Salp Swarm Algorithm with Multilevel Thresholding Based Brain Tumor Segmentation Model

Biomedical image processing acts as an essential part of several medical applications in supporting computer aided disease diagnosis. Magnetic Resonance Image (MRI) is a commonly utilized imaging tool used to save glioma for clinical examination. Biomedical image segmentation plays a vital role in h...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 74; no. 3; pp. 6775 - 6788
Main Author Halawani, Hanan
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2023
Subjects
Online AccessGet full text
ISSN1546-2226
1546-2218
1546-2226
DOI10.32604/cmc.2023.030814

Cover

Abstract Biomedical image processing acts as an essential part of several medical applications in supporting computer aided disease diagnosis. Magnetic Resonance Image (MRI) is a commonly utilized imaging tool used to save glioma for clinical examination. Biomedical image segmentation plays a vital role in healthcare decision making process which also helps to identify the affected regions in the MRI. Though numerous segmentation models are available in the literature, it is still needed to develop effective segmentation models for BT. This study develops a salp swarm algorithm with multi-level thresholding based brain tumor segmentation (SSAMLT-BTS) model. The presented SSAMLT-BTS model initially employs bilateral filtering based on noise removal and skull stripping as a pre-processing phase. In addition, Otsu thresholding approach is applied to segment the biomedical images and the optimum threshold values are chosen by the use of SSA. Finally, active contour (AC) technique is used to identify the suspicious regions in the medical image. A comprehensive experimental analysis of the SSAMLT-BTS model is performed using benchmark dataset and the outcomes are inspected in many aspects. The simulation outcomes reported the improved outcomes of the SSAMLT-BTS model over recent approaches with maximum accuracy of 95.95%.
AbstractList Biomedical image processing acts as an essential part of several medical applications in supporting computer aided disease diagnosis. Magnetic Resonance Image (MRI) is a commonly utilized imaging tool used to save glioma for clinical examination. Biomedical image segmentation plays a vital role in healthcare decision making process which also helps to identify the affected regions in the MRI. Though numerous segmentation models are available in the literature, it is still needed to develop effective segmentation models for BT. This study develops a salp swarm algorithm with multi-level thresholding based brain tumor segmentation (SSAMLT-BTS) model. The presented SSAMLT-BTS model initially employs bilateral filtering based on noise removal and skull stripping as a pre-processing phase. In addition, Otsu thresholding approach is applied to segment the biomedical images and the optimum threshold values are chosen by the use of SSA. Finally, active contour (AC) technique is used to identify the suspicious regions in the medical image. A comprehensive experimental analysis of the SSAMLT-BTS model is performed using benchmark dataset and the outcomes are inspected in many aspects. The simulation outcomes reported the improved outcomes of the SSAMLT-BTS model over recent approaches with maximum accuracy of 95.95%.
Author T. Halawani, Hanan
Author_xml – sequence: 1
  givenname: Hanan
  surname: Halawani
  fullname: Halawani, Hanan
BookMark eNqFkL1PwzAQxS1UJEphZ7TE3OIvnGZsK76kVgwtrJblnNtUjh2chKr_PYYwIAZY7t3w3tPd7xwNfPCA0BUlE84kETemMhNGGJ8QTqZUnKAhvRVyzBiTgx_7GTpvmj0hXPKcDNHrWrsarw86VnjmtiGW7a7ChzTxqnNt6eAdHN7sIjS74IrSb_FcN1DgedSlx5uuChGvYVuBb3VbBo9XoQB3gU6tdg1cfusIvdzfbRaP4-Xzw9NithwbJng75pYJI4w1GbCCZ0IaQUEyAdPcskJqQXVGjBRAtUlCKLWZ4ExDYRkTVvMRon1v52t9PGjnVB3LSsejokR9gVEJjPoEo3owKXPdZ-oY3jpoWrUPXfTpTMVpnk-5SGSSS_YuE0PTRLDKlP2Hbfrc_VVPfgX_vegDW-6GNA
CitedBy_id crossref_primary_10_1016_j_ajpath_2024_10_008
crossref_primary_10_1109_ACCESS_2024_3460797
Cites_doi 10.1109/TMI.2014.2377694
10.1155/2020/8836195
10.1016/j.eswa.2021.115651
10.2991/ijcis.d.210518.001
10.1007/s11042-021-10641-5
10.1142/9789812772381_0032
10.3390/s22020523
10.1016/j.eswa.2018.06.041
10.1007/s00371-019-01633-6
10.1016/j.neucom.2012.05.036
10.1016/j.advengsoft.2017.07.002
10.1016/j.patrec.2017.05.028
10.1016/j.bspc.2022.103647
10.1016/j.compmedimag.2019.04.001
10.1016/j.procs.2017.12.017
10.3390/jimaging7020022
10.1155/2022/2794326
ContentType Journal Article
Copyright 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.32604/cmc.2023.030814
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 6788
ExternalDocumentID 10.32604/cmc.2023.030814
10_32604_cmc_2023_030814
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
PUEGO
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
COVID
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c243t-3f24c4cfc7e2d3746c41e624e89f2d6a41a70c64e1acc64011f7432aedf224fa3
IEDL.DBID BENPR
ISSN 1546-2226
1546-2218
IngestDate Tue Aug 19 20:24:32 EDT 2025
Mon Jun 30 11:05:12 EDT 2025
Thu Apr 24 23:02:48 EDT 2025
Wed Oct 01 02:39:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c243t-3f24c4cfc7e2d3746c41e624e89f2d6a41a70c64e1acc64011f7432aedf224fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3199834390?pq-origsite=%requestingapplication%&accountid=15518
PQID 3199834390
PQPubID 2048737
PageCount 14
ParticipantIDs unpaywall_primary_10_32604_cmc_2023_030814
proquest_journals_3199834390
crossref_citationtrail_10_32604_cmc_2023_030814
crossref_primary_10_32604_cmc_2023_030814
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2023
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Mahajan (ref6) 2022; 2
Rajinikanth (ref19) 2017; 94
Islam (ref15) 2022; 22
Cinar (ref11) 2022; 76
Houssein (ref17) 2021; 185
Nuechterlein (ref1) 2018; 11384
Mahajan (ref3) 2021; 80
Gui (ref8) 2020; 36
Zhou (ref10) 2013; 116
Devkota (ref2) 2018; 125
Mirjalili (ref18) 2017; 114
Mahajan (ref4) 2022; 2022
Wang (ref12) 2019; 75
Lim (ref13) 2018; 112
Wang (ref7) 2021; 14
Khotanlou (ref16) 2006
Menze (ref20) 2015; 34
Mahajan (ref5) 2021
Biratu (ref14) 2021; 7
Wang (ref9) 2020; 2020
References_xml – volume: 34
  start-page: 1993
  year: 2015
  ident: ref20
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 2020
  start-page: 1
  year: 2020
  ident: ref9
  article-title: A novel image classification approach via dense-mobilenet models
  publication-title: Mobile Information Systems
  doi: 10.1155/2020/8836195
– volume: 185
  start-page: 115651
  year: 2021
  ident: ref17
  article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115651
– volume: 14
  start-page: 1607
  year: 2021
  ident: ref7
  article-title: Detecting COVID-19 patients in X-ray images based on MAI-nets
  publication-title: International Journal of Computational Intelligence Systems
  doi: 10.2991/ijcis.d.210518.001
– volume: 80
  start-page: 19335
  year: 2021
  ident: ref3
  article-title: Image segmentation using multilevel thresholding based on type II fuzzy entropy and marine predators algorithm
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-021-10641-5
– start-page: 198
  year: 2006
  ident: ref16
  publication-title: Advances in Pattern Recognition
  doi: 10.1142/9789812772381_0032
– volume: 22
  start-page: 523
  year: 2022
  ident: ref15
  article-title: A deep learning framework for segmenting brain tumors using MRI and synthetically generated CT images
  publication-title: Sensors
  doi: 10.3390/s22020523
– volume: 2
  start-page: 47
  year: 2022
  ident: ref6
  article-title: Image segmentation and optimization techniques: A short overview
  publication-title: Medicon Engineering Themes
– volume: 112
  start-page: 288
  year: 2018
  ident: ref13
  article-title: A multi-phase semi-automatic approach for multisequence brain tumor image segmentation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.06.041
– volume: 36
  start-page: 469
  year: 2020
  ident: ref8
  article-title: Joint learning of visual and spatial features for edit propagation from a single image
  publication-title: The Visual Computer
  doi: 10.1007/s00371-019-01633-6
– volume: 116
  start-page: 260
  year: 2013
  ident: ref10
  article-title: Local binary pattern (LBP) and local phase quantization (LBQ) based on gabor filter for face representation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.05.036
– volume: 114
  start-page: 163
  year: 2017
  ident: ref18
  article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 94
  start-page: 87
  year: 2017
  ident: ref19
  article-title: Entropy based segmentation of tumor from brain MR images–A study with teaching learning based optimization
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2017.05.028
– volume: 76
  start-page: 103647
  year: 2022
  ident: ref11
  article-title: A hybrid densenet121-UNet model for brain tumor segmentation from MR images
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.103647
– volume: 75
  start-page: 56
  year: 2019
  ident: ref12
  article-title: Multimodal brain tumor image segmentation using WRN-PPNet
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2019.04.001
– volume: 125
  start-page: 115
  year: 2018
  ident: ref2
  article-title: Image segmentation for early stage brain tumor detection using mathematical morphological reconstruction
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2017.12.017
– year: 2021
  ident: ref5
  article-title: Hybrid method to supervise feature selection using signal processing and complex algebra techniques
  publication-title: Multimedia Tools and Applications
– volume: 7
  start-page: 22
  year: 2021
  ident: ref14
  article-title: Enhanced region growing for brain tumor mr image segmentation
  publication-title: Journal of Imaging
  doi: 10.3390/jimaging7020022
– volume: 2022
  start-page: 1
  year: 2022
  ident: ref4
  article-title: An efficient adaptive salp swarm algorithm using type ii fuzzy entropy for multilevel thresholding image segmentation
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2022/2794326
– volume: 11384
  start-page: 245
  year: 2018
  ident: ref1
  article-title: 3D-ESPNet with pyramidal refinement for volumetric brain tumor image segmentation
SSID ssj0036390
Score 2.279011
Snippet Biomedical image processing acts as an essential part of several medical applications in supporting computer aided disease diagnosis. Magnetic Resonance Image...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 6775
SubjectTerms Algorithms
Brain
Brain cancer
Image processing
Image segmentation
Magnetic resonance imaging
Medical imaging
Tumors
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a3YETY3yIooF82AUkp4n96rTHrmKaJm2a1BaVk-U49kAkadWmmsZfj504hXEA7cApceQP2X7x-z3b7_cATm2uxlaMFGWpjilyjGkmYkUV82xYNkuGxhuKV9fiYoGXy-HyAJadL4xnI4o8fWlQAM1i7T9uB7rU3lTng_nsRk6vpjRFuk9I7nQbPkxF69w-gUMxdCi9B4eL65vJl4Y-FQVlrNn6C-8snGA6LBOjbyjyDUVxU81DjfULhj7dVWt1f6eK4jeNdH4E911f2oso36NdnUX6xx80j_-js8_hWYCxZNLK3TEcmOoFHHUhIkhYMV7C55kq1mR2pzYlmRS3q823-mtJ_OYvaVx_C39nicydQG3DORg5c3o1J2c-dAWZ78qVq83clsFFqiI-eFvxChbnn-bTCxpCOVDNkNeUW4YatdWpYTlPUWhMjGBoRmPLcqEwUWmsBZpEafdwi4510IYpk1uHMazir6FXrSrzBkiCTlek1sbZOHfFlEpt1pLksKFCO-rDoJsuqQPPuQ-3UUhn7zQTLN3gSj-4sp3gPnzYl1i3HB9_yXvSSYAMf_tWcu-oyB20i_vwcS8V_6zr7WMyn0Cv3uzMOweB6ux9kOafl8MAOA
  priority: 102
  providerName: Unpaywall
Title Salp Swarm Algorithm with Multilevel Thresholding Based Brain Tumor Segmentation Model
URI https://www.proquest.com/docview/3199834390
https://file.techscience.com/files/cmc/2023/TSP_CMC-74-3/TSP_CMC_30814/TSP_CMC_30814.pdf
UnpaywallVersion publishedVersion
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: ADMLS
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV09b9swED24zpAu_Uha1ElacMiSAqwlkqbsoSjsIkFQIEbQ2EU6CRRFOoMkO4mNIP--dxLltEs6aSEJ6I68d_y49wCOfW5GXg8NF4mNuJIq4pmODDeC2LB8Fg8cbRQvpvp8rn5cD647MG1rYehZZRsT60CdLy2dkfclFYNJhM_o2-qWk2oU3a62EhomSCvkX2uKsRewI4gZqws7k9Pp5c82NkvE47pEcqA0F4huzcUlpjCR6tuSKA2F_EIULrH6F6iess_dTbUyjw-mKP4CorM38CpkkGzcuPwtdFy1B69bdQYWFus-_LoyxYpdPZi7ko2LBf7L-qZkdO7K6qrbgp4LsRn68j5cQbEJQlrOJqQawWabcomjuUUZqpMqRrppxTuYn53Ovp_zoKLArVByzaUXyirrbeJELhOlrYqdFsoNR17k2qjYJJHVysVoRI3brdhjViGMyz3CuzfyPXSrZeU-AIsVhunE-ygb5djNmMRnDT-NGBjlhz3otyZLbaAYJ6WLIsWtRm3kFI2ckpHTxsg9ONn2WDX0Gs-0PWq9kIaFdp8-TYsefN565r9jHTw_1iG8pMbNUcsRdNd3G_cRk4919inMKPzOp5fj338AFLTYnA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NU9swEN2hcKCXAv0YAino0B7aGTW2pMjJgekQPiYUyHRK6HAzsiylB9sJJJlM_lx_W1e2DO2Fnrhb6_Fqrbcrad8D-GBT1bWyoyiLdEAFFwFNZKCoYo4NyyZh27hC8XIg-9fi2037ZgV-170w7lplvSaWC3U61m6PvMVdMxhH-Ay-Tu6oU41yp6u1hIby0grpQUkx5hs7zs1ygSXc9ODsGOf7I2OnJ8OjPvUqA1QzwWeUWya00FZHhqU8ElKL0EgmTKdrWSqVCFUUaClMiC-RWI6EFlGXKZNahD-rONp9AWv4mV0s_tZ6J4PvP2os4Ij_ZUtmW0jKEE2rg1JMmQLR0rmjUGT8i6OMCcW_wPiY7a7Pi4laLlSW_QV8p5vwymes5LAKsS1YMcVr2KjVIIhfHN7AzyuVTcjVQt3n5DAboe9mv3Li9nlJ2eWbuetJZIixM_VHXqSHEJqSnlOpIMN5PkZrZpT7bqiCOJ227C1cP4s_38FqMS7MNpBQICxE1gZJN8VhSkU2qfhwWFsJ22lAq3ZZrD2luVPWyGIsbUonx-jk2Dk5rpzcgE8PIyYVnccTzzbrWYj9jz2NH8OwAZ8fZua_tnaetrUP6_3h5UV8cTY434WXbmC1zdOE1dn93LzHxGeW7PnoInD73AH9B_wNFE0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a3YETY3yIooF82AUkp4n96rTHrmKaJm2a1BaVk-U49kAkadWmmsZfj504hXEA7cApceQP2X7x-z3b7_cATm2uxlaMFGWpjilyjGkmYkUV82xYNkuGxhuKV9fiYoGXy-HyAJadL4xnI4o8fWlQAM1i7T9uB7rU3lTng_nsRk6vpjRFuk9I7nQbPkxF69w-gUMxdCi9B4eL65vJl4Y-FQVlrNn6C-8snGA6LBOjbyjyDUVxU81DjfULhj7dVWt1f6eK4jeNdH4E911f2oso36NdnUX6xx80j_-js8_hWYCxZNLK3TEcmOoFHHUhIkhYMV7C55kq1mR2pzYlmRS3q823-mtJ_OYvaVx_C39nicydQG3DORg5c3o1J2c-dAWZ78qVq83clsFFqiI-eFvxChbnn-bTCxpCOVDNkNeUW4YatdWpYTlPUWhMjGBoRmPLcqEwUWmsBZpEafdwi4510IYpk1uHMazir6FXrSrzBkiCTlek1sbZOHfFlEpt1pLksKFCO-rDoJsuqQPPuQ-3UUhn7zQTLN3gSj-4sp3gPnzYl1i3HB9_yXvSSYAMf_tWcu-oyB20i_vwcS8V_6zr7WMyn0Cv3uzMOweB6ux9kOafl8MAOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Salp+Swarm+Algorithm+with+Multilevel+Thresholding+Based+Brain+Tumor+Segmentation+Model&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=T.+Halawani%2C+Hanan&rft.date=2023&rft.issn=1546-2226&rft.volume=74&rft.issue=3&rft.spage=6775&rft.epage=6788&rft_id=info:doi/10.32604%2Fcmc.2023.030814&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2023_030814
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon