A novel motor fault diagnosis method based on principal component analysis (PCA) with a discrete belief rule base (DBRB) system

Motor vibration signal data sets are characteristically random and nonlinear, and its features are difficult to extract for fault identification. To reduce the uncertainty of fault diagnosis, a method based on principal component analysis (PCA) and discrete belief rule base (DBRB) was developed for...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 34; no. 3; p. 35012
Main Authors Yu, Hang, Gao, Haibo, He, Yelan, Lin, Zhiguo, Xu, Xiaobin
Format Journal Article
LanguageEnglish
Published 01.03.2023
Online AccessGet full text
ISSN0957-0233
1361-6501
DOI10.1088/1361-6501/aca2ce

Cover

Abstract Motor vibration signal data sets are characteristically random and nonlinear, and its features are difficult to extract for fault identification. To reduce the uncertainty of fault diagnosis, a method based on principal component analysis (PCA) and discrete belief rule base (DBRB) was developed for the first time. Initially, the vibration signal was first denoised using a wavelet threshold algorithm to eliminate interference. Second, overlapping signals were segmented into 15 time windows and a total of 13 typical time domain features and mathematical statistical features were extracted. Third, the dimensions of the features were reduced to three principal components by PCA and were taken as the antecedent attributes of the DBRB. However, the amount of information in each principal component is different, so the variance contribution rate was taken as an antecedent attribute weight to restore the original data characteristics. Fourth, a PCA-DBRB model was established, which effectively avoided the combinatorial explosion problem of rule base in the DBRB model. In addition, to obtain appropriate reference values, the k -means algorithm was introduced to take the cluster centers as reference values. The method was then validated by collecting typical fault data from motor bench experiments. The results demonstrated that compared with other traditional classifiers, this approach is more effective and superior in classification performance and more accurate in diagnosing faults from motor vibration data.
AbstractList Motor vibration signal data sets are characteristically random and nonlinear, and its features are difficult to extract for fault identification. To reduce the uncertainty of fault diagnosis, a method based on principal component analysis (PCA) and discrete belief rule base (DBRB) was developed for the first time. Initially, the vibration signal was first denoised using a wavelet threshold algorithm to eliminate interference. Second, overlapping signals were segmented into 15 time windows and a total of 13 typical time domain features and mathematical statistical features were extracted. Third, the dimensions of the features were reduced to three principal components by PCA and were taken as the antecedent attributes of the DBRB. However, the amount of information in each principal component is different, so the variance contribution rate was taken as an antecedent attribute weight to restore the original data characteristics. Fourth, a PCA-DBRB model was established, which effectively avoided the combinatorial explosion problem of rule base in the DBRB model. In addition, to obtain appropriate reference values, the k -means algorithm was introduced to take the cluster centers as reference values. The method was then validated by collecting typical fault data from motor bench experiments. The results demonstrated that compared with other traditional classifiers, this approach is more effective and superior in classification performance and more accurate in diagnosing faults from motor vibration data.
Author Gao, Haibo
He, Yelan
Xu, Xiaobin
Lin, Zhiguo
Yu, Hang
Author_xml – sequence: 1
  givenname: Hang
  orcidid: 0000-0002-6125-4296
  surname: Yu
  fullname: Yu, Hang
– sequence: 2
  givenname: Haibo
  orcidid: 0000-0002-9349-9722
  surname: Gao
  fullname: Gao, Haibo
– sequence: 3
  givenname: Yelan
  surname: He
  fullname: He, Yelan
– sequence: 4
  givenname: Zhiguo
  surname: Lin
  fullname: Lin, Zhiguo
– sequence: 5
  givenname: Xiaobin
  surname: Xu
  fullname: Xu, Xiaobin
BookMark eNp1kM9LwzAUgIMouE3vHt9xO9QlTdu1x23-hIEiei5Z8uIibTKSTNnJf93WiQfB04PH-z4e35AcW2eRkAtGLxktyynjBUuKnLKpkCKVeEQGv6tjMqBVPktoyvkpGYbwRimd0aoakM85WPeODbQuOg9a7JoIyohX64IJ0GLcOAVrEVCBs7D1xkqzFQ1I1267D2wEYUWz74_Hj8v5BD5M3IDoHEF6jAhrbAxq8LsGvz0wvlo8LSYQ9iFie0ZOtGgCnv_MEXm5uX5e3iWrh9v75XyVyDTjMUmFyvNc6EKUVaqUzljFUHLkPKtQSS1ZxvR6nbNMsVIWlUpzxdMCZclnyLjiI1IcvNK7EDzqWpooonE2emGamtG6z1j3zeq-WX3I2IH0D9g1aIXf_498AW1sedQ
CitedBy_id crossref_primary_10_1088_1361_6501_ad57de
crossref_primary_10_1088_1361_6501_ad9629
crossref_primary_10_1007_s11668_024_02016_3
crossref_primary_10_1080_20464177_2024_2426317
crossref_primary_10_1109_ACCESS_2024_3465521
crossref_primary_10_1002_acs_3862
crossref_primary_10_1088_1361_6501_acd0c9
Cites_doi 10.1049/iet-epa.2018.5274
10.1016/j.eswa.2011.05.047
10.1016/j.compbiomed.2021.105104
10.1016/j.measurement.2022.110730
10.1109/ACCESS.2020.3016314
10.1037/h0071325
10.1016/j.acha.2016.11.001
10.1016/j.ejor.2010.03.032
10.1016/j.sigpro.2013.04.015
10.1007/s10489-019-01586-2
10.21595/jve.2016.16847
10.1080/00207543.2011.652262
10.1088/0957-0233/23/5/055605
10.1016/j.sigpro.2003.12.006
10.1109/TSP.2015.2391077
10.1109/TASSP.1978.1163047
10.1155/2020/4381480
10.1016/j.knosys.2012.10.016
10.1007/S40819-021-01214-Z
10.1109/78.382394
10.1016/j.eswa.2012.07.021
10.2478/v10178-011-0066-4
10.1016/j.procs.2020.07.015
10.1155/2015/390134
10.1016/j.eswa.2011.11.068
10.1080/14484846.2009.11464588
10.1016/j.knosys.2020.105904
10.1016/j.ymssp.2006.11.003
10.1109/TR.2013.2241251
10.1016/j.ssci.2013.10.021
10.1109/TGRS.2015.2466660
10.1016/j.ssci.2016.11.011
10.1177/0145482X20927130
10.1109/TFUZZ.2015.2426207
10.1109/TFUZZ.2011.2130527
10.1016/j.isatra.2020.10.028
10.1007/s12559-021-09978-8
10.1109/TIE.2011.2167893
10.1016/j.sigpro.2016.01.007
10.1109/MSP.2013.2265316
10.1016/j.knosys.2014.06.026
10.1109/ACCESS.2019.2929094
10.1016/j.eswa.2005.11.015
10.1016/j.measurement.2019.05.057
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1361-6501/aca2ce
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10_1088_1361_6501_aca2ce
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
ID FETCH-LOGICAL-c243t-2ad555af6a892ddf4191ec3e3349edcfc141fbb514d18c69d25d326ec837e13d3
ISSN 0957-0233
IngestDate Wed Oct 01 05:22:00 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c243t-2ad555af6a892ddf4191ec3e3349edcfc141fbb514d18c69d25d326ec837e13d3
ORCID 0000-0002-6125-4296
0000-0002-9349-9722
ParticipantIDs crossref_citationtrail_10_1088_1361_6501_aca2ce
crossref_primary_10_1088_1361_6501_aca2ce
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2023
References Liu (mstaca2cebib35) 2013; 62
Lei (mstaca2cebib4) 2012; 23
Huang (mstaca2cebib16) 2016; 54
Li (mstaca2cebib29) 2013; 51
Barla (mstaca2cebib24) 2009; 128
Zhou (mstaca2cebib36) 2012; 39
Zhang (mstaca2cebib28) 2014; 63
Han (mstaca2cebib20) 2020; 175
Ahmed (mstaca2cebib25) 2022; 14
Djurovic (mstaca2cebib11) 2004; 84
Qiu (mstaca2cebib7) 2019; 145
Zimroz (mstaca2cebib8) 2011; 18
Zhou (mstaca2cebib37) 2014; 70
Li (mstaca2cebib27) 2017; 93
Lei (mstaca2cebib3) 2007; 21
Li (mstaca2cebib30) 2011; 38
Zhang (mstaca2cebib21) 2020; 8
Auger (mstaca2cebib15) 2013; 30
Hotelling (mstaca2cebib42) 1933; 24
Auger (mstaca2cebib13) 1995; 43
Behera (mstaca2cebib18) 2018; 45
Chen (mstaca2cebib22) 2016; 18
Zhao (mstaca2cebib43) 2019; 7
Zhou (mstaca2cebib31) 2015; 23
Celebi (mstaca2cebib45) 2013; 40
Yan (mstaca2cebib9) 2014; 96
Jie (mstaca2cebib33) 2022; 140
Emerson (mstaca2cebib41) 2020; 114
Yu (mstaca2cebib5) 2012; 59
Liu (mstaca2cebib40) 2020; 2020
Xu (mstaca2cebib34) 2007; 32
Zhou (mstaca2cebib14) 2022; 190
Zhang (mstaca2cebib39) 2020; 199
Helmi (mstaca2cebib2) 2019; 13
Kodera (mstaca2cebib12) 1978; 26
Chen (mstaca2cebib6) 2015; 2015
Chang (mstaca2cebib44) 2013; 39
You (mstaca2cebib26) 2020; 50
Holighaus (mstaca2cebib17) 2016; 125
Yu (mstaca2cebib23) 2021; 109
Kouhkani (mstaca2cebib10) 2022; 8
Oberlin (mstaca2cebib19) 2015; 63
Si (mstaca2cebib32) 2011; 19
Jayaswal (mstaca2cebib1) 2009; 7
Zhou (mstaca2cebib38) 2010; 207
References_xml – volume: 13
  start-page: 662
  year: 2019
  ident: mstaca2cebib2
  article-title: Rolling bearing fault detection of electric motor using time domain and frequency domain features extraction and ANFIS
  publication-title: IET Electr. Power Appl.
  doi: 10.1049/iet-epa.2018.5274
– volume: 38
  start-page: 14997
  year: 2011
  ident: mstaca2cebib30
  article-title: A belief-rule-based inventory control method under nonstationary and uncertain demand
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.05.047
– volume: 140
  year: 2022
  ident: mstaca2cebib33
  article-title: AutoBRB: an automated belief rule base model for pathologic complete response prediction in gastric cancer
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105104
– volume: 190
  year: 2022
  ident: mstaca2cebib14
  article-title: Second-order iterative time-rearrangement synchrosqueezing transform and its application to rolling bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110730
– volume: 8
  start-page: 149868
  year: 2020
  ident: mstaca2cebib21
  article-title: An intelligent fault diagnosis for rolling bearing based on adversarial semi-supervised method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016314
– volume: 24
  start-page: 417
  year: 1933
  ident: mstaca2cebib42
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J. Educ. Psychol.
  doi: 10.1037/h0071325
– volume: 45
  start-page: 379
  year: 2018
  ident: mstaca2cebib18
  article-title: Theoretical analysis of the second-order synchrosqueezing transform
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2016.11.001
– volume: 207
  start-page: 269
  year: 2010
  ident: mstaca2cebib38
  article-title: A model for real-time failure prognosis based on hidden Markov model and belief rule base
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2010.03.032
– volume: 96
  start-page: 1
  year: 2014
  ident: mstaca2cebib9
  article-title: Wavelets for fault diagnosis of rotary machines: a review with applications
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.04.015
– volume: 50
  start-page: Mar
  year: 2020
  ident: mstaca2cebib26
  article-title: A new modeling and inference approach for the belief rule base with attribute reliability
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01586-2
– volume: 18
  start-page: 3581
  year: 2016
  ident: mstaca2cebib22
  article-title: A rolling bearing fault diagnosis method based on VMD—multiscale fractal dimension/energy and optimized support vector machine
  publication-title: J. Vibroengineering
  doi: 10.21595/jve.2016.16847
– volume: 51
  start-page: 83
  year: 2013
  ident: mstaca2cebib29
  article-title: A belief-rule-based inference method for aggregate production planning under uncertainty
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2011.652262
– volume: 23
  year: 2012
  ident: mstaca2cebib4
  article-title: Fault detection of planetary gearboxes using new diagnostic parameters
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/23/5/055605
– volume: 84
  start-page: 631
  year: 2004
  ident: mstaca2cebib11
  article-title: An algorithm for the Wigner distribution based instantaneous frequency estimation in a high noise environment
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2003.12.006
– volume: 63
  start-page: 1335
  year: 2015
  ident: mstaca2cebib19
  article-title: Second-order synchrosqueezing transform or invertible reassignment? towards ideal time-frequency representations
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2391077
– volume: 26
  start-page: 64
  year: 1978
  ident: mstaca2cebib12
  article-title: Analysis of time-varying signals with small BT values
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TASSP.1978.1163047
– volume: 2020,
  year: 2020
  ident: mstaca2cebib40
  article-title: Vibration signal analysis of water seal blasting based on wavelet threshold denoising and HHT transformation
  publication-title: Adv. Civ. Eng.
  doi: 10.1155/2020/4381480
– volume: 39
  start-page: 159
  year: 2013
  ident: mstaca2cebib44
  article-title: Structure learning for belief rule base expert system: a comparative study
  publication-title: Knowl Based Syst.
  doi: 10.1016/j.knosys.2012.10.016
– volume: 8
  start-page: 26
  year: 2022
  ident: mstaca2cebib10
  article-title: A convergence criterion of Newton’s method based on the Heisenberg uncertainty principle
  publication-title: Int. J. Appl. Comput.
  doi: 10.1007/S40819-021-01214-Z
– volume: 43
  start-page: 1068
  year: 1995
  ident: mstaca2cebib13
  article-title: Improving the readability of time-frequency and time-scale representations by the reassignment method
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.382394
– volume: 40
  start-page: 200
  year: 2013
  ident: mstaca2cebib45
  article-title: A comparative study of efficient initialization methods for the k-means clustering algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.021
– volume: 18
  start-page: 701
  year: 2011
  ident: mstaca2cebib8
  article-title: Measurement of instantaneous shaft speed by advanced vibration signal processing-application to wind turbine gearbox
  publication-title: Metrol. Meas. Syst.
  doi: 10.2478/v10178-011-0066-4
– volume: 175
  start-page: 88
  year: 2020
  ident: mstaca2cebib20
  article-title: An weighted CNN ensemble model with small amount of data for bearing fault diagnosis
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2020.07.015
– volume: 2015
  start-page: 1
  year: 2015
  ident: mstaca2cebib6
  article-title: Gearbox fault identification and classification with convolutional neural networks
  publication-title: Shock Vib.
  doi: 10.1155/2015/390134
– volume: 39
  start-page: 6140
  year: 2012
  ident: mstaca2cebib36
  article-title: Condition-based maintenance of dynamic systems using online failure prognosis and belief rule base
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.11.068
– volume: 7
  start-page: 157
  year: 2009
  ident: mstaca2cebib1
  article-title: Application of artificial neural networks, fuzzy logic and wavelet transform in fault diagnosis via vibration signal analysis: a review
  publication-title: Aust. J. Mech. Eng.
  doi: 10.1080/14484846.2009.11464588
– volume: 199
  year: 2020
  ident: mstaca2cebib39
  article-title: A method of automatically generating initial parameters for large-scale belief rule base
  publication-title: Knowl Based Syst.
  doi: 10.1016/j.knosys.2020.105904
– volume: 21
  start-page: 2280
  year: 2007
  ident: mstaca2cebib3
  article-title: Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.11.003
– volume: 128
  start-page: 399
  year: 2009
  ident: mstaca2cebib24
  article-title: Rule-based user characteristics acquisition from logs with semantics for personalized web-based systems
  publication-title: Comput. Inform.
– volume: 62
  start-page: 23
  year: 2013
  ident: mstaca2cebib35
  article-title: Fuzzy failure mode and effects analysis using fuzzy evidential reasoning and belief rule-based methodology
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2013.2241251
– volume: 63
  start-page: 157
  year: 2014
  ident: mstaca2cebib28
  article-title: Safety management performance assessment for maritime safety administration (MSA) by using generalized belief rule base methodology
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2013.10.021
– volume: 54
  start-page: 817
  year: 2016
  ident: mstaca2cebib16
  article-title: Synchrosqueezing S-transform and its application in seismic spectral decomposition
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2466660
– volume: 93
  start-page: 108
  year: 2017
  ident: mstaca2cebib27
  article-title: A new safety assessment model for complex system based on the conditional generalized minimum variance and the belief rule base
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2016.11.011
– volume: 114
  start-page: 240
  year: 2020
  ident: mstaca2cebib41
  article-title: A look at principal component analysis
  publication-title: J. Vis. Impair. Blind.
  doi: 10.1177/0145482X20927130
– volume: 23
  start-page: 2371
  year: 2015
  ident: mstaca2cebib31
  article-title: Hidden behavior prediction of complex systems under testing influence based on semiquantitative information and belief rule base
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2015.2426207
– volume: 19
  start-page: 636
  year: 2011
  ident: mstaca2cebib32
  article-title: A new prediction model based on belief rule base for system’s behavior prediction
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2011.2130527
– volume: 109
  start-page: 340
  year: 2021
  ident: mstaca2cebib23
  article-title: Intelligent fault diagnosis of planetary gearbox based on refined composite hierarchical fuzzy entropy and random forest
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.10.028
– volume: 14
  start-page: 660
  year: 2022
  ident: mstaca2cebib25
  article-title: An integrated deep learning and belief rule base intelligent system to predict survival of COVID-19 patient under uncertainty
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-021-09978-8
– volume: 59
  start-page: 2363
  year: 2012
  ident: mstaca2cebib5
  article-title: Local and nonlocal preserving projection for bearing defect classification and performance assessment
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2011.2167893
– volume: 125
  start-page: 1
  year: 2016
  ident: mstaca2cebib17
  article-title: Reassignment and synchrosqueezing for general time–frequency filter banks, subsampling and processing
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.01.007
– volume: 30
  start-page: 32
  year: 2013
  ident: mstaca2cebib15
  article-title: Time-frequency reassignment and synchrosqueezing: an overview
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2013.2265316
– volume: 70
  start-page: 221
  year: 2014
  ident: mstaca2cebib37
  article-title: A model for online failure prognosis subject to two failure modes based on belief rule base and semi-quantitative information
  publication-title: Knowl Based Syst.
  doi: 10.1016/j.knosys.2014.06.026
– volume: 7
  start-page: 99263
  year: 2019
  ident: mstaca2cebib43
  article-title: Fault diagnosis method based on principal component analysis and broad learning system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929094
– volume: 32
  start-page: 103
  year: 2007
  ident: mstaca2cebib34
  article-title: Inference and learning methodology of belief-rule-based expert system for pipeline leak detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.11.015
– volume: 145
  start-page: 94
  year: 2019
  ident: mstaca2cebib7
  article-title: A deep convolutional neural networks model for intelligent fault diagnosis of a gearbox under different operational conditions
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.05.057
SSID ssj0007099
Score 2.447788
Snippet Motor vibration signal data sets are characteristically random and nonlinear, and its features are difficult to extract for fault identification. To reduce the...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 35012
Title A novel motor fault diagnosis method based on principal component analysis (PCA) with a discrete belief rule base (DBRB) system
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1361-6501
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007099
  issn: 0957-0233
  databaseCode: IOP
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuiBYQ5aU5cNhVFLZJnMcetwVUkIAKtVLhEjm2U1YKm9VuwoEL_4bfyYztZAO0EuUSRZZ3lM18mW9mPB4z9jzgqcJIIvOVUtLnZRL7QhxIH7kojZFeolSaAtn3yfEZf3sen49GPwdVS21TvJDfL91X8j9axTHUK-2SvYZme6E4gPeoX7yihvH6Tzqee8v6m648fN312itFWzWUTKXaucXGHQ7tEU8pWhNY2by6aQjydVUvbXW560mCjubJ0ZxyBHa3G63coEPZaK_Q6KaW3rqttJFFU18efjykubYP9NDBfbfNOXrdliFCV_NXCv9Ta2hPOOqkGiBR26FFUW9ztIYkdDWoHbJtDz5_WVy09TBrEUbbsq0-_Zj6OG6Nm7bGN0oCHz3GYGidXapzMQzejamlFdHwUhJAw0n5iE4asZ0UoftQfuu4_QcT9vWJZmU-y3KSkZOM3Eq4wW6GyB50RMibDyc946cHM9fT0f4ntxyOEqb9U0ythIH7M_BjTu-yOy4AgblF0y4b6eUeu2UKgeVmj-06Y7-BsetIPrnHfszBAA0M0MAADXqggQUaGKBBvYQeaNADDTqgwRhhNgECGQjoQAYWZEAgM3JgTBCbgAXYfXb2-tXp0bHvTu7wZcijxg-FiuNYlInIZqFSJQ9mgZaRjiI-00qWMuBBWRTorKsgk8lMhbHCOELLLEp1EKnoAdtZ4uM9ZKDRpcUoRBSqVJxnRRakKkm1EoXkXGXJPpt2LzSXrq09na5S5VcpcZ9N-l-sbEuXK-c-usbcx-z2FulP2E6zbvVT9Fib4pmByy-k3pSC
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+motor+fault+diagnosis+method+based+on+principal+component+analysis+%28PCA%29+with+a+discrete+belief+rule+base+%28DBRB%29+system&rft.jtitle=Measurement+science+%26+technology&rft.au=Yu%2C+Hang&rft.au=Gao%2C+Haibo&rft.au=He%2C+Yelan&rft.au=Lin%2C+Zhiguo&rft.date=2023-03-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=34&rft.issue=3&rft.spage=35012&rft_id=info:doi/10.1088%2F1361-6501%2Faca2ce&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_aca2ce
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon