Feature selection and interpretability analysis of compound faults in rolling bearings based on the causal feature weighted network
Feature selection is a crucial step in fault diagnosis. When rolling bearings are susceptible to compound faults, causal relationships are hidden within the signal features. Complex network analysis methods provide a tool for causal relationship modeling and feature importance assessment. Existing s...
Saved in:
| Published in | Measurement science & technology Vol. 35; no. 8; p. 86201 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.08.2024
|
| Online Access | Get full text |
| ISSN | 0957-0233 1361-6501 |
| DOI | 10.1088/1361-6501/ad3c5f |
Cover
| Abstract | Feature selection is a crucial step in fault diagnosis. When rolling bearings are susceptible to compound faults, causal relationships are hidden within the signal features. Complex network analysis methods provide a tool for causal relationship modeling and feature importance assessment. Existing studies mainly focus on unweighted networks, overlooking the impact of the strength of causal relationships on feature selection. To address this issue, we propose a compound fault feature selection method based on the causal feature weighted network. First, we construct a weighted network using the incremental association Markov blanket discovery algorithm and Pearson correlation coefficient. Then, we quantify the importance of features by treating node strength as a centrality index and rank them to partition the feature subset. Finally, the optimal feature subset is obtained through a neural network with the accuracy of compound fault diagnosis as the threshold. Analysis of public datasets and comparative experiments demonstrate the advantages of our method. Compared to existing research, our method not only effectively reduces the number of optimal feature subsets to 11 but also improves the accuracy of compound fault diagnosis to 95.2%. Furthermore, we employ the SHapley Additive exPlanations to interpret the contribution of each feature in the optimal subset to the accuracy of compound fault diagnosis. This provides reference from both physical and network perspectives to feature selection and compound fault diagnosis in rolling bearings in practical working conditions. |
|---|---|
| AbstractList | Feature selection is a crucial step in fault diagnosis. When rolling bearings are susceptible to compound faults, causal relationships are hidden within the signal features. Complex network analysis methods provide a tool for causal relationship modeling and feature importance assessment. Existing studies mainly focus on unweighted networks, overlooking the impact of the strength of causal relationships on feature selection. To address this issue, we propose a compound fault feature selection method based on the causal feature weighted network. First, we construct a weighted network using the incremental association Markov blanket discovery algorithm and Pearson correlation coefficient. Then, we quantify the importance of features by treating node strength as a centrality index and rank them to partition the feature subset. Finally, the optimal feature subset is obtained through a neural network with the accuracy of compound fault diagnosis as the threshold. Analysis of public datasets and comparative experiments demonstrate the advantages of our method. Compared to existing research, our method not only effectively reduces the number of optimal feature subsets to 11 but also improves the accuracy of compound fault diagnosis to 95.2%. Furthermore, we employ the SHapley Additive exPlanations to interpret the contribution of each feature in the optimal subset to the accuracy of compound fault diagnosis. This provides reference from both physical and network perspectives to feature selection and compound fault diagnosis in rolling bearings in practical working conditions. |
| Author | Yu, Chongchong Gao, Kuo Wang, Fei Li, Mengxiong Wu, Zongning |
| Author_xml | – sequence: 1 givenname: Chongchong orcidid: 0000-0003-4234-1260 surname: Yu fullname: Yu, Chongchong – sequence: 2 givenname: Mengxiong orcidid: 0009-0001-2738-3350 surname: Li fullname: Li, Mengxiong – sequence: 3 givenname: Zongning orcidid: 0000-0002-0699-9025 surname: Wu fullname: Wu, Zongning – sequence: 4 givenname: Kuo orcidid: 0000-0002-0514-6514 surname: Gao fullname: Gao, Kuo – sequence: 5 givenname: Fei orcidid: 0009-0001-2710-9028 surname: Wang fullname: Wang, Fei |
| BookMark | eNp1kEFLAzEQhYNUsK3ePeYPrE2aTbM5SrEqFLzoeZlNZttouilJSunZP-4uLR4ETwNv3nvDfBMy6kKHhNxz9sBZVc24WPBiIRmfgRVGtldk_CuNyJhpqQo2F-KGTFL6ZIwppvWYfK8Q8iEiTejRZBc6Cp2lrssY9xEzNM67fOpF8KfkEg0tNWG3D4fe1cLB59SbaQzeu25DG4TYz0QbSGhp35a3SA0cEnjaXk4d0W22uV93mI8hft2S6xZ8wrvLnJKP1dP78qVYvz2_Lh_XhZmXIheCSVOC5RUIOW8klNIawZVUjS4rrW3TSmGZRK60slZrRKEkN8JUvERUQkzJ4txrYkgpYlsbl2H4OUdwvuasHlDWA7d64FafUfZB9ie4j24H8fR_5Aey13zK |
| CitedBy_id | crossref_primary_10_1007_s11071_025_10914_w crossref_primary_10_1088_1361_6501_ad8213 crossref_primary_10_1016_j_jmapro_2025_02_004 |
| Cites_doi | 10.1080/03081060.2023.2166509 10.1177/09596518231162892 10.1038/s42005-024-01589-7 10.1016/j.jsv.2019.05.037 10.1073/pnas.39.10.1095 10.3390/app10010346 10.3390/app13137350 10.1016/j.neunet.2022.05.024 10.1109/TIM.2022.3221142 10.1016/j.isatra.2016.08.022 10.1016/j.aei.2023.102007 10.1103/PhysRevLett.86.2909 10.1016/j.chaos.2023.113211 10.1016/j.ymssp.2017.06.011 10.1073/pnas.0400087101 10.1007/s00500-018-3178-x 10.1103/PhysRevE.70.056131 10.3390/s21124070 10.1016/j.ymssp.2021.108105 10.1088/1367-2630/9/6/180 10.1155/2018/2913163 10.3390/drones7020081 10.1088/1361-6501/ad24b5 10.1016/j.enpol.2023.113792 10.13465/j.cnki.jvs.2021.04.004 10.1016/j.measurement.2021.109495 10.1088/1361-6501/ac97b2 10.1007/s00170-023-10846-y 10.3390/en16155677 10.1016/j.comnet.2023.109747 10.13465/j.cnki.jvs.2016.07.012 10.1038/nature14539 10.1088/1361-6501/acfe31 10.1038/s41567-019-0459-y 10.3390/app13169089 10.1016/j.ymssp.2015.04.021 10.3901/JME.2010.03.090 10.1016/j.ipm.2022.103221 10.1016/j.physrep.2018.10.005 10.1088/1361-6501/acd710 10.1016/j.eswa.2023.121670 10.1007/978-3-642-00296-0_5 10.1016/j.physrep.2024.01.003 10.1016/j.socnet.2010.03.006 10.1016/j.inffus.2023.101855 10.1088/1361-6501/acf4b0 10.1088/1361-6501/aca349 10.1016/j.ymssp.2021.108333 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1088/1361-6501/ad3c5f |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1361-6501 |
| ExternalDocumentID | 10_1088_1361_6501_ad3c5f |
| GroupedDBID | -DZ -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI AAYXX ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP ADEQX AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ W28 WH7 XPP YQT ZMT ~02 |
| ID | FETCH-LOGICAL-c243t-305c4ad18a352b5a45dc31757b94899dbf53d05e1797dd99ee3751c3c814ee733 |
| ISSN | 0957-0233 |
| IngestDate | Thu Apr 24 22:52:52 EDT 2025 Wed Oct 01 05:33:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c243t-305c4ad18a352b5a45dc31757b94899dbf53d05e1797dd99ee3751c3c814ee733 |
| ORCID | 0000-0002-0699-9025 0000-0002-0514-6514 0009-0001-2710-9028 0009-0001-2738-3350 0000-0003-4234-1260 |
| ParticipantIDs | crossref_citationtrail_10_1088_1361_6501_ad3c5f crossref_primary_10_1088_1361_6501_ad3c5f |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Measurement science & technology |
| PublicationYear | 2024 |
| References | Hasan (mstad3c5fbib20) 2021; 21 Cong (mstad3c5fbib31) 2023; 16 Lu (mstad3c5fbib50) 2019; 457 Zeng (mstad3c5fbib24) 2022; 72 Yu (mstad3c5fbib16) 2023; 35 Luo (mstad3c5fbib10) 2016; 65 Athisayam (mstad3c5fbib11) 2023; 125 Ai (mstad3c5fbib1) 2023; 168 Tian (mstad3c5fbib23) 2020; 10 Zhou (mstad3c5fbib6) 2022; 34 Zhu (mstad3c5fbib3) 2024; 35 Brito (mstad3c5fbib21) 2022; 163 Shapley (mstad3c5fbib48) 1953; 39 An (mstad3c5fbib22) 2023 Newman (mstad3c5fbib44) 2004; 70 Farkas (mstad3c5fbib45) 2007; 9 LeCun (mstad3c5fbib53) 2015; 521 Cohen (mstad3c5fbib51) 2009 Kuperman (mstad3c5fbib54) 2001; 86 Wang (mstad3c5fbib2) 2023; 34 Singh (mstad3c5fbib15) 2023; 7 Miao (mstad3c5fbib7) 2022; 165 Wang (mstad3c5fbib37) 2024; 1056 Yuan (mstad3c5fbib35) 2023; 99 Zhang (mstad3c5fbib30) 2018; 2018 Barraza (mstad3c5fbib19) 2024; 237 Chen (mstad3c5fbib25) 2022; 34 Zhou (mstad3c5fbib18) 2023; 13 Barrat (mstad3c5fbib46) 2004; 101 Du (mstad3c5fbib27) 2010; 46 Lambiotte (mstad3c5fbib42) 2019; 15 Zheng (mstad3c5fbib8) 2018; 99 Zheng (mstad3c5fbib34) 2024; 7 Koller (mstad3c5fbib39) 1996; vol 96 Opsahl (mstad3c5fbib52) 2010; 32 Chen (mstad3c5fbib29) 2021; 40 Smith (mstad3c5fbib49) 2015; 64 Ersöz (mstad3c5fbib33) 2023; 46 Roy (mstad3c5fbib14) 2023; 56 Tsamardinos (mstad3c5fbib41) 2003; vol 2 Pearl (mstad3c5fbib40) 1988 Gao (mstad3c5fbib5) 2023; 13 Cao (mstad3c5fbib28) 2017; vol 50916 Herrera (mstad3c5fbib32) 2023; 228 Zou (mstad3c5fbib43) 2019; 787 Akhtar (mstad3c5fbib38) 2023; 60 Lundberg (mstad3c5fbib47) 2017 Ma (mstad3c5fbib9) 2021; 179 Bai (mstad3c5fbib36) 2023; 183 Jiang (mstad3c5fbib13) 2022; 153 Xu (mstad3c5fbib17) 2019; 23 Chen (mstad3c5fbib26) 2016; 35 Zhou (mstad3c5fbib4) 2023; 34 Mathur (mstad3c5fbib12) 2023; 237 |
| References_xml | – volume: 46 start-page: 200 year: 2023 ident: mstad3c5fbib33 article-title: Centrality and connectivity analysis of the European airports: a weighted complex network approach publication-title: Transp. Plann. Technol. doi: 10.1080/03081060.2023.2166509 – volume: 237 start-page: 1602 year: 2023 ident: mstad3c5fbib12 article-title: Ranked feature-based data-driven bearing fault diagnosis using support vector machine and artificial neural network publication-title: Proc. Inst. Mech. Eng. I doi: 10.1177/09596518231162892 – year: 1988 ident: mstad3c5fbib40 – volume: 7 start-page: 97 year: 2024 ident: mstad3c5fbib34 article-title: Geometric renormalization of weighted networks publication-title: Commun. Phys. doi: 10.1038/s42005-024-01589-7 – volume: 457 start-page: 67 year: 2019 ident: mstad3c5fbib50 article-title: A novel underdetermined blind source separation method with noise and unknown source number publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.05.037 – volume: 39 start-page: 1095 year: 1953 ident: mstad3c5fbib48 article-title: Stochastic games publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.39.10.1095 – volume: 10 start-page: 346 year: 2020 ident: mstad3c5fbib23 article-title: An ensemble learning and RUL prediction method based on bearings degradation indicator construction publication-title: Appl. Sci. doi: 10.3390/app10010346 – volume: 13 start-page: 7350 year: 2023 ident: mstad3c5fbib18 article-title: RFR-GA-BLS: a feature selection and parameter optimization method for fault diagnosis of rolling bearing using infrared images publication-title: Appl. Sci. doi: 10.3390/app13137350 – volume: 153 start-page: 204 year: 2022 ident: mstad3c5fbib13 article-title: MGLNN: semi-supervised learning via multiple graph cooperative learning neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2022.05.024 – volume: vol 50916 start-page: p V006T05A019 year: 2017 ident: mstad3c5fbib28 article-title: Fault diagnosis of gas turbine based on complex networks theory – volume: 72 start-page: 1 year: 2022 ident: mstad3c5fbib24 article-title: Dynamic Bayesian networks for feature learning and transfer applications in remaining useful life estimation publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3221142 – volume: 65 start-page: 556 year: 2016 ident: mstad3c5fbib10 article-title: Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings publication-title: ISA Trans. doi: 10.1016/j.isatra.2016.08.022 – volume: 56 year: 2023 ident: mstad3c5fbib14 article-title: DenseSPH-YOLOv5: an automated damage detection model based on DenseNet and swin-transformer prediction head-enabled YOLOv5 with attention mechanism publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2023.102007 – volume: 86 start-page: 2909 year: 2001 ident: mstad3c5fbib54 article-title: Small world effect in an epidemiological model publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.2909 – volume: 168 year: 2023 ident: mstad3c5fbib1 article-title: A fast search method for optimal parameters of stochastic resonance based on stochastic bifurcation and its application in fault diagnosis of rolling bearings publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2023.113211 – volume: 99 start-page: 229 year: 2018 ident: mstad3c5fbib8 article-title: Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.06.011 – volume: 101 start-page: 3747 year: 2004 ident: mstad3c5fbib46 article-title: The architecture of complex weighted networks publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0400087101 – volume: 23 start-page: 5117 year: 2019 ident: mstad3c5fbib17 article-title: Automatic roller bearings fault diagnosis using DSAE in deep learning and CFS algorithm publication-title: Soft Comput. doi: 10.1007/s00500-018-3178-x – volume: 70 year: 2004 ident: mstad3c5fbib44 article-title: Analysis of weighted networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.056131 – volume: 21 start-page: 4070 year: 2021 ident: mstad3c5fbib20 article-title: An explainable ai-based fault diagnosis model for bearings publication-title: Sensors doi: 10.3390/s21124070 – volume: 163 year: 2022 ident: mstad3c5fbib21 article-title: An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108105 – volume: 9 start-page: 180 year: 2007 ident: mstad3c5fbib45 article-title: Weighted network modules publication-title: New J. Phys. doi: 10.1088/1367-2630/9/6/180 – volume: 2018 start-page: 1 year: 2018 ident: mstad3c5fbib30 article-title: A new modelling and feature extraction method based on complex network and its application in machine fault diagnosis publication-title: Shock Vib. doi: 10.1155/2018/2913163 – volume: 7 start-page: 81 year: 2023 ident: mstad3c5fbib15 article-title: Deep learning-based cost-effective and responsive robot for autism treatment publication-title: Drones doi: 10.3390/drones7020081 – volume: 35 year: 2024 ident: mstad3c5fbib3 article-title: Compound fault diagnosis of rolling bearings with few-shot based on DCGAN-RepLKNet publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ad24b5 – volume: 183 year: 2023 ident: mstad3c5fbib36 article-title: Effects of digital economy on carbon emission intensity in Chinese cities: a life-cycle theory and the application of non-linear spatial panel smooth transition threshold model publication-title: Energy Policy doi: 10.1016/j.enpol.2023.113792 – volume: 40 start-page: 23 year: 2021 ident: mstad3c5fbib29 article-title: Fault diagnosis method of rolling bearing based on amplitude entropy of visible view spectrum publication-title: Vib. Shock doi: 10.13465/j.cnki.jvs.2021.04.004 – volume: 179 year: 2021 ident: mstad3c5fbib9 article-title: Rotating machinery fault diagnosis based on multivariate multiscale fuzzy distribution entropy and Fisher score publication-title: Measurement doi: 10.1016/j.measurement.2021.109495 – volume: 34 year: 2022 ident: mstad3c5fbib25 article-title: A novel complex network community clustering method for fault diagnosis publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ac97b2 – volume: 125 start-page: 1777 year: 2023 ident: mstad3c5fbib11 article-title: Fault feature selection for the identification of compound gear-bearing faults using firefly algorithm publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-023-10846-y – volume: 16 start-page: 5677 year: 2023 ident: mstad3c5fbib31 article-title: Features and evolution of global energy trade patterns from the perspective of complex networks publication-title: Energies doi: 10.3390/en16155677 – volume: 228 year: 2023 ident: mstad3c5fbib32 article-title: Performance assessment of a communication infrastructure with redundant topology: a complex network approach publication-title: Comput. Netw. doi: 10.1016/j.comnet.2023.109747 – volume: 35 start-page: 76 year: 2016 ident: mstad3c5fbib26 article-title: A complex network association clustering-based diagnosis method for the separation of composite fault features publication-title: Vib. Shock doi: 10.13465/j.cnki.jvs.2016.07.012 – volume: 521 start-page: 436 year: 2015 ident: mstad3c5fbib53 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 35 year: 2023 ident: mstad3c5fbib16 article-title: Deep transfer learning rolling bearing fault diagnosis method based on convolutional neural network feature fusion publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/acfe31 – volume: 15 start-page: 313 year: 2019 ident: mstad3c5fbib42 article-title: From networks to optimal higher-order models of complex systems publication-title: Nat. Phys. doi: 10.1038/s41567-019-0459-y – volume: 13 start-page: 9089 year: 2023 ident: mstad3c5fbib5 article-title: Composite fault diagnosis of rolling bearings: a feature selection approach based on the causal feature network publication-title: Appl. Sci. doi: 10.3390/app13169089 – volume: 64 start-page: 100 year: 2015 ident: mstad3c5fbib49 article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.04.021 – volume: 46 start-page: 90 year: 2010 ident: mstad3c5fbib27 article-title: Fault diagnosis strategy based on complex network analysis publication-title: J. Mech. Eng. doi: 10.3901/JME.2010.03.090 – volume: 60 year: 2023 ident: mstad3c5fbib38 article-title: NRAND: an efficient and robust dismantling approach for infectious disease network publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2022.103221 – volume: 787 start-page: 1 year: 2019 ident: mstad3c5fbib43 article-title: Complex network approaches to nonlinear time series analysis publication-title: Phys. Rep. doi: 10.1016/j.physrep.2018.10.005 – volume: 34 year: 2023 ident: mstad3c5fbib2 article-title: Compound fault diagnosis method for rolling bearings based on the multipoint kurtosis spectrum and AO-MOMDEA publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/acd710 – volume: 237 year: 2024 ident: mstad3c5fbib19 article-title: FS-SCF network: neural network interpretability based on counterfactual generation and feature selection for fault diagnosis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121670 – start-page: 1 year: 2009 ident: mstad3c5fbib51 article-title: Pearson correlation coefficient doi: 10.1007/978-3-642-00296-0_5 – volume: vol 96 start-page: p 292 year: 1996 ident: mstad3c5fbib39 article-title: Toward optimal feature selection – volume: vol 2 start-page: 376 year: 2003 ident: mstad3c5fbib41 article-title: Algorithms for large scale Markov blanket discovery – volume: 1056 start-page: 1 year: 2024 ident: mstad3c5fbib37 article-title: Epidemic spreading on higher-order networks publication-title: Phys. Rep. doi: 10.1016/j.physrep.2024.01.003 – volume: 32 start-page: 245 year: 2010 ident: mstad3c5fbib52 article-title: Node centrality in weighted networks: generalizing degree and shortest paths publication-title: Social Netw. doi: 10.1016/j.socnet.2010.03.006 – volume: 99 year: 2023 ident: mstad3c5fbib35 article-title: Minimum conflict consensus models for group decision-making based on social network analysis considering non-cooperative behaviors publication-title: Inform. Fusion doi: 10.1016/j.inffus.2023.101855 – start-page: 291 year: 2023 ident: mstad3c5fbib22 article-title: Investigation on feature attribution for remaining useful life prediction model of cryogenic ball bearing – year: 2017 ident: mstad3c5fbib47 article-title: A unified approach to interpreting model predictions – volume: 34 year: 2023 ident: mstad3c5fbib4 article-title: Composite fault feature extraction of rolling bearing using adaptive circulant singular spectrum analysis publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/acf4b0 – volume: 34 year: 2022 ident: mstad3c5fbib6 article-title: Application of IPSO-MCKD-IVMD-CAF in the compound fault diagnosis of rolling bearing publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aca349 – volume: 165 year: 2022 ident: mstad3c5fbib7 article-title: Practical framework of Gini index in the application of machinery fault feature extraction publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108333 |
| SSID | ssj0007099 |
| Score | 2.468879 |
| Snippet | Feature selection is a crucial step in fault diagnosis. When rolling bearings are susceptible to compound faults, causal relationships are hidden within the... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 86201 |
| Title | Feature selection and interpretability analysis of compound faults in rolling bearings based on the causal feature weighted network |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1361-6501 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007099 issn: 0957-0233 databaseCode: IOP dateStart: 19900101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG7WiOBFTFSML_rgwbCMu9PTMz1zFFGjEvWQYPQyTD8mLIRZyc6gePXn-Cet6tcMiQHjZVia3tpHfVRVV31dRchTDX60BU-ctKwqEq5LmVTStKAQOMZJ1Wpmq-cHH4r9I_7uOD-ezX5PWEtDL5-rn3-9V_I_WoU10Cvekr2CZqNQWIDXoF94gobh-U86xvgNCwAbO8wmEItXkUdoia_YYGlsPIIUcpykNG-b4bS3ZNgz35dbAujtEE_0bNpXEeaqGTZ4ydF_1HebSkXOgOOPT4PbgzHfOA_XhRBZ_YX0_ZfBlfrX3YnCR6QFWW4BMm1_rCbLn-32r7DSrcbVN41N874f1tPUBeORODfmIEUCQYOzcMZZ4KxIEwgb06mJdh1NPBTLib2F85jbecETgPXEpESQhi5PZypvR78Xav3n3GEkKdryfFnWKKNGGbWTcI1cZ-BCcE7I24-fotsXy8o3dnS_ydfEQcIifouFkzCJgSbBzOFtcsufQugLB6ltMjPdDrlh2cBqs0O2vcXf0Ge-LfneHfLLo41GtFFAGz2PNhrQRtctDWijDm2wmXq00YA2atFGQRqgjTq0UY82GtBGPdrukqPXrw5f7id-hEeiGM_6BLyJ4o1OywYCfZk3PNcKI1YhKw4nfS3bPNPL3IBbEFpXlTGZyFOVqTLlxogsu0e2unVn7hMqlsyUcBxWQi95UehGmdRoJlhRsZZrvUsW4U-tle9vj2NWTuvLFLlL9uI7vrneLpfufXCFvQ_JzRHtj8hWfzaYxxC69vKJhcwf0iqeGA |
| linkProvider | IOP Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+and+interpretability+analysis+of+compound+faults+in+rolling+bearings+based+on+the+causal+feature+weighted+network&rft.jtitle=Measurement+science+%26+technology&rft.au=Yu%2C+Chongchong&rft.au=Li%2C+Mengxiong&rft.au=Wu%2C+Zongning&rft.au=Gao%2C+Kuo&rft.date=2024-08-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=35&rft.issue=8&rft.spage=86201&rft_id=info:doi/10.1088%2F1361-6501%2Fad3c5f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ad3c5f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon |