Application of Chi-square discretization algorithms to ensemble classification methods

•Discretization is an important process in terms of both machine learning and data mining.•The effect of discretization on ensemble methods was analyzed.•Four Chi-square based discretization algorithms were used.•The Ensemble methods performed better on discrete data sets. Classification is one of t...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 185; p. 115540
Main Authors Peker, Nuran, Kubat, Cemalettin
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.12.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2021.115540

Cover

Abstract •Discretization is an important process in terms of both machine learning and data mining.•The effect of discretization on ensemble methods was analyzed.•Four Chi-square based discretization algorithms were used.•The Ensemble methods performed better on discrete data sets. Classification is one of the important tasks in data mining and machine learning. Classification performance depends on many factors as well as data characteristics. Some algorithms are known to work better with discrete data. In contrast, most real-world data contain continuous variables. For algorithms working with discrete data, these continuous variables must be converted to discrete ones. In this process called discretization, continuous variables are converted to their corresponding discrete variables. In this paper, four Chi-square based supervised discretization algorithms ChiMerge(ChiM), Chi2, Extended Chi2(ExtChi2) and Modified Chi2(ModChi2) were used. In the literature, the performance of these algorithms is often tested with decision trees and Naïve Bayes classifiers. In this study, differently, four sets of data discretized by these algorithms were classified with ensemble methods. Classification accuracies for these data sets were obtained through using a stratified 10-fold cross-validation method. The classification performance of the original and discrete data sets of the methods is presented comparatively. According to the results, the performance of the discrete data is more successful than the original data.
AbstractList Classification is one of the important tasks in data mining and machine learning. Classification performance depends on many factors as well as data characteristics. Some algorithms are known to work better with discrete data. In contrast, most real-world data contain continuous variables. For algorithms working with discrete data, these continuous variables must be converted to discrete ones. In this process called discretization, continuous variables are converted to their corresponding discrete variables. In this paper, four Chi-square based supervised discretization algorithms ChiMerge(ChiM), Chi2, Extended Chi2(ExtChi2) and Modified Chi2(ModChi2) were used. In the literature, the performance of these algorithms is often tested with decision trees and Naïve Bayes classifiers. In this study, differently, four sets of data discretized by these algorithms were classified with ensemble methods. Classification accuracies for these data sets were obtained through using a stratified 10-fold cross-validation method. The classification performance of the original and discrete data sets of the methods is presented comparatively. According to the results, the performance of the discrete data is more successful than the original data.
•Discretization is an important process in terms of both machine learning and data mining.•The effect of discretization on ensemble methods was analyzed.•Four Chi-square based discretization algorithms were used.•The Ensemble methods performed better on discrete data sets. Classification is one of the important tasks in data mining and machine learning. Classification performance depends on many factors as well as data characteristics. Some algorithms are known to work better with discrete data. In contrast, most real-world data contain continuous variables. For algorithms working with discrete data, these continuous variables must be converted to discrete ones. In this process called discretization, continuous variables are converted to their corresponding discrete variables. In this paper, four Chi-square based supervised discretization algorithms ChiMerge(ChiM), Chi2, Extended Chi2(ExtChi2) and Modified Chi2(ModChi2) were used. In the literature, the performance of these algorithms is often tested with decision trees and Naïve Bayes classifiers. In this study, differently, four sets of data discretized by these algorithms were classified with ensemble methods. Classification accuracies for these data sets were obtained through using a stratified 10-fold cross-validation method. The classification performance of the original and discrete data sets of the methods is presented comparatively. According to the results, the performance of the discrete data is more successful than the original data.
ArticleNumber 115540
Author Peker, Nuran
Kubat, Cemalettin
Author_xml – sequence: 1
  givenname: Nuran
  surname: Peker
  fullname: Peker, Nuran
  email: nuran.peker@ogr.sakarya.edu.tr
– sequence: 2
  givenname: Cemalettin
  surname: Kubat
  fullname: Kubat, Cemalettin
  email: kubat@sakarya.edu.tr
BookMark eNp9kD1PwzAQhi1UJNrCH2CKxJzgjzh2JJaq4kuqxAKsluNcqKM0bm0XBL-elMDC0OmGu-e9u2eGJr3rAaFLgjOCSXHdZhA-dEYxJRkhnOf4BE2JFCwtRMkmaIpLLtKciPwMzUJoMSYCYzFFr4vttrNGR-v6xDXJcm3TsNtrD0ltg_EQ7dfY1N2b8zauNyGJLoE-wKbqIDGdDsE2fxEbiGtXh3N02uguwMVvnaOXu9vn5UO6erp_XC5WqaE5iymtaZVLwUlDWUNkJTClRVE1RhrRME4EF8BEUZeVzrGpJHDOcEFpXZSSlYKyOboac7fe7fYQomrd3vfDSkW5zLkkJWXDlBynjHcheGiUsfHn3ui17RTB6mBRtepgUR0sqtHigNJ_6Nbbjfafx6GbEYLh9XcLXgVjoTdQWw8mqtrZY_g3DZ6Njw
CitedBy_id crossref_primary_10_1007_s00521_024_09458_8
crossref_primary_10_1109_ACCESS_2024_3416838
crossref_primary_10_20473_jisebi_10_1_38_50
crossref_primary_10_38124_ijisrt_IJISRT24JUN1417
crossref_primary_10_1016_j_patcog_2023_110236
crossref_primary_10_1007_s42979_025_03766_z
crossref_primary_10_1016_j_eswa_2022_117483
crossref_primary_10_1016_j_mtcomm_2022_104900
crossref_primary_10_3390_app14104088
crossref_primary_10_1038_s41598_025_91287_3
crossref_primary_10_3390_app14188256
crossref_primary_10_1016_j_ins_2022_11_135
crossref_primary_10_1016_j_measen_2023_100976
crossref_primary_10_1002_ecs2_70013
crossref_primary_10_1155_2022_9238968
crossref_primary_10_1016_j_csl_2023_101536
crossref_primary_10_1155_2022_7882396
crossref_primary_10_3390_app14198769
crossref_primary_10_3390_rs15204951
crossref_primary_10_1109_TFUZZ_2024_3473310
Cites_doi 10.1109/KST.2017.7886082
10.1016/S0888-613X(96)00074-6
10.1023/A:1010933404324
10.1155/2013/350123
10.1023/A:1018054314350
10.1007/s42044-020-00058-y
10.1016/j.procs.2015.04.201
10.1080/24751839.2018.1552647
10.1109/TKDE.2005.39
10.1007/BFb0095274
10.1016/j.procs.2014.05.315
10.1109/TKDE.2002.1000349
10.1109/EMBC.2014.6944661
10.1016/j.eswa.2008.06.063
10.2174/157489310794072508
10.1016/j.eswa.2010.06.048
10.1023/A:1016304305535
10.1007/s13369-018-3507-5
10.1126/science.1115255
10.1109/TKDE.2012.35
10.1016/j.ecolmodel.2017.12.015
10.17700/jai.2017.8.1.339
10.1023/B:MACH.0000019804.29836.05
10.1016/j.ins.2014.02.113
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115540
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115540
S0957417421009477
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c243t-2d2b48751f23f18b702266bfc8c7f351757e376d9ba40cb8e5530622d69839723
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Mon Jul 14 07:08:23 EDT 2025
Thu Apr 24 23:10:34 EDT 2025
Sat Oct 25 04:53:21 EDT 2025
Fri Feb 23 02:44:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ensemble methods
Discretization
Data mining
Machine learning
Classification
Chi-square statistics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c243t-2d2b48751f23f18b702266bfc8c7f351757e376d9ba40cb8e5530622d69839723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2584581923
PQPubID 2045477
ParticipantIDs proquest_journals_2584581923
crossref_citationtrail_10_1016_j_eswa_2021_115540
crossref_primary_10_1016_j_eswa_2021_115540
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115540
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Drias, Moulai, Rehkab (b0040) 2019; 3
Liu, Hussain, Tan, Dash (b0100) 2002; 6
Breiman (b0015) 2001; 45
Chmielewski, Grzymala-Busse (b0025) 1996; 15
Qu, Yan, Sang, Liang, Kitsuregawa, Li (b0115) 2008
Tay, Shen (b0155) 2002; 14
Dash, R., Paramguru, R. L., & Dash, R. (2011). Comparative analysis of supervised and unsupervised discretization techniques. International Journal of Advances in Science and Technology
Wang, Hao, Ma, Jiang (b0170) 2011; 38
M. Lichman UCI machine learning repository http://archive.ics.uci.edu/ml 2013 Accessed on August 11, 2019.
Boulle (b0005) 2004; 55
2(3), 29-37.
Kaufman, Michalski (b0075) 1999
Yang, Webb, Wu (b0185) 2009
Raschka (b0120) 2015
Thaseen, Kumar, Ahmad (b0160) 2019; 44
Zareapoor, Shamsolmoali (b0190) 2015; 48
K. Lavangnananda S. Chattanachot Study of discretization methods in classification 2017 IEEE 50 55.
Breiman (b0010) 1996; 24
Ga, Rajinikanthb, Govardhanc (b0050) 2014; 31
R Foundation for Statistical. (2016). https://www.R-project.org. Accessed on January 10, 2020.
Kerber (b0080) 1992
A. Tartar A. Akan N. Kilic A novel approach to malignant-benign classification of pulmonary nodules by using ensemble learning classifiers 2014 IEEE 4651 4654.
Verma, Pal, Tiwari (b0165) 2020; 3
K. Wang B. Liu Concurrent discretization of multiple attributes 1998 Springer Berlin, Heidelberg 250 259.
Gonzalez-Abril, Cuberos, Velasco, Ortega (b0060) 2009; 36
Su, Hsu (b0145) 2005; 17
Rokach (b0130) 2010; 33
H. Liu R. Setiono Chi2: Feature selection and discretization of numeric attributes 1995 IEEE 388 391.
Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In
Proceedings of the 13th intenational conference on machine learning (ICML): vol. 96 (pp. 148-156).
Garcia, Luengo, Sáez, López, Herrera (b0055) 2013; 25
Kotsiantis, Kanellopoulos (b0085) 2006; 32
Li Zou Deqin Yan Hamid Reza Karimi Peng Shi 2013 2013 1 8.
Ropero, Renooij, van der Gaag (b0135) 2018; 368
Gneiting, Raftery (b0065) 2005; 310
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b0110) 2011; 12
Hemada, Lakshmi (b0070) 2013; 2
Yang, Hwa Yang, Zhou, B., & Y Zomaya, A. (b0180) 2010; 5
Cebeci, Yildiz (b0020) 2017; 8
Sang, Qi, Li, Jin, Yan, Gao (b0140) 2014; 270
Cebeci (10.1016/j.eswa.2021.115540_b0020) 2017; 8
Boulle (10.1016/j.eswa.2021.115540_b0005) 2004; 55
Sang (10.1016/j.eswa.2021.115540_b0140) 2014; 270
Verma (10.1016/j.eswa.2021.115540_b0165) 2020; 3
Gonzalez-Abril (10.1016/j.eswa.2021.115540_b0060) 2009; 36
Liu (10.1016/j.eswa.2021.115540_b0100) 2002; 6
10.1016/j.eswa.2021.115540_b0105
Kerber (10.1016/j.eswa.2021.115540_b0080) 1992
Breiman (10.1016/j.eswa.2021.115540_b0015) 2001; 45
Rokach (10.1016/j.eswa.2021.115540_b0130) 2010; 33
10.1016/j.eswa.2021.115540_b0175
Zareapoor (10.1016/j.eswa.2021.115540_b0190) 2015; 48
Ga (10.1016/j.eswa.2021.115540_b0050) 2014; 31
Kotsiantis (10.1016/j.eswa.2021.115540_b0085) 2006; 32
10.1016/j.eswa.2021.115540_b0030
10.1016/j.eswa.2021.115540_b0195
Chmielewski (10.1016/j.eswa.2021.115540_b0025) 1996; 15
10.1016/j.eswa.2021.115540_b0095
10.1016/j.eswa.2021.115540_b0150
10.1016/j.eswa.2021.115540_b0090
Wang (10.1016/j.eswa.2021.115540_b0170) 2011; 38
Hemada (10.1016/j.eswa.2021.115540_b0070) 2013; 2
Yang (10.1016/j.eswa.2021.115540_b0180) 2010; 5
Drias (10.1016/j.eswa.2021.115540_b0040) 2019; 3
Gneiting (10.1016/j.eswa.2021.115540_b0065) 2005; 310
Ropero (10.1016/j.eswa.2021.115540_b0135) 2018; 368
Pedregosa (10.1016/j.eswa.2021.115540_b0110) 2011; 12
Breiman (10.1016/j.eswa.2021.115540_b0010) 1996; 24
10.1016/j.eswa.2021.115540_b0125
Yang (10.1016/j.eswa.2021.115540_b0185) 2009
Tay (10.1016/j.eswa.2021.115540_b0155) 2002; 14
10.1016/j.eswa.2021.115540_b0045
Kaufman (10.1016/j.eswa.2021.115540_b0075) 1999
Raschka (10.1016/j.eswa.2021.115540_b0120) 2015
Su (10.1016/j.eswa.2021.115540_b0145) 2005; 17
Qu (10.1016/j.eswa.2021.115540_b0115) 2008
Garcia (10.1016/j.eswa.2021.115540_b0055) 2013; 25
Thaseen (10.1016/j.eswa.2021.115540_b0160) 2019; 44
References_xml – volume: 36
  start-page: 5327
  year: 2009
  end-page: 5332
  ident: b0060
  article-title: Ameva: An autonomous discretization algorithm
  publication-title: Expert Systems with Applications
– volume: 32
  start-page: 47
  year: 2006
  end-page: 58
  ident: b0085
  article-title: Discretization techniques: A recent survey
  publication-title: GESTS International Transactions on Computer Science and Engineering
– volume: 368
  start-page: 391
  year: 2018
  end-page: 403
  ident: b0135
  article-title: Discretizing environmental data for learning Bayesian-network classifiers
  publication-title: Ecological Modelling
– volume: 31
  start-page: 671
  year: 2014
  end-page: 679
  ident: b0050
  article-title: Improve the classifier accuracy for continuous attributes in biomedical datasets using a new discretization method
  publication-title: Procedia Computer Science
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0015
  article-title: Random forests
  publication-title: Machine Learning
– volume: 3
  start-page: 207
  year: 2020
  end-page: 216
  ident: b0165
  article-title: Skin disease prediction using ensemble methods and a new hybrid feature selection technique
  publication-title: Iran Journal of Computer Science
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0110
  article-title: Scikit-learn: Machine learning in Python
  publication-title: The Journal of Machine Learning Research
– reference: K. Wang B. Liu Concurrent discretization of multiple attributes 1998 Springer Berlin, Heidelberg 250 259.
– reference: H. Liu R. Setiono Chi2: Feature selection and discretization of numeric attributes 1995 IEEE 388 391.
– volume: 8
  start-page: 13
  year: 2017
  end-page: 22
  ident: b0020
  article-title: Comparison of Chi-square based algorithms for discretization of continuous chicken egg quality traits
  publication-title: Journal of Agricultural Informatics
– reference: Dash, R., Paramguru, R. L., & Dash, R. (2011). Comparative analysis of supervised and unsupervised discretization techniques. International Journal of Advances in Science and Technology,
– reference: Proceedings of the 13th intenational conference on machine learning (ICML): vol. 96 (pp. 148-156).
– start-page: 560
  year: 2008
  end-page: 571
  ident: b0115
  article-title: A novel Chi2 algorithm for discretization of continuous attributes
  publication-title: Asia-Pacific web conference
– start-page: 411
  year: 1999
  end-page: 419
  ident: b0075
  article-title: Learning from inconsistent and noisy data: The AQ18 approach.
– volume: 3
  start-page: 210
  year: 2019
  end-page: 234
  ident: b0040
  article-title: LR-SDiscr: A novel and scalable merging and splitting discretization framework using a lexical generator
  publication-title: Journal of Information and Telecommunication
– reference: A. Tartar A. Akan N. Kilic A novel approach to malignant-benign classification of pulmonary nodules by using ensemble learning classifiers 2014 IEEE 4651 4654.
– volume: 44
  start-page: 3357
  year: 2019
  end-page: 3368
  ident: b0160
  article-title: Integrated intrusion detection model using chi-square feature selection and ensemble of classifiers
  publication-title: Arabian Journal for Science and Engineering
– reference: R Foundation for Statistical. (2016). https://www.R-project.org. Accessed on January 10, 2020.
– reference: Li Zou Deqin Yan Hamid Reza Karimi Peng Shi 2013 2013 1 8.
– volume: 25
  start-page: 734
  year: 2013
  end-page: 750
  ident: b0055
  article-title: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 33
  start-page: 1
  year: 2010
  end-page: 39
  ident: b0130
  publication-title: Ensemble-based classifiers.
– volume: 55
  start-page: 53
  year: 2004
  end-page: 69
  ident: b0005
  article-title: Khiops: A statistical discretization method of continuous attributes
  publication-title: Machine Learning
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b0010
  article-title: Bagging predictors
  publication-title: Machine Learning
– reference: K. Lavangnananda S. Chattanachot Study of discretization methods in classification 2017 IEEE 50 55.
– volume: 17
  start-page: 437
  year: 2005
  end-page: 441
  ident: b0145
  article-title: An extended chi2 algorithm for discretization of real value attributes
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 5
  start-page: 296
  year: 2010
  end-page: 308
  ident: b0180
  article-title: A review of ensemble methods in bioinformatics
  publication-title: Current Bioinformatics
– volume: 6
  start-page: 393
  year: 2002
  end-page: 423
  ident: b0100
  article-title: Discretization: An enabling technique
  publication-title: Data Mining and Knowledge Discovery
– year: 2015
  ident: b0120
  article-title: Python machine learning
– start-page: 101
  year: 2009
  end-page: 116
  ident: b0185
  article-title: Discretization methods
  publication-title: Data mining and knowledge discovery handbook
– volume: 48
  start-page: 679
  year: 2015
  end-page: 685
  ident: b0190
  article-title: Application of credit card fraud detection: Based on bagging ensemble classifier
  publication-title: Procedia computer science
– reference: Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In
– volume: 14
  start-page: 666
  year: 2002
  end-page: 670
  ident: b0155
  article-title: A modified chi2 algorithm for discretization
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 310
  start-page: 248
  year: 2005
  end-page: 249
  ident: b0065
  article-title: Weather forecasting with ensemble methods
  publication-title: Science
– volume: 38
  start-page: 223
  year: 2011
  end-page: 230
  ident: b0170
  article-title: A comparative assessment of ensemble learning for credit scoring
  publication-title: Expert systems with applications
– volume: 15
  start-page: 319
  year: 1996
  end-page: 331
  ident: b0025
  article-title: Global discretization of continuous attributes as preprocessing for machine learning
  publication-title: International Journal of Approximate Reasoning
– reference: 2(3), 29-37.
– start-page: 123
  year: 1992
  end-page: 128
  ident: b0080
  article-title: Chimerge: Discretization of numeric attributes
  publication-title: In
– reference: M. Lichman UCI machine learning repository http://archive.ics.uci.edu/ml 2013 Accessed on August 11, 2019.
– volume: 270
  start-page: 73
  year: 2014
  end-page: 91
  ident: b0140
  article-title: An effective discretization method for disposing high-dimensional data
  publication-title: Information Sciences
– volume: 2
  start-page: 1887
  year: 2013
  end-page: 1892
  ident: b0070
  article-title: A study on discretization techniques
  publication-title: International Journal of Engineering Research & Technology
– ident: 10.1016/j.eswa.2021.115540_b0090
  doi: 10.1109/KST.2017.7886082
– ident: 10.1016/j.eswa.2021.115540_b0125
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.eswa.2021.115540_b0110
  article-title: Scikit-learn: Machine learning in Python
  publication-title: The Journal of Machine Learning Research
– volume: 15
  start-page: 319
  issue: 4
  year: 1996
  ident: 10.1016/j.eswa.2021.115540_b0025
  article-title: Global discretization of continuous attributes as preprocessing for machine learning
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/S0888-613X(96)00074-6
– ident: 10.1016/j.eswa.2021.115540_b0045
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2021.115540_b0015
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 2
  start-page: 1887
  issue: 8
  year: 2013
  ident: 10.1016/j.eswa.2021.115540_b0070
  article-title: A study on discretization techniques
  publication-title: International Journal of Engineering Research & Technology
– ident: 10.1016/j.eswa.2021.115540_b0195
  doi: 10.1155/2013/350123
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.eswa.2021.115540_b0010
  article-title: Bagging predictors
  publication-title: Machine Learning
  doi: 10.1023/A:1018054314350
– volume: 33
  start-page: 1
  issue: 1-2
  year: 2010
  ident: 10.1016/j.eswa.2021.115540_b0130
  publication-title: Ensemble-based classifiers. Artificial intelligence review
– volume: 3
  start-page: 207
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2021.115540_b0165
  article-title: Skin disease prediction using ensemble methods and a new hybrid feature selection technique
  publication-title: Iran Journal of Computer Science
  doi: 10.1007/s42044-020-00058-y
– ident: 10.1016/j.eswa.2021.115540_b0095
– volume: 48
  start-page: 679
  issue: 2015
  year: 2015
  ident: 10.1016/j.eswa.2021.115540_b0190
  article-title: Application of credit card fraud detection: Based on bagging ensemble classifier
  publication-title: Procedia computer science
  doi: 10.1016/j.procs.2015.04.201
– volume: 3
  start-page: 210
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2021.115540_b0040
  article-title: LR-SDiscr: A novel and scalable merging and splitting discretization framework using a lexical generator
  publication-title: Journal of Information and Telecommunication
  doi: 10.1080/24751839.2018.1552647
– volume: 17
  start-page: 437
  issue: 3
  year: 2005
  ident: 10.1016/j.eswa.2021.115540_b0145
  article-title: An extended chi2 algorithm for discretization of real value attributes
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2005.39
– ident: 10.1016/j.eswa.2021.115540_b0175
  doi: 10.1007/BFb0095274
– volume: 31
  start-page: 671
  year: 2014
  ident: 10.1016/j.eswa.2021.115540_b0050
  article-title: Improve the classifier accuracy for continuous attributes in biomedical datasets using a new discretization method
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2014.05.315
– volume: 14
  start-page: 666
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2021.115540_b0155
  article-title: A modified chi2 algorithm for discretization
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2002.1000349
– ident: 10.1016/j.eswa.2021.115540_b0150
  doi: 10.1109/EMBC.2014.6944661
– start-page: 411
  year: 1999
  ident: 10.1016/j.eswa.2021.115540_b0075
– volume: 36
  start-page: 5327
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2021.115540_b0060
  article-title: Ameva: An autonomous discretization algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.06.063
– start-page: 560
  year: 2008
  ident: 10.1016/j.eswa.2021.115540_b0115
  article-title: A novel Chi2 algorithm for discretization of continuous attributes
– volume: 5
  start-page: 296
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2021.115540_b0180
  article-title: A review of ensemble methods in bioinformatics
  publication-title: Current Bioinformatics
  doi: 10.2174/157489310794072508
– volume: 38
  start-page: 223
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2021.115540_b0170
  article-title: A comparative assessment of ensemble learning for credit scoring
  publication-title: Expert systems with applications
  doi: 10.1016/j.eswa.2010.06.048
– start-page: 123
  year: 1992
  ident: 10.1016/j.eswa.2021.115540_b0080
  article-title: Chimerge: Discretization of numeric attributes
– year: 2015
  ident: 10.1016/j.eswa.2021.115540_b0120
– start-page: 101
  year: 2009
  ident: 10.1016/j.eswa.2021.115540_b0185
  article-title: Discretization methods
– volume: 32
  start-page: 47
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2021.115540_b0085
  article-title: Discretization techniques: A recent survey
  publication-title: GESTS International Transactions on Computer Science and Engineering
– volume: 6
  start-page: 393
  issue: 4
  year: 2002
  ident: 10.1016/j.eswa.2021.115540_b0100
  article-title: Discretization: An enabling technique
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1016304305535
– volume: 44
  start-page: 3357
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2021.115540_b0160
  article-title: Integrated intrusion detection model using chi-square feature selection and ensemble of classifiers
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-018-3507-5
– ident: 10.1016/j.eswa.2021.115540_b0030
– volume: 310
  start-page: 248
  issue: 5746
  year: 2005
  ident: 10.1016/j.eswa.2021.115540_b0065
  article-title: Weather forecasting with ensemble methods
  publication-title: Science
  doi: 10.1126/science.1115255
– volume: 25
  start-page: 734
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2021.115540_b0055
  article-title: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2012.35
– volume: 368
  start-page: 391
  year: 2018
  ident: 10.1016/j.eswa.2021.115540_b0135
  article-title: Discretizing environmental data for learning Bayesian-network classifiers
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2017.12.015
– volume: 8
  start-page: 13
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2021.115540_b0020
  article-title: Comparison of Chi-square based algorithms for discretization of continuous chicken egg quality traits
  publication-title: Journal of Agricultural Informatics
  doi: 10.17700/jai.2017.8.1.339
– volume: 55
  start-page: 53
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2021.115540_b0005
  article-title: Khiops: A statistical discretization method of continuous attributes
  publication-title: Machine Learning
  doi: 10.1023/B:MACH.0000019804.29836.05
– ident: 10.1016/j.eswa.2021.115540_b0105
– volume: 270
  start-page: 73
  year: 2014
  ident: 10.1016/j.eswa.2021.115540_b0140
  article-title: An effective discretization method for disposing high-dimensional data
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.02.113
SSID ssj0017007
Score 2.484422
Snippet •Discretization is an important process in terms of both machine learning and data mining.•The effect of discretization on ensemble methods was analyzed.•Four...
Classification is one of the important tasks in data mining and machine learning. Classification performance depends on many factors as well as data...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115540
SubjectTerms Algorithms
Chi-square statistics
Chi-square test
Classification
Continuity (mathematics)
Data mining
Datasets
Decision trees
Discretization
Ensemble methods
Machine learning
Title Application of Chi-square discretization algorithms to ensemble classification methods
URI https://dx.doi.org/10.1016/j.eswa.2021.115540
https://www.proquest.com/docview/2584581923
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4I8qj8sCGTLHjxMlYVaACogsPsVlx4kBRXzRBbPx27mIHBEIMjInsKDo7d9_F331HyBHPc56rxDIF0Y9Jk0QMVddYkYg0iFCgpT4xvR5Ggzt5-RA-LJF-UwuDtErv-51Pr721v9P11uzOR6PuDYADCIeQ2nGkxymsKJdSYReDk_dPmgfKzymnt6cYjvaFM47jZcs31B4SHDxHWP8A-T04_XDTdew5XyerHjTSnnuvDbJkp5tkrWnIQP33uUXue1_H0XRW0P7TiJUvsAksxepbLFh0VZc0HT_OFqPqaVLSakYhlbUTM7Y0QyyN5CE3yrWXLrfJ3fnZbX_AfOMElgkZVEzkwmAiwgsRFDw2CgJ1FJkiizNVBCEgBmXBseSJSeVpZmKLvYMiIfIoAbykRLBDWtPZ1O4SqmLAKxLy2CwGrBGEqUplyqXhsU1SY22b8MZiOvOq4tjcYqwb-tizRitrtLJ2Vm6T4885c6ep8efosFkI_W1naHD6f847aFZN---y1ALwVogacMHePx-7T1bwChktPDwgrWrxag8Bl1SmU2-8DlnuXVwNhh_zpuAD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgHODCjlgK-MANmWJncXKsKqqyXljEzYoThxZ1gSaIG9_OTOyAQKgHrokdRWNn5k385g0hRzzLeCZjwyREP-brOGSousbyWCReiAIt1Ynp9U3Yu_cvHoPHOdKpa2GQVul8v_Xplbd2V1rOmq2XwaB1C-AAwiGkdhzpcVLOkwU_EBIzsJOPL54H6s9JK7gnGQ53lTOW5GWKdxQfEhxcR1D9Afk7Ov3y01Xw6a6SZYcaadu-2BqZM-N1slJ3ZKDuA90gD-3v82g6yWmnP2DFK-wCQ7H8FisWbdklTYZPk-mg7I8KWk4o5LJmpIeGpgimkT1kR9n-0sUmue-e3XV6zHVOYKnwvZKJTGjMRHguvJxHWkKkDkOdp1Eqcy8AyCANeJYs1ol_murIYPOgUIgsjAEwSeFtkcZ4MjbbhMoIAIsPiWwaAdjwgkQmfsJ9zSMTJ9qYHcJri6nUyYpjd4uhqvljzwqtrNDKylp5hxx_zXmxohozRwf1QqgfW0OB1585r1mvmnIfZqEEAK4AReC83X8-9pAs9u6ur9TV-c3lHlnCO0hv4UGTNMrpm9kHkFLqg2oTfgI9y-GY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Chi-square+discretization+algorithms+to+ensemble+classification+methods&rft.jtitle=Expert+systems+with+applications&rft.au=Peker%2C+Nuran&rft.au=Kubat%2C+Cemalettin&rft.date=2021-12-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=185&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.115540&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon