqQPPuQ-3UUhn7zQTLN3gSj-4sp3gPnzYl1i3HB9_yXvSSYAMf_tWcu-oyB20i_vwcS8V_6zr7WMyn0Cv3uzMOweB6ux9kOafl8MAOA priority: 102 providerName: Unpaywall |
| Title | Salp Swarm Algorithm with Multilevel Thresholding Based Brain Tumor Segmentation Model |
| URI | https://www.proquest.com/docview/3199834390 https://file.techscience.com/files/cmc/2023/TSP_CMC-74-3/TSP_CMC_30814/TSP_CMC_30814.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 74 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: ADMLS dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1546-2226 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV09b9swED24zpAu_Uha1ElacMiSAqwlkqbsoSjsIkFQIEbQ2EU6CRRFOoMkO4mNIP--dxLltEs6aSEJ6I68d_y49wCOfW5GXg8NF4mNuJIq4pmODDeC2LB8Fg8cbRQvpvp8rn5cD647MG1rYehZZRsT60CdLy2dkfclFYNJhM_o2-qWk2oU3a62EhomSCvkX2uKsRewI4gZqws7k9Pp5c82NkvE47pEcqA0F4huzcUlpjCR6tuSKA2F_EIULrH6F6iess_dTbUyjw-mKP4CorM38CpkkGzcuPwtdFy1B69bdQYWFus-_LoyxYpdPZi7ko2LBf7L-qZkdO7K6qrbgp4LsRn68j5cQbEJQlrOJqQawWabcomjuUUZqpMqRrppxTuYn53Ovp_zoKLArVByzaUXyirrbeJELhOlrYqdFsoNR17k2qjYJJHVysVoRI3brdhjViGMyz3CuzfyPXSrZeU-AIsVhunE-ygb5djNmMRnDT-NGBjlhz3otyZLbaAYJ6WLIsWtRm3kFI2ckpHTxsg9ONn2WDX0Gs-0PWq9kIaFdp8-TYsefN565r9jHTw_1iG8pMbNUcsRdNd3G_cRk4919inMKPzOp5fj338AFLTYnA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NU9swEN2hcKCXAv0YAino0B7aGTW2pMjJgekQPiYUyHRK6HAzsiylB9sJJJlM_lx_W1e2DO2Fnrhb6_Fqrbcrad8D-GBT1bWyoyiLdEAFFwFNZKCoYo4NyyZh27hC8XIg-9fi2037ZgV-170w7lplvSaWC3U61m6PvMVdMxhH-Ay-Tu6oU41yp6u1hIby0grpQUkx5hs7zs1ygSXc9ODsGOf7I2OnJ8OjPvUqA1QzwWeUWya00FZHhqU8ElKL0EgmTKdrWSqVCFUUaClMiC-RWI6EFlGXKZNahD-rONp9AWv4mV0s_tZ6J4PvP2os4Ij_ZUtmW0jKEE2rg1JMmQLR0rmjUGT8i6OMCcW_wPiY7a7Pi4laLlSW_QV8p5vwymes5LAKsS1YMcVr2KjVIIhfHN7AzyuVTcjVQt3n5DAboe9mv3Li9nlJ2eWbuetJZIixM_VHXqSHEJqSnlOpIMN5PkZrZpT7bqiCOJ227C1cP4s_38FqMS7MNpBQICxE1gZJN8VhSkU2qfhwWFsJ22lAq3ZZrD2luVPWyGIsbUonx-jk2Dk5rpzcgE8PIyYVnccTzzbrWYj9jz2NH8OwAZ8fZua_tnaetrUP6_3h5UV8cTY434WXbmC1zdOE1dn93LzHxGeW7PnoInD73AH9B_wNFE0 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a3YETY3yIooF82AUkp4n96rTHrmKaJm2a1BaVk-U49kAkadWmmsZfj504hXEA7cApceQP2X7x-z3b7_cATm2uxlaMFGWpjilyjGkmYkUV82xYNkuGxhuKV9fiYoGXy-HyAJadL4xnI4o8fWlQAM1i7T9uB7rU3lTng_nsRk6vpjRFuk9I7nQbPkxF69w-gUMxdCi9B4eL65vJl4Y-FQVlrNn6C-8snGA6LBOjbyjyDUVxU81DjfULhj7dVWt1f6eK4jeNdH4E911f2oso36NdnUX6xx80j_-js8_hWYCxZNLK3TEcmOoFHHUhIkhYMV7C55kq1mR2pzYlmRS3q823-mtJ_OYvaVx_C39nicydQG3DORg5c3o1J2c-dAWZ78qVq83clsFFqiI-eFvxChbnn-bTCxpCOVDNkNeUW4YatdWpYTlPUWhMjGBoRmPLcqEwUWmsBZpEafdwi4510IYpk1uHMazir6FXrSrzBkiCTlek1sbZOHfFlEpt1pLksKFCO-rDoJsuqQPPuQ-3UUhn7zQTLN3gSj-4sp3gPnzYl1i3HB9_yXvSSYAMf_tWcu-oyB20i_vwcS8V_6zr7WMyn0Cv3uzMOweB6ux9kOafl8MAOA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Salp+Swarm+Algorithm+with+Multilevel+Thresholding+Based+Brain+Tumor+Segmentation+Model&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=T.+Halawani%2C+Hanan&rft.date=2023&rft.issn=1546-2226&rft.volume=74&rft.issue=3&rft.spage=6775&rft.epage=6788&rft_id=info:doi/10.32604%2Fcmc.2023.030814&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2023_030814 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |