A novel motor fault diagnosis method based on principal component analysis (PCA) with a discrete belief rule base (DBRB) system
Motor vibration signal data sets are characteristically random and nonlinear, and its features are difficult to extract for fault identification. To reduce the uncertainty of fault diagnosis, a method based on principal component analysis (PCA) and discrete belief rule base (DBRB) was developed for...
Saved in:
| Published in | Measurement science & technology Vol. 34; no. 3; p. 35012 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.03.2023
|
| Online Access | Get full text |
| ISSN | 0957-0233 1361-6501 |
| DOI | 10.1088/1361-6501/aca2ce |
Cover
| Abstract | Motor vibration signal data sets are characteristically random and nonlinear, and its features are difficult to extract for fault identification. To reduce the uncertainty of fault diagnosis, a method based on principal component analysis (PCA) and discrete belief rule base (DBRB) was developed for the first time. Initially, the vibration signal was first denoised using a wavelet threshold algorithm to eliminate interference. Second, overlapping signals were segmented into 15 time windows and a total of 13 typical time domain features and mathematical statistical features were extracted. Third, the dimensions of the features were reduced to three principal components by PCA and were taken as the antecedent attributes of the DBRB. However, the amount of information in each principal component is different, so the variance contribution rate was taken as an antecedent attribute weight to restore the original data characteristics. Fourth, a PCA-DBRB model was established, which effectively avoided the combinatorial explosion problem of rule base in the DBRB model. In addition, to obtain appropriate reference values, the k -means algorithm was introduced to take the cluster centers as reference values. The method was then validated by collecting typical fault data from motor bench experiments. The results demonstrated that compared with other traditional classifiers, this approach is more effective and superior in classification performance and more accurate in diagnosing faults from motor vibration data. |
|---|---|
| AbstractList | Motor vibration signal data sets are characteristically random and nonlinear, and its features are difficult to extract for fault identification. To reduce the uncertainty of fault diagnosis, a method based on principal component analysis (PCA) and discrete belief rule base (DBRB) was developed for the first time. Initially, the vibration signal was first denoised using a wavelet threshold algorithm to eliminate interference. Second, overlapping signals were segmented into 15 time windows and a total of 13 typical time domain features and mathematical statistical features were extracted. Third, the dimensions of the features were reduced to three principal components by PCA and were taken as the antecedent attributes of the DBRB. However, the amount of information in each principal component is different, so the variance contribution rate was taken as an antecedent attribute weight to restore the original data characteristics. Fourth, a PCA-DBRB model was established, which effectively avoided the combinatorial explosion problem of rule base in the DBRB model. In addition, to obtain appropriate reference values, the k -means algorithm was introduced to take the cluster centers as reference values. The method was then validated by collecting typical fault data from motor bench experiments. The results demonstrated that compared with other traditional classifiers, this approach is more effective and superior in classification performance and more accurate in diagnosing faults from motor vibration data. |
| Author | Gao, Haibo He, Yelan Xu, Xiaobin Lin, Zhiguo Yu, Hang |
| Author_xml | – sequence: 1 givenname: Hang orcidid: 0000-0002-6125-4296 surname: Yu fullname: Yu, Hang – sequence: 2 givenname: Haibo orcidid: 0000-0002-9349-9722 surname: Gao fullname: Gao, Haibo – sequence: 3 givenname: Yelan surname: He fullname: He, Yelan – sequence: 4 givenname: Zhiguo surname: Lin fullname: Lin, Zhiguo – sequence: 5 givenname: Xiaobin surname: Xu fullname: Xu, Xiaobin |
| BookMark | eNp1kM9LwzAUgIMouE3vHt9xO9QlTdu1x23-hIEiei5Z8uIibTKSTNnJf93WiQfB04PH-z4e35AcW2eRkAtGLxktyynjBUuKnLKpkCKVeEQGv6tjMqBVPktoyvkpGYbwRimd0aoakM85WPeODbQuOg9a7JoIyohX64IJ0GLcOAVrEVCBs7D1xkqzFQ1I1267D2wEYUWz74_Hj8v5BD5M3IDoHEF6jAhrbAxq8LsGvz0wvlo8LSYQ9iFie0ZOtGgCnv_MEXm5uX5e3iWrh9v75XyVyDTjMUmFyvNc6EKUVaqUzljFUHLkPKtQSS1ZxvR6nbNMsVIWlUpzxdMCZclnyLjiI1IcvNK7EDzqWpooonE2emGamtG6z1j3zeq-WX3I2IH0D9g1aIXf_498AW1sedQ |
| CitedBy_id | crossref_primary_10_1088_1361_6501_ad57de crossref_primary_10_1088_1361_6501_ad9629 crossref_primary_10_1007_s11668_024_02016_3 crossref_primary_10_1080_20464177_2024_2426317 crossref_primary_10_1109_ACCESS_2024_3465521 crossref_primary_10_1002_acs_3862 crossref_primary_10_1088_1361_6501_acd0c9 |
| Cites_doi | 10.1049/iet-epa.2018.5274 10.1016/j.eswa.2011.05.047 10.1016/j.compbiomed.2021.105104 10.1016/j.measurement.2022.110730 10.1109/ACCESS.2020.3016314 10.1037/h0071325 10.1016/j.acha.2016.11.001 10.1016/j.ejor.2010.03.032 10.1016/j.sigpro.2013.04.015 10.1007/s10489-019-01586-2 10.21595/jve.2016.16847 10.1080/00207543.2011.652262 10.1088/0957-0233/23/5/055605 10.1016/j.sigpro.2003.12.006 10.1109/TSP.2015.2391077 10.1109/TASSP.1978.1163047 10.1155/2020/4381480 10.1016/j.knosys.2012.10.016 10.1007/S40819-021-01214-Z 10.1109/78.382394 10.1016/j.eswa.2012.07.021 10.2478/v10178-011-0066-4 10.1016/j.procs.2020.07.015 10.1155/2015/390134 10.1016/j.eswa.2011.11.068 10.1080/14484846.2009.11464588 10.1016/j.knosys.2020.105904 10.1016/j.ymssp.2006.11.003 10.1109/TR.2013.2241251 10.1016/j.ssci.2013.10.021 10.1109/TGRS.2015.2466660 10.1016/j.ssci.2016.11.011 10.1177/0145482X20927130 10.1109/TFUZZ.2015.2426207 10.1109/TFUZZ.2011.2130527 10.1016/j.isatra.2020.10.028 10.1007/s12559-021-09978-8 10.1109/TIE.2011.2167893 10.1016/j.sigpro.2016.01.007 10.1109/MSP.2013.2265316 10.1016/j.knosys.2014.06.026 10.1109/ACCESS.2019.2929094 10.1016/j.eswa.2005.11.015 10.1016/j.measurement.2019.05.057 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1088/1361-6501/aca2ce |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1361-6501 |
| ExternalDocumentID | 10_1088_1361_6501_aca2ce |
| GroupedDBID | -DZ -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI AAYXX ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP ADEQX AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TWZ W28 WH7 XPP YQT ZMT ~02 |
| ID | FETCH-LOGICAL-c243t-2ad555af6a892ddf4191ec3e3349edcfc141fbb514d18c69d25d326ec837e13d3 |
| ISSN | 0957-0233 |
| IngestDate | Wed Oct 01 05:22:00 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c243t-2ad555af6a892ddf4191ec3e3349edcfc141fbb514d18c69d25d326ec837e13d3 |
| ORCID | 0000-0002-6125-4296 0000-0002-9349-9722 |
| ParticipantIDs | crossref_citationtrail_10_1088_1361_6501_aca2ce crossref_primary_10_1088_1361_6501_aca2ce |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Measurement science & technology |
| PublicationYear | 2023 |
| References | Liu (mstaca2cebib35) 2013; 62 Lei (mstaca2cebib4) 2012; 23 Huang (mstaca2cebib16) 2016; 54 Li (mstaca2cebib29) 2013; 51 Barla (mstaca2cebib24) 2009; 128 Zhou (mstaca2cebib36) 2012; 39 Zhang (mstaca2cebib28) 2014; 63 Han (mstaca2cebib20) 2020; 175 Ahmed (mstaca2cebib25) 2022; 14 Djurovic (mstaca2cebib11) 2004; 84 Qiu (mstaca2cebib7) 2019; 145 Zimroz (mstaca2cebib8) 2011; 18 Zhou (mstaca2cebib37) 2014; 70 Li (mstaca2cebib27) 2017; 93 Lei (mstaca2cebib3) 2007; 21 Li (mstaca2cebib30) 2011; 38 Zhang (mstaca2cebib21) 2020; 8 Auger (mstaca2cebib15) 2013; 30 Hotelling (mstaca2cebib42) 1933; 24 Auger (mstaca2cebib13) 1995; 43 Behera (mstaca2cebib18) 2018; 45 Chen (mstaca2cebib22) 2016; 18 Zhao (mstaca2cebib43) 2019; 7 Zhou (mstaca2cebib31) 2015; 23 Celebi (mstaca2cebib45) 2013; 40 Yan (mstaca2cebib9) 2014; 96 Jie (mstaca2cebib33) 2022; 140 Emerson (mstaca2cebib41) 2020; 114 Yu (mstaca2cebib5) 2012; 59 Liu (mstaca2cebib40) 2020; 2020 Xu (mstaca2cebib34) 2007; 32 Zhou (mstaca2cebib14) 2022; 190 Zhang (mstaca2cebib39) 2020; 199 Helmi (mstaca2cebib2) 2019; 13 Kodera (mstaca2cebib12) 1978; 26 Chen (mstaca2cebib6) 2015; 2015 Chang (mstaca2cebib44) 2013; 39 You (mstaca2cebib26) 2020; 50 Holighaus (mstaca2cebib17) 2016; 125 Yu (mstaca2cebib23) 2021; 109 Kouhkani (mstaca2cebib10) 2022; 8 Oberlin (mstaca2cebib19) 2015; 63 Si (mstaca2cebib32) 2011; 19 Jayaswal (mstaca2cebib1) 2009; 7 Zhou (mstaca2cebib38) 2010; 207 |
| References_xml | – volume: 13 start-page: 662 year: 2019 ident: mstaca2cebib2 article-title: Rolling bearing fault detection of electric motor using time domain and frequency domain features extraction and ANFIS publication-title: IET Electr. Power Appl. doi: 10.1049/iet-epa.2018.5274 – volume: 38 start-page: 14997 year: 2011 ident: mstaca2cebib30 article-title: A belief-rule-based inventory control method under nonstationary and uncertain demand publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.05.047 – volume: 140 year: 2022 ident: mstaca2cebib33 article-title: AutoBRB: an automated belief rule base model for pathologic complete response prediction in gastric cancer publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105104 – volume: 190 year: 2022 ident: mstaca2cebib14 article-title: Second-order iterative time-rearrangement synchrosqueezing transform and its application to rolling bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2022.110730 – volume: 8 start-page: 149868 year: 2020 ident: mstaca2cebib21 article-title: An intelligent fault diagnosis for rolling bearing based on adversarial semi-supervised method publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3016314 – volume: 24 start-page: 417 year: 1933 ident: mstaca2cebib42 article-title: Analysis of a complex of statistical variables into principal components publication-title: J. Educ. Psychol. doi: 10.1037/h0071325 – volume: 45 start-page: 379 year: 2018 ident: mstaca2cebib18 article-title: Theoretical analysis of the second-order synchrosqueezing transform publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2016.11.001 – volume: 207 start-page: 269 year: 2010 ident: mstaca2cebib38 article-title: A model for real-time failure prognosis based on hidden Markov model and belief rule base publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2010.03.032 – volume: 96 start-page: 1 year: 2014 ident: mstaca2cebib9 article-title: Wavelets for fault diagnosis of rotary machines: a review with applications publication-title: Signal Process. doi: 10.1016/j.sigpro.2013.04.015 – volume: 50 start-page: Mar year: 2020 ident: mstaca2cebib26 article-title: A new modeling and inference approach for the belief rule base with attribute reliability publication-title: Appl. Intell. doi: 10.1007/s10489-019-01586-2 – volume: 18 start-page: 3581 year: 2016 ident: mstaca2cebib22 article-title: A rolling bearing fault diagnosis method based on VMD—multiscale fractal dimension/energy and optimized support vector machine publication-title: J. Vibroengineering doi: 10.21595/jve.2016.16847 – volume: 51 start-page: 83 year: 2013 ident: mstaca2cebib29 article-title: A belief-rule-based inference method for aggregate production planning under uncertainty publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2011.652262 – volume: 23 year: 2012 ident: mstaca2cebib4 article-title: Fault detection of planetary gearboxes using new diagnostic parameters publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/23/5/055605 – volume: 84 start-page: 631 year: 2004 ident: mstaca2cebib11 article-title: An algorithm for the Wigner distribution based instantaneous frequency estimation in a high noise environment publication-title: Signal Process. doi: 10.1016/j.sigpro.2003.12.006 – volume: 63 start-page: 1335 year: 2015 ident: mstaca2cebib19 article-title: Second-order synchrosqueezing transform or invertible reassignment? towards ideal time-frequency representations publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2391077 – volume: 26 start-page: 64 year: 1978 ident: mstaca2cebib12 article-title: Analysis of time-varying signals with small BT values publication-title: IEEE Trans. Signal Process. doi: 10.1109/TASSP.1978.1163047 – volume: 2020, year: 2020 ident: mstaca2cebib40 article-title: Vibration signal analysis of water seal blasting based on wavelet threshold denoising and HHT transformation publication-title: Adv. Civ. Eng. doi: 10.1155/2020/4381480 – volume: 39 start-page: 159 year: 2013 ident: mstaca2cebib44 article-title: Structure learning for belief rule base expert system: a comparative study publication-title: Knowl Based Syst. doi: 10.1016/j.knosys.2012.10.016 – volume: 8 start-page: 26 year: 2022 ident: mstaca2cebib10 article-title: A convergence criterion of Newton’s method based on the Heisenberg uncertainty principle publication-title: Int. J. Appl. Comput. doi: 10.1007/S40819-021-01214-Z – volume: 43 start-page: 1068 year: 1995 ident: mstaca2cebib13 article-title: Improving the readability of time-frequency and time-scale representations by the reassignment method publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.382394 – volume: 40 start-page: 200 year: 2013 ident: mstaca2cebib45 article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.07.021 – volume: 18 start-page: 701 year: 2011 ident: mstaca2cebib8 article-title: Measurement of instantaneous shaft speed by advanced vibration signal processing-application to wind turbine gearbox publication-title: Metrol. Meas. Syst. doi: 10.2478/v10178-011-0066-4 – volume: 175 start-page: 88 year: 2020 ident: mstaca2cebib20 article-title: An weighted CNN ensemble model with small amount of data for bearing fault diagnosis publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2020.07.015 – volume: 2015 start-page: 1 year: 2015 ident: mstaca2cebib6 article-title: Gearbox fault identification and classification with convolutional neural networks publication-title: Shock Vib. doi: 10.1155/2015/390134 – volume: 39 start-page: 6140 year: 2012 ident: mstaca2cebib36 article-title: Condition-based maintenance of dynamic systems using online failure prognosis and belief rule base publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.11.068 – volume: 7 start-page: 157 year: 2009 ident: mstaca2cebib1 article-title: Application of artificial neural networks, fuzzy logic and wavelet transform in fault diagnosis via vibration signal analysis: a review publication-title: Aust. J. Mech. Eng. doi: 10.1080/14484846.2009.11464588 – volume: 199 year: 2020 ident: mstaca2cebib39 article-title: A method of automatically generating initial parameters for large-scale belief rule base publication-title: Knowl Based Syst. doi: 10.1016/j.knosys.2020.105904 – volume: 21 start-page: 2280 year: 2007 ident: mstaca2cebib3 article-title: Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2006.11.003 – volume: 128 start-page: 399 year: 2009 ident: mstaca2cebib24 article-title: Rule-based user characteristics acquisition from logs with semantics for personalized web-based systems publication-title: Comput. Inform. – volume: 62 start-page: 23 year: 2013 ident: mstaca2cebib35 article-title: Fuzzy failure mode and effects analysis using fuzzy evidential reasoning and belief rule-based methodology publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2013.2241251 – volume: 63 start-page: 157 year: 2014 ident: mstaca2cebib28 article-title: Safety management performance assessment for maritime safety administration (MSA) by using generalized belief rule base methodology publication-title: Saf. Sci. doi: 10.1016/j.ssci.2013.10.021 – volume: 54 start-page: 817 year: 2016 ident: mstaca2cebib16 article-title: Synchrosqueezing S-transform and its application in seismic spectral decomposition publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2466660 – volume: 93 start-page: 108 year: 2017 ident: mstaca2cebib27 article-title: A new safety assessment model for complex system based on the conditional generalized minimum variance and the belief rule base publication-title: Saf. Sci. doi: 10.1016/j.ssci.2016.11.011 – volume: 114 start-page: 240 year: 2020 ident: mstaca2cebib41 article-title: A look at principal component analysis publication-title: J. Vis. Impair. Blind. doi: 10.1177/0145482X20927130 – volume: 23 start-page: 2371 year: 2015 ident: mstaca2cebib31 article-title: Hidden behavior prediction of complex systems under testing influence based on semiquantitative information and belief rule base publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2015.2426207 – volume: 19 start-page: 636 year: 2011 ident: mstaca2cebib32 article-title: A new prediction model based on belief rule base for system’s behavior prediction publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2011.2130527 – volume: 109 start-page: 340 year: 2021 ident: mstaca2cebib23 article-title: Intelligent fault diagnosis of planetary gearbox based on refined composite hierarchical fuzzy entropy and random forest publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.10.028 – volume: 14 start-page: 660 year: 2022 ident: mstaca2cebib25 article-title: An integrated deep learning and belief rule base intelligent system to predict survival of COVID-19 patient under uncertainty publication-title: Cogn. Comput. doi: 10.1007/s12559-021-09978-8 – volume: 59 start-page: 2363 year: 2012 ident: mstaca2cebib5 article-title: Local and nonlocal preserving projection for bearing defect classification and performance assessment publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2011.2167893 – volume: 125 start-page: 1 year: 2016 ident: mstaca2cebib17 article-title: Reassignment and synchrosqueezing for general time–frequency filter banks, subsampling and processing publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.01.007 – volume: 30 start-page: 32 year: 2013 ident: mstaca2cebib15 article-title: Time-frequency reassignment and synchrosqueezing: an overview publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2013.2265316 – volume: 70 start-page: 221 year: 2014 ident: mstaca2cebib37 article-title: A model for online failure prognosis subject to two failure modes based on belief rule base and semi-quantitative information publication-title: Knowl Based Syst. doi: 10.1016/j.knosys.2014.06.026 – volume: 7 start-page: 99263 year: 2019 ident: mstaca2cebib43 article-title: Fault diagnosis method based on principal component analysis and broad learning system publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929094 – volume: 32 start-page: 103 year: 2007 ident: mstaca2cebib34 article-title: Inference and learning methodology of belief-rule-based expert system for pipeline leak detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.11.015 – volume: 145 start-page: 94 year: 2019 ident: mstaca2cebib7 article-title: A deep convolutional neural networks model for intelligent fault diagnosis of a gearbox under different operational conditions publication-title: Measurement doi: 10.1016/j.measurement.2019.05.057 |
| SSID | ssj0007099 |
| Score | 2.447788 |
| Snippet | Motor vibration signal data sets are characteristically random and nonlinear, and its features are difficult to extract for fault identification. To reduce the... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 35012 |
| Title | A novel motor fault diagnosis method based on principal component analysis (PCA) with a discrete belief rule base (DBRB) system |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1361-6501 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007099 issn: 0957-0233 databaseCode: IOP dateStart: 19900101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuiBYQ5aU5cNhVFLZJnMcetwVUkIAKtVLhEjm2U1YKm9VuwoEL_4bfyYztZAO0EuUSRZZ3lM18mW9mPB4z9jzgqcJIIvOVUtLnZRL7QhxIH7kojZFeolSaAtn3yfEZf3sen49GPwdVS21TvJDfL91X8j9axTHUK-2SvYZme6E4gPeoX7yihvH6Tzqee8v6m648fN312itFWzWUTKXaucXGHQ7tEU8pWhNY2by6aQjydVUvbXW560mCjubJ0ZxyBHa3G63coEPZaK_Q6KaW3rqttJFFU18efjykubYP9NDBfbfNOXrdliFCV_NXCv9Ta2hPOOqkGiBR26FFUW9ztIYkdDWoHbJtDz5_WVy09TBrEUbbsq0-_Zj6OG6Nm7bGN0oCHz3GYGidXapzMQzejamlFdHwUhJAw0n5iE4asZ0UoftQfuu4_QcT9vWJZmU-y3KSkZOM3Eq4wW6GyB50RMibDyc946cHM9fT0f4ntxyOEqb9U0ythIH7M_BjTu-yOy4AgblF0y4b6eUeu2UKgeVmj-06Y7-BsetIPrnHfszBAA0M0MAADXqggQUaGKBBvYQeaNADDTqgwRhhNgECGQjoQAYWZEAgM3JgTBCbgAXYfXb2-tXp0bHvTu7wZcijxg-FiuNYlInIZqFSJQ9mgZaRjiI-00qWMuBBWRTorKsgk8lMhbHCOELLLEp1EKnoAdtZ4uM9ZKDRpcUoRBSqVJxnRRakKkm1EoXkXGXJPpt2LzSXrq09na5S5VcpcZ9N-l-sbEuXK-c-usbcx-z2FulP2E6zbvVT9Fib4pmByy-k3pSC |
| linkProvider | IOP Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+motor+fault+diagnosis+method+based+on+principal+component+analysis+%28PCA%29+with+a+discrete+belief+rule+base+%28DBRB%29+system&rft.jtitle=Measurement+science+%26+technology&rft.au=Yu%2C+Hang&rft.au=Gao%2C+Haibo&rft.au=He%2C+Yelan&rft.au=Lin%2C+Zhiguo&rft.date=2023-03-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=34&rft.issue=3&rft.spage=35012&rft_id=info:doi/10.1088%2F1361-6501%2Faca2ce&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_aca2ce |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon |