Feature selection and interpretability analysis of compound faults in rolling bearings based on the causal feature weighted network

Feature selection is a crucial step in fault diagnosis. When rolling bearings are susceptible to compound faults, causal relationships are hidden within the signal features. Complex network analysis methods provide a tool for causal relationship modeling and feature importance assessment. Existing s...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 35; no. 8; p. 86201
Main Authors Yu, Chongchong, Li, Mengxiong, Wu, Zongning, Gao, Kuo, Wang, Fei
Format Journal Article
LanguageEnglish
Published 01.08.2024
Online AccessGet full text
ISSN0957-0233
1361-6501
DOI10.1088/1361-6501/ad3c5f

Cover

Abstract Feature selection is a crucial step in fault diagnosis. When rolling bearings are susceptible to compound faults, causal relationships are hidden within the signal features. Complex network analysis methods provide a tool for causal relationship modeling and feature importance assessment. Existing studies mainly focus on unweighted networks, overlooking the impact of the strength of causal relationships on feature selection. To address this issue, we propose a compound fault feature selection method based on the causal feature weighted network. First, we construct a weighted network using the incremental association Markov blanket discovery algorithm and Pearson correlation coefficient. Then, we quantify the importance of features by treating node strength as a centrality index and rank them to partition the feature subset. Finally, the optimal feature subset is obtained through a neural network with the accuracy of compound fault diagnosis as the threshold. Analysis of public datasets and comparative experiments demonstrate the advantages of our method. Compared to existing research, our method not only effectively reduces the number of optimal feature subsets to 11 but also improves the accuracy of compound fault diagnosis to 95.2%. Furthermore, we employ the SHapley Additive exPlanations to interpret the contribution of each feature in the optimal subset to the accuracy of compound fault diagnosis. This provides reference from both physical and network perspectives to feature selection and compound fault diagnosis in rolling bearings in practical working conditions.
AbstractList Feature selection is a crucial step in fault diagnosis. When rolling bearings are susceptible to compound faults, causal relationships are hidden within the signal features. Complex network analysis methods provide a tool for causal relationship modeling and feature importance assessment. Existing studies mainly focus on unweighted networks, overlooking the impact of the strength of causal relationships on feature selection. To address this issue, we propose a compound fault feature selection method based on the causal feature weighted network. First, we construct a weighted network using the incremental association Markov blanket discovery algorithm and Pearson correlation coefficient. Then, we quantify the importance of features by treating node strength as a centrality index and rank them to partition the feature subset. Finally, the optimal feature subset is obtained through a neural network with the accuracy of compound fault diagnosis as the threshold. Analysis of public datasets and comparative experiments demonstrate the advantages of our method. Compared to existing research, our method not only effectively reduces the number of optimal feature subsets to 11 but also improves the accuracy of compound fault diagnosis to 95.2%. Furthermore, we employ the SHapley Additive exPlanations to interpret the contribution of each feature in the optimal subset to the accuracy of compound fault diagnosis. This provides reference from both physical and network perspectives to feature selection and compound fault diagnosis in rolling bearings in practical working conditions.
Author Yu, Chongchong
Gao, Kuo
Wang, Fei
Li, Mengxiong
Wu, Zongning
Author_xml – sequence: 1
  givenname: Chongchong
  orcidid: 0000-0003-4234-1260
  surname: Yu
  fullname: Yu, Chongchong
– sequence: 2
  givenname: Mengxiong
  orcidid: 0009-0001-2738-3350
  surname: Li
  fullname: Li, Mengxiong
– sequence: 3
  givenname: Zongning
  orcidid: 0000-0002-0699-9025
  surname: Wu
  fullname: Wu, Zongning
– sequence: 4
  givenname: Kuo
  orcidid: 0000-0002-0514-6514
  surname: Gao
  fullname: Gao, Kuo
– sequence: 5
  givenname: Fei
  orcidid: 0009-0001-2710-9028
  surname: Wang
  fullname: Wang, Fei
BookMark eNp1kEFLAzEQhYNUsK3ePeYPrE2aTbM5SrEqFLzoeZlNZttouilJSunZP-4uLR4ETwNv3nvDfBMy6kKHhNxz9sBZVc24WPBiIRmfgRVGtldk_CuNyJhpqQo2F-KGTFL6ZIwppvWYfK8Q8iEiTejRZBc6Cp2lrssY9xEzNM67fOpF8KfkEg0tNWG3D4fe1cLB59SbaQzeu25DG4TYz0QbSGhp35a3SA0cEnjaXk4d0W22uV93mI8hft2S6xZ8wrvLnJKP1dP78qVYvz2_Lh_XhZmXIheCSVOC5RUIOW8klNIawZVUjS4rrW3TSmGZRK60slZrRKEkN8JUvERUQkzJ4txrYkgpYlsbl2H4OUdwvuasHlDWA7d64FafUfZB9ie4j24H8fR_5Aey13zK
CitedBy_id crossref_primary_10_1007_s11071_025_10914_w
crossref_primary_10_1088_1361_6501_ad8213
crossref_primary_10_1016_j_jmapro_2025_02_004
Cites_doi 10.1080/03081060.2023.2166509
10.1177/09596518231162892
10.1038/s42005-024-01589-7
10.1016/j.jsv.2019.05.037
10.1073/pnas.39.10.1095
10.3390/app10010346
10.3390/app13137350
10.1016/j.neunet.2022.05.024
10.1109/TIM.2022.3221142
10.1016/j.isatra.2016.08.022
10.1016/j.aei.2023.102007
10.1103/PhysRevLett.86.2909
10.1016/j.chaos.2023.113211
10.1016/j.ymssp.2017.06.011
10.1073/pnas.0400087101
10.1007/s00500-018-3178-x
10.1103/PhysRevE.70.056131
10.3390/s21124070
10.1016/j.ymssp.2021.108105
10.1088/1367-2630/9/6/180
10.1155/2018/2913163
10.3390/drones7020081
10.1088/1361-6501/ad24b5
10.1016/j.enpol.2023.113792
10.13465/j.cnki.jvs.2021.04.004
10.1016/j.measurement.2021.109495
10.1088/1361-6501/ac97b2
10.1007/s00170-023-10846-y
10.3390/en16155677
10.1016/j.comnet.2023.109747
10.13465/j.cnki.jvs.2016.07.012
10.1038/nature14539
10.1088/1361-6501/acfe31
10.1038/s41567-019-0459-y
10.3390/app13169089
10.1016/j.ymssp.2015.04.021
10.3901/JME.2010.03.090
10.1016/j.ipm.2022.103221
10.1016/j.physrep.2018.10.005
10.1088/1361-6501/acd710
10.1016/j.eswa.2023.121670
10.1007/978-3-642-00296-0_5
10.1016/j.physrep.2024.01.003
10.1016/j.socnet.2010.03.006
10.1016/j.inffus.2023.101855
10.1088/1361-6501/acf4b0
10.1088/1361-6501/aca349
10.1016/j.ymssp.2021.108333
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1361-6501/ad3c5f
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10_1088_1361_6501_ad3c5f
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
ID FETCH-LOGICAL-c243t-305c4ad18a352b5a45dc31757b94899dbf53d05e1797dd99ee3751c3c814ee733
ISSN 0957-0233
IngestDate Thu Apr 24 22:52:52 EDT 2025
Wed Oct 01 05:33:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c243t-305c4ad18a352b5a45dc31757b94899dbf53d05e1797dd99ee3751c3c814ee733
ORCID 0000-0002-0699-9025
0000-0002-0514-6514
0009-0001-2710-9028
0009-0001-2738-3350
0000-0003-4234-1260
ParticipantIDs crossref_citationtrail_10_1088_1361_6501_ad3c5f
crossref_primary_10_1088_1361_6501_ad3c5f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2024
References Hasan (mstad3c5fbib20) 2021; 21
Cong (mstad3c5fbib31) 2023; 16
Lu (mstad3c5fbib50) 2019; 457
Zeng (mstad3c5fbib24) 2022; 72
Yu (mstad3c5fbib16) 2023; 35
Luo (mstad3c5fbib10) 2016; 65
Athisayam (mstad3c5fbib11) 2023; 125
Ai (mstad3c5fbib1) 2023; 168
Tian (mstad3c5fbib23) 2020; 10
Zhou (mstad3c5fbib6) 2022; 34
Zhu (mstad3c5fbib3) 2024; 35
Brito (mstad3c5fbib21) 2022; 163
Shapley (mstad3c5fbib48) 1953; 39
An (mstad3c5fbib22) 2023
Newman (mstad3c5fbib44) 2004; 70
Farkas (mstad3c5fbib45) 2007; 9
LeCun (mstad3c5fbib53) 2015; 521
Cohen (mstad3c5fbib51) 2009
Kuperman (mstad3c5fbib54) 2001; 86
Wang (mstad3c5fbib2) 2023; 34
Singh (mstad3c5fbib15) 2023; 7
Miao (mstad3c5fbib7) 2022; 165
Wang (mstad3c5fbib37) 2024; 1056
Yuan (mstad3c5fbib35) 2023; 99
Zhang (mstad3c5fbib30) 2018; 2018
Barraza (mstad3c5fbib19) 2024; 237
Chen (mstad3c5fbib25) 2022; 34
Zhou (mstad3c5fbib18) 2023; 13
Barrat (mstad3c5fbib46) 2004; 101
Du (mstad3c5fbib27) 2010; 46
Lambiotte (mstad3c5fbib42) 2019; 15
Zheng (mstad3c5fbib8) 2018; 99
Zheng (mstad3c5fbib34) 2024; 7
Koller (mstad3c5fbib39) 1996; vol 96
Opsahl (mstad3c5fbib52) 2010; 32
Chen (mstad3c5fbib29) 2021; 40
Smith (mstad3c5fbib49) 2015; 64
Ersöz (mstad3c5fbib33) 2023; 46
Roy (mstad3c5fbib14) 2023; 56
Tsamardinos (mstad3c5fbib41) 2003; vol 2
Pearl (mstad3c5fbib40) 1988
Gao (mstad3c5fbib5) 2023; 13
Cao (mstad3c5fbib28) 2017; vol 50916
Herrera (mstad3c5fbib32) 2023; 228
Zou (mstad3c5fbib43) 2019; 787
Akhtar (mstad3c5fbib38) 2023; 60
Lundberg (mstad3c5fbib47) 2017
Ma (mstad3c5fbib9) 2021; 179
Bai (mstad3c5fbib36) 2023; 183
Jiang (mstad3c5fbib13) 2022; 153
Xu (mstad3c5fbib17) 2019; 23
Chen (mstad3c5fbib26) 2016; 35
Zhou (mstad3c5fbib4) 2023; 34
Mathur (mstad3c5fbib12) 2023; 237
References_xml – volume: 46
  start-page: 200
  year: 2023
  ident: mstad3c5fbib33
  article-title: Centrality and connectivity analysis of the European airports: a weighted complex network approach
  publication-title: Transp. Plann. Technol.
  doi: 10.1080/03081060.2023.2166509
– volume: 237
  start-page: 1602
  year: 2023
  ident: mstad3c5fbib12
  article-title: Ranked feature-based data-driven bearing fault diagnosis using support vector machine and artificial neural network
  publication-title: Proc. Inst. Mech. Eng. I
  doi: 10.1177/09596518231162892
– year: 1988
  ident: mstad3c5fbib40
– volume: 7
  start-page: 97
  year: 2024
  ident: mstad3c5fbib34
  article-title: Geometric renormalization of weighted networks
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-024-01589-7
– volume: 457
  start-page: 67
  year: 2019
  ident: mstad3c5fbib50
  article-title: A novel underdetermined blind source separation method with noise and unknown source number
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.05.037
– volume: 39
  start-page: 1095
  year: 1953
  ident: mstad3c5fbib48
  article-title: Stochastic games
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.39.10.1095
– volume: 10
  start-page: 346
  year: 2020
  ident: mstad3c5fbib23
  article-title: An ensemble learning and RUL prediction method based on bearings degradation indicator construction
  publication-title: Appl. Sci.
  doi: 10.3390/app10010346
– volume: 13
  start-page: 7350
  year: 2023
  ident: mstad3c5fbib18
  article-title: RFR-GA-BLS: a feature selection and parameter optimization method for fault diagnosis of rolling bearing using infrared images
  publication-title: Appl. Sci.
  doi: 10.3390/app13137350
– volume: 153
  start-page: 204
  year: 2022
  ident: mstad3c5fbib13
  article-title: MGLNN: semi-supervised learning via multiple graph cooperative learning neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2022.05.024
– volume: vol 50916
  start-page: p V006T05A019
  year: 2017
  ident: mstad3c5fbib28
  article-title: Fault diagnosis of gas turbine based on complex networks theory
– volume: 72
  start-page: 1
  year: 2022
  ident: mstad3c5fbib24
  article-title: Dynamic Bayesian networks for feature learning and transfer applications in remaining useful life estimation
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3221142
– volume: 65
  start-page: 556
  year: 2016
  ident: mstad3c5fbib10
  article-title: Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2016.08.022
– volume: 56
  year: 2023
  ident: mstad3c5fbib14
  article-title: DenseSPH-YOLOv5: an automated damage detection model based on DenseNet and swin-transformer prediction head-enabled YOLOv5 with attention mechanism
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2023.102007
– volume: 86
  start-page: 2909
  year: 2001
  ident: mstad3c5fbib54
  article-title: Small world effect in an epidemiological model
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.2909
– volume: 168
  year: 2023
  ident: mstad3c5fbib1
  article-title: A fast search method for optimal parameters of stochastic resonance based on stochastic bifurcation and its application in fault diagnosis of rolling bearings
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2023.113211
– volume: 99
  start-page: 229
  year: 2018
  ident: mstad3c5fbib8
  article-title: Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.06.011
– volume: 101
  start-page: 3747
  year: 2004
  ident: mstad3c5fbib46
  article-title: The architecture of complex weighted networks
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.0400087101
– volume: 23
  start-page: 5117
  year: 2019
  ident: mstad3c5fbib17
  article-title: Automatic roller bearings fault diagnosis using DSAE in deep learning and CFS algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3178-x
– volume: 70
  year: 2004
  ident: mstad3c5fbib44
  article-title: Analysis of weighted networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.056131
– volume: 21
  start-page: 4070
  year: 2021
  ident: mstad3c5fbib20
  article-title: An explainable ai-based fault diagnosis model for bearings
  publication-title: Sensors
  doi: 10.3390/s21124070
– volume: 163
  year: 2022
  ident: mstad3c5fbib21
  article-title: An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108105
– volume: 9
  start-page: 180
  year: 2007
  ident: mstad3c5fbib45
  article-title: Weighted network modules
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/9/6/180
– volume: 2018
  start-page: 1
  year: 2018
  ident: mstad3c5fbib30
  article-title: A new modelling and feature extraction method based on complex network and its application in machine fault diagnosis
  publication-title: Shock Vib.
  doi: 10.1155/2018/2913163
– volume: 7
  start-page: 81
  year: 2023
  ident: mstad3c5fbib15
  article-title: Deep learning-based cost-effective and responsive robot for autism treatment
  publication-title: Drones
  doi: 10.3390/drones7020081
– volume: 35
  year: 2024
  ident: mstad3c5fbib3
  article-title: Compound fault diagnosis of rolling bearings with few-shot based on DCGAN-RepLKNet
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ad24b5
– volume: 183
  year: 2023
  ident: mstad3c5fbib36
  article-title: Effects of digital economy on carbon emission intensity in Chinese cities: a life-cycle theory and the application of non-linear spatial panel smooth transition threshold model
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2023.113792
– volume: 40
  start-page: 23
  year: 2021
  ident: mstad3c5fbib29
  article-title: Fault diagnosis method of rolling bearing based on amplitude entropy of visible view spectrum
  publication-title: Vib. Shock
  doi: 10.13465/j.cnki.jvs.2021.04.004
– volume: 179
  year: 2021
  ident: mstad3c5fbib9
  article-title: Rotating machinery fault diagnosis based on multivariate multiscale fuzzy distribution entropy and Fisher score
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109495
– volume: 34
  year: 2022
  ident: mstad3c5fbib25
  article-title: A novel complex network community clustering method for fault diagnosis
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ac97b2
– volume: 125
  start-page: 1777
  year: 2023
  ident: mstad3c5fbib11
  article-title: Fault feature selection for the identification of compound gear-bearing faults using firefly algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-023-10846-y
– volume: 16
  start-page: 5677
  year: 2023
  ident: mstad3c5fbib31
  article-title: Features and evolution of global energy trade patterns from the perspective of complex networks
  publication-title: Energies
  doi: 10.3390/en16155677
– volume: 228
  year: 2023
  ident: mstad3c5fbib32
  article-title: Performance assessment of a communication infrastructure with redundant topology: a complex network approach
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2023.109747
– volume: 35
  start-page: 76
  year: 2016
  ident: mstad3c5fbib26
  article-title: A complex network association clustering-based diagnosis method for the separation of composite fault features
  publication-title: Vib. Shock
  doi: 10.13465/j.cnki.jvs.2016.07.012
– volume: 521
  start-page: 436
  year: 2015
  ident: mstad3c5fbib53
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 35
  year: 2023
  ident: mstad3c5fbib16
  article-title: Deep transfer learning rolling bearing fault diagnosis method based on convolutional neural network feature fusion
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/acfe31
– volume: 15
  start-page: 313
  year: 2019
  ident: mstad3c5fbib42
  article-title: From networks to optimal higher-order models of complex systems
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0459-y
– volume: 13
  start-page: 9089
  year: 2023
  ident: mstad3c5fbib5
  article-title: Composite fault diagnosis of rolling bearings: a feature selection approach based on the causal feature network
  publication-title: Appl. Sci.
  doi: 10.3390/app13169089
– volume: 64
  start-page: 100
  year: 2015
  ident: mstad3c5fbib49
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.04.021
– volume: 46
  start-page: 90
  year: 2010
  ident: mstad3c5fbib27
  article-title: Fault diagnosis strategy based on complex network analysis
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2010.03.090
– volume: 60
  year: 2023
  ident: mstad3c5fbib38
  article-title: NRAND: an efficient and robust dismantling approach for infectious disease network
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2022.103221
– volume: 787
  start-page: 1
  year: 2019
  ident: mstad3c5fbib43
  article-title: Complex network approaches to nonlinear time series analysis
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2018.10.005
– volume: 34
  year: 2023
  ident: mstad3c5fbib2
  article-title: Compound fault diagnosis method for rolling bearings based on the multipoint kurtosis spectrum and AO-MOMDEA
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/acd710
– volume: 237
  year: 2024
  ident: mstad3c5fbib19
  article-title: FS-SCF network: neural network interpretability based on counterfactual generation and feature selection for fault diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121670
– start-page: 1
  year: 2009
  ident: mstad3c5fbib51
  article-title: Pearson correlation coefficient
  doi: 10.1007/978-3-642-00296-0_5
– volume: vol 96
  start-page: p 292
  year: 1996
  ident: mstad3c5fbib39
  article-title: Toward optimal feature selection
– volume: vol 2
  start-page: 376
  year: 2003
  ident: mstad3c5fbib41
  article-title: Algorithms for large scale Markov blanket discovery
– volume: 1056
  start-page: 1
  year: 2024
  ident: mstad3c5fbib37
  article-title: Epidemic spreading on higher-order networks
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2024.01.003
– volume: 32
  start-page: 245
  year: 2010
  ident: mstad3c5fbib52
  article-title: Node centrality in weighted networks: generalizing degree and shortest paths
  publication-title: Social Netw.
  doi: 10.1016/j.socnet.2010.03.006
– volume: 99
  year: 2023
  ident: mstad3c5fbib35
  article-title: Minimum conflict consensus models for group decision-making based on social network analysis considering non-cooperative behaviors
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2023.101855
– start-page: 291
  year: 2023
  ident: mstad3c5fbib22
  article-title: Investigation on feature attribution for remaining useful life prediction model of cryogenic ball bearing
– year: 2017
  ident: mstad3c5fbib47
  article-title: A unified approach to interpreting model predictions
– volume: 34
  year: 2023
  ident: mstad3c5fbib4
  article-title: Composite fault feature extraction of rolling bearing using adaptive circulant singular spectrum analysis
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/acf4b0
– volume: 34
  year: 2022
  ident: mstad3c5fbib6
  article-title: Application of IPSO-MCKD-IVMD-CAF in the compound fault diagnosis of rolling bearing
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aca349
– volume: 165
  year: 2022
  ident: mstad3c5fbib7
  article-title: Practical framework of Gini index in the application of machinery fault feature extraction
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108333
SSID ssj0007099
Score 2.468879
Snippet Feature selection is a crucial step in fault diagnosis. When rolling bearings are susceptible to compound faults, causal relationships are hidden within the...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 86201
Title Feature selection and interpretability analysis of compound faults in rolling bearings based on the causal feature weighted network
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1361-6501
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007099
  issn: 0957-0233
  databaseCode: IOP
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG7WiOBFTFSML_rgwbCMu9PTMz1zFFGjEvWQYPQyTD8mLIRZyc6gePXn-Cet6tcMiQHjZVia3tpHfVRVV31dRchTDX60BU-ctKwqEq5LmVTStKAQOMZJ1Wpmq-cHH4r9I_7uOD-ezX5PWEtDL5-rn3-9V_I_WoU10Cvekr2CZqNQWIDXoF94gobh-U86xvgNCwAbO8wmEItXkUdoia_YYGlsPIIUcpykNG-b4bS3ZNgz35dbAujtEE_0bNpXEeaqGTZ4ydF_1HebSkXOgOOPT4PbgzHfOA_XhRBZ_YX0_ZfBlfrX3YnCR6QFWW4BMm1_rCbLn-32r7DSrcbVN41N874f1tPUBeORODfmIEUCQYOzcMZZ4KxIEwgb06mJdh1NPBTLib2F85jbecETgPXEpESQhi5PZypvR78Xav3n3GEkKdryfFnWKKNGGbWTcI1cZ-BCcE7I24-fotsXy8o3dnS_ydfEQcIifouFkzCJgSbBzOFtcsufQugLB6ltMjPdDrlh2cBqs0O2vcXf0Ge-LfneHfLLo41GtFFAGz2PNhrQRtctDWijDm2wmXq00YA2atFGQRqgjTq0UY82GtBGPdrukqPXrw5f7id-hEeiGM_6BLyJ4o1OywYCfZk3PNcKI1YhKw4nfS3bPNPL3IBbEFpXlTGZyFOVqTLlxogsu0e2unVn7hMqlsyUcBxWQi95UehGmdRoJlhRsZZrvUsW4U-tle9vj2NWTuvLFLlL9uI7vrneLpfufXCFvQ_JzRHtj8hWfzaYxxC69vKJhcwf0iqeGA
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+and+interpretability+analysis+of+compound+faults+in+rolling+bearings+based+on+the+causal+feature+weighted+network&rft.jtitle=Measurement+science+%26+technology&rft.au=Yu%2C+Chongchong&rft.au=Li%2C+Mengxiong&rft.au=Wu%2C+Zongning&rft.au=Gao%2C+Kuo&rft.date=2024-08-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=35&rft.issue=8&rft.spage=86201&rft_id=info:doi/10.1088%2F1361-6501%2Fad3c5f&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ad3c5f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon