Application of Chi-square discretization algorithms to ensemble classification methods
•Discretization is an important process in terms of both machine learning and data mining.•The effect of discretization on ensemble methods was analyzed.•Four Chi-square based discretization algorithms were used.•The Ensemble methods performed better on discrete data sets. Classification is one of t...
Saved in:
| Published in | Expert systems with applications Vol. 185; p. 115540 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Ltd
15.12.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2021.115540 |
Cover
| Abstract | •Discretization is an important process in terms of both machine learning and data mining.•The effect of discretization on ensemble methods was analyzed.•Four Chi-square based discretization algorithms were used.•The Ensemble methods performed better on discrete data sets.
Classification is one of the important tasks in data mining and machine learning. Classification performance depends on many factors as well as data characteristics. Some algorithms are known to work better with discrete data. In contrast, most real-world data contain continuous variables. For algorithms working with discrete data, these continuous variables must be converted to discrete ones. In this process called discretization, continuous variables are converted to their corresponding discrete variables. In this paper, four Chi-square based supervised discretization algorithms ChiMerge(ChiM), Chi2, Extended Chi2(ExtChi2) and Modified Chi2(ModChi2) were used. In the literature, the performance of these algorithms is often tested with decision trees and Naïve Bayes classifiers. In this study, differently, four sets of data discretized by these algorithms were classified with ensemble methods. Classification accuracies for these data sets were obtained through using a stratified 10-fold cross-validation method. The classification performance of the original and discrete data sets of the methods is presented comparatively. According to the results, the performance of the discrete data is more successful than the original data. |
|---|---|
| AbstractList | Classification is one of the important tasks in data mining and machine learning. Classification performance depends on many factors as well as data characteristics. Some algorithms are known to work better with discrete data. In contrast, most real-world data contain continuous variables. For algorithms working with discrete data, these continuous variables must be converted to discrete ones. In this process called discretization, continuous variables are converted to their corresponding discrete variables. In this paper, four Chi-square based supervised discretization algorithms ChiMerge(ChiM), Chi2, Extended Chi2(ExtChi2) and Modified Chi2(ModChi2) were used. In the literature, the performance of these algorithms is often tested with decision trees and Naïve Bayes classifiers. In this study, differently, four sets of data discretized by these algorithms were classified with ensemble methods. Classification accuracies for these data sets were obtained through using a stratified 10-fold cross-validation method. The classification performance of the original and discrete data sets of the methods is presented comparatively. According to the results, the performance of the discrete data is more successful than the original data. •Discretization is an important process in terms of both machine learning and data mining.•The effect of discretization on ensemble methods was analyzed.•Four Chi-square based discretization algorithms were used.•The Ensemble methods performed better on discrete data sets. Classification is one of the important tasks in data mining and machine learning. Classification performance depends on many factors as well as data characteristics. Some algorithms are known to work better with discrete data. In contrast, most real-world data contain continuous variables. For algorithms working with discrete data, these continuous variables must be converted to discrete ones. In this process called discretization, continuous variables are converted to their corresponding discrete variables. In this paper, four Chi-square based supervised discretization algorithms ChiMerge(ChiM), Chi2, Extended Chi2(ExtChi2) and Modified Chi2(ModChi2) were used. In the literature, the performance of these algorithms is often tested with decision trees and Naïve Bayes classifiers. In this study, differently, four sets of data discretized by these algorithms were classified with ensemble methods. Classification accuracies for these data sets were obtained through using a stratified 10-fold cross-validation method. The classification performance of the original and discrete data sets of the methods is presented comparatively. According to the results, the performance of the discrete data is more successful than the original data. |
| ArticleNumber | 115540 |
| Author | Peker, Nuran Kubat, Cemalettin |
| Author_xml | – sequence: 1 givenname: Nuran surname: Peker fullname: Peker, Nuran email: nuran.peker@ogr.sakarya.edu.tr – sequence: 2 givenname: Cemalettin surname: Kubat fullname: Kubat, Cemalettin email: kubat@sakarya.edu.tr |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2CKxJzgjzh2JJaq4kuqxAKsluNcqKM0bm0XBL-elMDC0OmGu-e9u2eGJr3rAaFLgjOCSXHdZhA-dEYxJRkhnOf4BE2JFCwtRMkmaIpLLtKciPwMzUJoMSYCYzFFr4vttrNGR-v6xDXJcm3TsNtrD0ltg_EQ7dfY1N2b8zauNyGJLoE-wKbqIDGdDsE2fxEbiGtXh3N02uguwMVvnaOXu9vn5UO6erp_XC5WqaE5iymtaZVLwUlDWUNkJTClRVE1RhrRME4EF8BEUZeVzrGpJHDOcEFpXZSSlYKyOboac7fe7fYQomrd3vfDSkW5zLkkJWXDlBynjHcheGiUsfHn3ui17RTB6mBRtepgUR0sqtHigNJ_6Nbbjfafx6GbEYLh9XcLXgVjoTdQWw8mqtrZY_g3DZ6Njw |
| CitedBy_id | crossref_primary_10_1007_s00521_024_09458_8 crossref_primary_10_1109_ACCESS_2024_3416838 crossref_primary_10_20473_jisebi_10_1_38_50 crossref_primary_10_38124_ijisrt_IJISRT24JUN1417 crossref_primary_10_1016_j_patcog_2023_110236 crossref_primary_10_1007_s42979_025_03766_z crossref_primary_10_1016_j_eswa_2022_117483 crossref_primary_10_1016_j_mtcomm_2022_104900 crossref_primary_10_3390_app14104088 crossref_primary_10_1038_s41598_025_91287_3 crossref_primary_10_3390_app14188256 crossref_primary_10_1016_j_ins_2022_11_135 crossref_primary_10_1016_j_measen_2023_100976 crossref_primary_10_1002_ecs2_70013 crossref_primary_10_1155_2022_9238968 crossref_primary_10_1016_j_csl_2023_101536 crossref_primary_10_1155_2022_7882396 crossref_primary_10_3390_app14198769 crossref_primary_10_3390_rs15204951 crossref_primary_10_1109_TFUZZ_2024_3473310 |
| Cites_doi | 10.1109/KST.2017.7886082 10.1016/S0888-613X(96)00074-6 10.1023/A:1010933404324 10.1155/2013/350123 10.1023/A:1018054314350 10.1007/s42044-020-00058-y 10.1016/j.procs.2015.04.201 10.1080/24751839.2018.1552647 10.1109/TKDE.2005.39 10.1007/BFb0095274 10.1016/j.procs.2014.05.315 10.1109/TKDE.2002.1000349 10.1109/EMBC.2014.6944661 10.1016/j.eswa.2008.06.063 10.2174/157489310794072508 10.1016/j.eswa.2010.06.048 10.1023/A:1016304305535 10.1007/s13369-018-3507-5 10.1126/science.1115255 10.1109/TKDE.2012.35 10.1016/j.ecolmodel.2017.12.015 10.17700/jai.2017.8.1.339 10.1023/B:MACH.0000019804.29836.05 10.1016/j.ins.2014.02.113 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 15, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 15, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2021.115540 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2021_115540 S0957417421009477 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c243t-2d2b48751f23f18b702266bfc8c7f351757e376d9ba40cb8e5530622d69839723 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Mon Jul 14 07:08:23 EDT 2025 Thu Apr 24 23:10:34 EDT 2025 Sat Oct 25 04:53:21 EDT 2025 Fri Feb 23 02:44:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ensemble methods Discretization Data mining Machine learning Classification Chi-square statistics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c243t-2d2b48751f23f18b702266bfc8c7f351757e376d9ba40cb8e5530622d69839723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2584581923 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2584581923 crossref_citationtrail_10_1016_j_eswa_2021_115540 crossref_primary_10_1016_j_eswa_2021_115540 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115540 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-15 |
| PublicationDateYYYYMMDD | 2021-12-15 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Drias, Moulai, Rehkab (b0040) 2019; 3 Liu, Hussain, Tan, Dash (b0100) 2002; 6 Breiman (b0015) 2001; 45 Chmielewski, Grzymala-Busse (b0025) 1996; 15 Qu, Yan, Sang, Liang, Kitsuregawa, Li (b0115) 2008 Tay, Shen (b0155) 2002; 14 Dash, R., Paramguru, R. L., & Dash, R. (2011). Comparative analysis of supervised and unsupervised discretization techniques. International Journal of Advances in Science and Technology Wang, Hao, Ma, Jiang (b0170) 2011; 38 M. Lichman UCI machine learning repository http://archive.ics.uci.edu/ml 2013 Accessed on August 11, 2019. Boulle (b0005) 2004; 55 2(3), 29-37. Kaufman, Michalski (b0075) 1999 Yang, Webb, Wu (b0185) 2009 Raschka (b0120) 2015 Thaseen, Kumar, Ahmad (b0160) 2019; 44 Zareapoor, Shamsolmoali (b0190) 2015; 48 K. Lavangnananda S. Chattanachot Study of discretization methods in classification 2017 IEEE 50 55. Breiman (b0010) 1996; 24 Ga, Rajinikanthb, Govardhanc (b0050) 2014; 31 R Foundation for Statistical. (2016). https://www.R-project.org. Accessed on January 10, 2020. Kerber (b0080) 1992 A. Tartar A. Akan N. Kilic A novel approach to malignant-benign classification of pulmonary nodules by using ensemble learning classifiers 2014 IEEE 4651 4654. Verma, Pal, Tiwari (b0165) 2020; 3 K. Wang B. Liu Concurrent discretization of multiple attributes 1998 Springer Berlin, Heidelberg 250 259. Gonzalez-Abril, Cuberos, Velasco, Ortega (b0060) 2009; 36 Su, Hsu (b0145) 2005; 17 Rokach (b0130) 2010; 33 H. Liu R. Setiono Chi2: Feature selection and discretization of numeric attributes 1995 IEEE 388 391. Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Proceedings of the 13th intenational conference on machine learning (ICML): vol. 96 (pp. 148-156). Garcia, Luengo, Sáez, López, Herrera (b0055) 2013; 25 Kotsiantis, Kanellopoulos (b0085) 2006; 32 Li Zou Deqin Yan Hamid Reza Karimi Peng Shi 2013 2013 1 8. Ropero, Renooij, van der Gaag (b0135) 2018; 368 Gneiting, Raftery (b0065) 2005; 310 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b0110) 2011; 12 Hemada, Lakshmi (b0070) 2013; 2 Yang, Hwa Yang, Zhou, B., & Y Zomaya, A. (b0180) 2010; 5 Cebeci, Yildiz (b0020) 2017; 8 Sang, Qi, Li, Jin, Yan, Gao (b0140) 2014; 270 Cebeci (10.1016/j.eswa.2021.115540_b0020) 2017; 8 Boulle (10.1016/j.eswa.2021.115540_b0005) 2004; 55 Sang (10.1016/j.eswa.2021.115540_b0140) 2014; 270 Verma (10.1016/j.eswa.2021.115540_b0165) 2020; 3 Gonzalez-Abril (10.1016/j.eswa.2021.115540_b0060) 2009; 36 Liu (10.1016/j.eswa.2021.115540_b0100) 2002; 6 10.1016/j.eswa.2021.115540_b0105 Kerber (10.1016/j.eswa.2021.115540_b0080) 1992 Breiman (10.1016/j.eswa.2021.115540_b0015) 2001; 45 Rokach (10.1016/j.eswa.2021.115540_b0130) 2010; 33 10.1016/j.eswa.2021.115540_b0175 Zareapoor (10.1016/j.eswa.2021.115540_b0190) 2015; 48 Ga (10.1016/j.eswa.2021.115540_b0050) 2014; 31 Kotsiantis (10.1016/j.eswa.2021.115540_b0085) 2006; 32 10.1016/j.eswa.2021.115540_b0030 10.1016/j.eswa.2021.115540_b0195 Chmielewski (10.1016/j.eswa.2021.115540_b0025) 1996; 15 10.1016/j.eswa.2021.115540_b0095 10.1016/j.eswa.2021.115540_b0150 10.1016/j.eswa.2021.115540_b0090 Wang (10.1016/j.eswa.2021.115540_b0170) 2011; 38 Hemada (10.1016/j.eswa.2021.115540_b0070) 2013; 2 Yang (10.1016/j.eswa.2021.115540_b0180) 2010; 5 Drias (10.1016/j.eswa.2021.115540_b0040) 2019; 3 Gneiting (10.1016/j.eswa.2021.115540_b0065) 2005; 310 Ropero (10.1016/j.eswa.2021.115540_b0135) 2018; 368 Pedregosa (10.1016/j.eswa.2021.115540_b0110) 2011; 12 Breiman (10.1016/j.eswa.2021.115540_b0010) 1996; 24 10.1016/j.eswa.2021.115540_b0125 Yang (10.1016/j.eswa.2021.115540_b0185) 2009 Tay (10.1016/j.eswa.2021.115540_b0155) 2002; 14 10.1016/j.eswa.2021.115540_b0045 Kaufman (10.1016/j.eswa.2021.115540_b0075) 1999 Raschka (10.1016/j.eswa.2021.115540_b0120) 2015 Su (10.1016/j.eswa.2021.115540_b0145) 2005; 17 Qu (10.1016/j.eswa.2021.115540_b0115) 2008 Garcia (10.1016/j.eswa.2021.115540_b0055) 2013; 25 Thaseen (10.1016/j.eswa.2021.115540_b0160) 2019; 44 |
| References_xml | – volume: 36 start-page: 5327 year: 2009 end-page: 5332 ident: b0060 article-title: Ameva: An autonomous discretization algorithm publication-title: Expert Systems with Applications – volume: 32 start-page: 47 year: 2006 end-page: 58 ident: b0085 article-title: Discretization techniques: A recent survey publication-title: GESTS International Transactions on Computer Science and Engineering – volume: 368 start-page: 391 year: 2018 end-page: 403 ident: b0135 article-title: Discretizing environmental data for learning Bayesian-network classifiers publication-title: Ecological Modelling – volume: 31 start-page: 671 year: 2014 end-page: 679 ident: b0050 article-title: Improve the classifier accuracy for continuous attributes in biomedical datasets using a new discretization method publication-title: Procedia Computer Science – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0015 article-title: Random forests publication-title: Machine Learning – volume: 3 start-page: 207 year: 2020 end-page: 216 ident: b0165 article-title: Skin disease prediction using ensemble methods and a new hybrid feature selection technique publication-title: Iran Journal of Computer Science – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0110 article-title: Scikit-learn: Machine learning in Python publication-title: The Journal of Machine Learning Research – reference: K. Wang B. Liu Concurrent discretization of multiple attributes 1998 Springer Berlin, Heidelberg 250 259. – reference: H. Liu R. Setiono Chi2: Feature selection and discretization of numeric attributes 1995 IEEE 388 391. – volume: 8 start-page: 13 year: 2017 end-page: 22 ident: b0020 article-title: Comparison of Chi-square based algorithms for discretization of continuous chicken egg quality traits publication-title: Journal of Agricultural Informatics – reference: Dash, R., Paramguru, R. L., & Dash, R. (2011). Comparative analysis of supervised and unsupervised discretization techniques. International Journal of Advances in Science and Technology, – reference: Proceedings of the 13th intenational conference on machine learning (ICML): vol. 96 (pp. 148-156). – start-page: 560 year: 2008 end-page: 571 ident: b0115 article-title: A novel Chi2 algorithm for discretization of continuous attributes publication-title: Asia-Pacific web conference – start-page: 411 year: 1999 end-page: 419 ident: b0075 article-title: Learning from inconsistent and noisy data: The AQ18 approach. – volume: 3 start-page: 210 year: 2019 end-page: 234 ident: b0040 article-title: LR-SDiscr: A novel and scalable merging and splitting discretization framework using a lexical generator publication-title: Journal of Information and Telecommunication – reference: A. Tartar A. Akan N. Kilic A novel approach to malignant-benign classification of pulmonary nodules by using ensemble learning classifiers 2014 IEEE 4651 4654. – volume: 44 start-page: 3357 year: 2019 end-page: 3368 ident: b0160 article-title: Integrated intrusion detection model using chi-square feature selection and ensemble of classifiers publication-title: Arabian Journal for Science and Engineering – reference: R Foundation for Statistical. (2016). https://www.R-project.org. Accessed on January 10, 2020. – reference: Li Zou Deqin Yan Hamid Reza Karimi Peng Shi 2013 2013 1 8. – volume: 25 start-page: 734 year: 2013 end-page: 750 ident: b0055 article-title: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 33 start-page: 1 year: 2010 end-page: 39 ident: b0130 publication-title: Ensemble-based classifiers. – volume: 55 start-page: 53 year: 2004 end-page: 69 ident: b0005 article-title: Khiops: A statistical discretization method of continuous attributes publication-title: Machine Learning – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b0010 article-title: Bagging predictors publication-title: Machine Learning – reference: K. Lavangnananda S. Chattanachot Study of discretization methods in classification 2017 IEEE 50 55. – volume: 17 start-page: 437 year: 2005 end-page: 441 ident: b0145 article-title: An extended chi2 algorithm for discretization of real value attributes publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 5 start-page: 296 year: 2010 end-page: 308 ident: b0180 article-title: A review of ensemble methods in bioinformatics publication-title: Current Bioinformatics – volume: 6 start-page: 393 year: 2002 end-page: 423 ident: b0100 article-title: Discretization: An enabling technique publication-title: Data Mining and Knowledge Discovery – year: 2015 ident: b0120 article-title: Python machine learning – start-page: 101 year: 2009 end-page: 116 ident: b0185 article-title: Discretization methods publication-title: Data mining and knowledge discovery handbook – volume: 48 start-page: 679 year: 2015 end-page: 685 ident: b0190 article-title: Application of credit card fraud detection: Based on bagging ensemble classifier publication-title: Procedia computer science – reference: Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In – volume: 14 start-page: 666 year: 2002 end-page: 670 ident: b0155 article-title: A modified chi2 algorithm for discretization publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 310 start-page: 248 year: 2005 end-page: 249 ident: b0065 article-title: Weather forecasting with ensemble methods publication-title: Science – volume: 38 start-page: 223 year: 2011 end-page: 230 ident: b0170 article-title: A comparative assessment of ensemble learning for credit scoring publication-title: Expert systems with applications – volume: 15 start-page: 319 year: 1996 end-page: 331 ident: b0025 article-title: Global discretization of continuous attributes as preprocessing for machine learning publication-title: International Journal of Approximate Reasoning – reference: 2(3), 29-37. – start-page: 123 year: 1992 end-page: 128 ident: b0080 article-title: Chimerge: Discretization of numeric attributes publication-title: In – reference: M. Lichman UCI machine learning repository http://archive.ics.uci.edu/ml 2013 Accessed on August 11, 2019. – volume: 270 start-page: 73 year: 2014 end-page: 91 ident: b0140 article-title: An effective discretization method for disposing high-dimensional data publication-title: Information Sciences – volume: 2 start-page: 1887 year: 2013 end-page: 1892 ident: b0070 article-title: A study on discretization techniques publication-title: International Journal of Engineering Research & Technology – ident: 10.1016/j.eswa.2021.115540_b0090 doi: 10.1109/KST.2017.7886082 – ident: 10.1016/j.eswa.2021.115540_b0125 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.eswa.2021.115540_b0110 article-title: Scikit-learn: Machine learning in Python publication-title: The Journal of Machine Learning Research – volume: 15 start-page: 319 issue: 4 year: 1996 ident: 10.1016/j.eswa.2021.115540_b0025 article-title: Global discretization of continuous attributes as preprocessing for machine learning publication-title: International Journal of Approximate Reasoning doi: 10.1016/S0888-613X(96)00074-6 – ident: 10.1016/j.eswa.2021.115540_b0045 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.eswa.2021.115540_b0015 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 2 start-page: 1887 issue: 8 year: 2013 ident: 10.1016/j.eswa.2021.115540_b0070 article-title: A study on discretization techniques publication-title: International Journal of Engineering Research & Technology – ident: 10.1016/j.eswa.2021.115540_b0195 doi: 10.1155/2013/350123 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.eswa.2021.115540_b0010 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1023/A:1018054314350 – volume: 33 start-page: 1 issue: 1-2 year: 2010 ident: 10.1016/j.eswa.2021.115540_b0130 publication-title: Ensemble-based classifiers. Artificial intelligence review – volume: 3 start-page: 207 issue: 4 year: 2020 ident: 10.1016/j.eswa.2021.115540_b0165 article-title: Skin disease prediction using ensemble methods and a new hybrid feature selection technique publication-title: Iran Journal of Computer Science doi: 10.1007/s42044-020-00058-y – ident: 10.1016/j.eswa.2021.115540_b0095 – volume: 48 start-page: 679 issue: 2015 year: 2015 ident: 10.1016/j.eswa.2021.115540_b0190 article-title: Application of credit card fraud detection: Based on bagging ensemble classifier publication-title: Procedia computer science doi: 10.1016/j.procs.2015.04.201 – volume: 3 start-page: 210 issue: 2 year: 2019 ident: 10.1016/j.eswa.2021.115540_b0040 article-title: LR-SDiscr: A novel and scalable merging and splitting discretization framework using a lexical generator publication-title: Journal of Information and Telecommunication doi: 10.1080/24751839.2018.1552647 – volume: 17 start-page: 437 issue: 3 year: 2005 ident: 10.1016/j.eswa.2021.115540_b0145 article-title: An extended chi2 algorithm for discretization of real value attributes publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2005.39 – ident: 10.1016/j.eswa.2021.115540_b0175 doi: 10.1007/BFb0095274 – volume: 31 start-page: 671 year: 2014 ident: 10.1016/j.eswa.2021.115540_b0050 article-title: Improve the classifier accuracy for continuous attributes in biomedical datasets using a new discretization method publication-title: Procedia Computer Science doi: 10.1016/j.procs.2014.05.315 – volume: 14 start-page: 666 issue: 3 year: 2002 ident: 10.1016/j.eswa.2021.115540_b0155 article-title: A modified chi2 algorithm for discretization publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2002.1000349 – ident: 10.1016/j.eswa.2021.115540_b0150 doi: 10.1109/EMBC.2014.6944661 – start-page: 411 year: 1999 ident: 10.1016/j.eswa.2021.115540_b0075 – volume: 36 start-page: 5327 issue: 3 year: 2009 ident: 10.1016/j.eswa.2021.115540_b0060 article-title: Ameva: An autonomous discretization algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.06.063 – start-page: 560 year: 2008 ident: 10.1016/j.eswa.2021.115540_b0115 article-title: A novel Chi2 algorithm for discretization of continuous attributes – volume: 5 start-page: 296 issue: 4 year: 2010 ident: 10.1016/j.eswa.2021.115540_b0180 article-title: A review of ensemble methods in bioinformatics publication-title: Current Bioinformatics doi: 10.2174/157489310794072508 – volume: 38 start-page: 223 issue: 1 year: 2011 ident: 10.1016/j.eswa.2021.115540_b0170 article-title: A comparative assessment of ensemble learning for credit scoring publication-title: Expert systems with applications doi: 10.1016/j.eswa.2010.06.048 – start-page: 123 year: 1992 ident: 10.1016/j.eswa.2021.115540_b0080 article-title: Chimerge: Discretization of numeric attributes – year: 2015 ident: 10.1016/j.eswa.2021.115540_b0120 – start-page: 101 year: 2009 ident: 10.1016/j.eswa.2021.115540_b0185 article-title: Discretization methods – volume: 32 start-page: 47 issue: 1 year: 2006 ident: 10.1016/j.eswa.2021.115540_b0085 article-title: Discretization techniques: A recent survey publication-title: GESTS International Transactions on Computer Science and Engineering – volume: 6 start-page: 393 issue: 4 year: 2002 ident: 10.1016/j.eswa.2021.115540_b0100 article-title: Discretization: An enabling technique publication-title: Data Mining and Knowledge Discovery doi: 10.1023/A:1016304305535 – volume: 44 start-page: 3357 issue: 4 year: 2019 ident: 10.1016/j.eswa.2021.115540_b0160 article-title: Integrated intrusion detection model using chi-square feature selection and ensemble of classifiers publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-018-3507-5 – ident: 10.1016/j.eswa.2021.115540_b0030 – volume: 310 start-page: 248 issue: 5746 year: 2005 ident: 10.1016/j.eswa.2021.115540_b0065 article-title: Weather forecasting with ensemble methods publication-title: Science doi: 10.1126/science.1115255 – volume: 25 start-page: 734 issue: 4 year: 2013 ident: 10.1016/j.eswa.2021.115540_b0055 article-title: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2012.35 – volume: 368 start-page: 391 year: 2018 ident: 10.1016/j.eswa.2021.115540_b0135 article-title: Discretizing environmental data for learning Bayesian-network classifiers publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2017.12.015 – volume: 8 start-page: 13 issue: 1 year: 2017 ident: 10.1016/j.eswa.2021.115540_b0020 article-title: Comparison of Chi-square based algorithms for discretization of continuous chicken egg quality traits publication-title: Journal of Agricultural Informatics doi: 10.17700/jai.2017.8.1.339 – volume: 55 start-page: 53 issue: 1 year: 2004 ident: 10.1016/j.eswa.2021.115540_b0005 article-title: Khiops: A statistical discretization method of continuous attributes publication-title: Machine Learning doi: 10.1023/B:MACH.0000019804.29836.05 – ident: 10.1016/j.eswa.2021.115540_b0105 – volume: 270 start-page: 73 year: 2014 ident: 10.1016/j.eswa.2021.115540_b0140 article-title: An effective discretization method for disposing high-dimensional data publication-title: Information Sciences doi: 10.1016/j.ins.2014.02.113 |
| SSID | ssj0017007 |
| Score | 2.484422 |
| Snippet | •Discretization is an important process in terms of both machine learning and data mining.•The effect of discretization on ensemble methods was analyzed.•Four... Classification is one of the important tasks in data mining and machine learning. Classification performance depends on many factors as well as data... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115540 |
| SubjectTerms | Algorithms Chi-square statistics Chi-square test Classification Continuity (mathematics) Data mining Datasets Decision trees Discretization Ensemble methods Machine learning |
| Title | Application of Chi-square discretization algorithms to ensemble classification methods |
| URI | https://dx.doi.org/10.1016/j.eswa.2021.115540 https://www.proquest.com/docview/2584581923 |
| Volume | 185 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4I8qj8sCGTLHjxMlYVaACogsPsVlx4kBRXzRBbPx27mIHBEIMjInsKDo7d9_F331HyBHPc56rxDIF0Y9Jk0QMVddYkYg0iFCgpT4xvR5Ggzt5-RA-LJF-UwuDtErv-51Pr721v9P11uzOR6PuDYADCIeQ2nGkxymsKJdSYReDk_dPmgfKzymnt6cYjvaFM47jZcs31B4SHDxHWP8A-T04_XDTdew5XyerHjTSnnuvDbJkp5tkrWnIQP33uUXue1_H0XRW0P7TiJUvsAksxepbLFh0VZc0HT_OFqPqaVLSakYhlbUTM7Y0QyyN5CE3yrWXLrfJ3fnZbX_AfOMElgkZVEzkwmAiwgsRFDw2CgJ1FJkiizNVBCEgBmXBseSJSeVpZmKLvYMiIfIoAbykRLBDWtPZ1O4SqmLAKxLy2CwGrBGEqUplyqXhsU1SY22b8MZiOvOq4tjcYqwb-tizRitrtLJ2Vm6T4885c6ep8efosFkI_W1naHD6f847aFZN---y1ALwVogacMHePx-7T1bwChktPDwgrWrxag8Bl1SmU2-8DlnuXVwNhh_zpuAD |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgHODCjlgK-MANmWJncXKsKqqyXljEzYoThxZ1gSaIG9_OTOyAQKgHrokdRWNn5k385g0hRzzLeCZjwyREP-brOGSousbyWCReiAIt1Ynp9U3Yu_cvHoPHOdKpa2GQVul8v_Xplbd2V1rOmq2XwaB1C-AAwiGkdhzpcVLOkwU_EBIzsJOPL54H6s9JK7gnGQ53lTOW5GWKdxQfEhxcR1D9Afk7Ov3y01Xw6a6SZYcaadu-2BqZM-N1slJ3ZKDuA90gD-3v82g6yWmnP2DFK-wCQ7H8FisWbdklTYZPk-mg7I8KWk4o5LJmpIeGpgimkT1kR9n-0sUmue-e3XV6zHVOYKnwvZKJTGjMRHguvJxHWkKkDkOdp1Eqcy8AyCANeJYs1ol_murIYPOgUIgsjAEwSeFtkcZ4MjbbhMoIAIsPiWwaAdjwgkQmfsJ9zSMTJ9qYHcJri6nUyYpjd4uhqvljzwqtrNDKylp5hxx_zXmxohozRwf1QqgfW0OB1585r1mvmnIfZqEEAK4AReC83X8-9pAs9u6ur9TV-c3lHlnCO0hv4UGTNMrpm9kHkFLqg2oTfgI9y-GY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Chi-square+discretization+algorithms+to+ensemble+classification+methods&rft.jtitle=Expert+systems+with+applications&rft.au=Peker%2C+Nuran&rft.au=Kubat%2C+Cemalettin&rft.date=2021-12-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=185&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.115540&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |