Comparative Study of Estimation Methods of the Endpoint Temperature in Basic Oxygen Furnace Steelmaking Process with Selection of Input Parameters
The basic oxygen furnace (BOF) steelmaking process in the steel industry is highly complicated, and subject to variations in raw material composition. During the BOF steelmaking process, it is essential to maintain the carbon content and the endpoint temperature at their set points in the liquid ste...
Saved in:
| Published in | Korean Journal of Metals and Materials Vol. 56; no. 11; pp. 813 - 821 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
대한금속·재료학회
01.11.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1738-8228 2288-8241 2288-8241 |
| DOI | 10.3365/KJMM.2018.56.11.813 |
Cover
| Abstract | The basic oxygen furnace (BOF) steelmaking process in the steel industry is highly complicated, and subject to variations in raw material composition. During the BOF steelmaking process, it is essential to maintain the carbon content and the endpoint temperature at their set points in the liquid steel. This paper presents intelligent models used to estimate the endpoint temperature in the basic oxygen furnace (BOF) steelmaking process. An artificial neural network (ANN) model and a least-squares support vector machine (LSSVM) model are proposed and their estimation performance compared. The classical partial least-squares (PLS) method was also compared with the others. Results of the estimations using the ANN, LSSVM and PLS models were compared with the operation data, and the root-mean square error (RMSE) for each model was calculated to evaluate estimation performance. The RMSE of the LSSVM model 15.91, which turned out to be the best estimation. RMSE values for the ANN and PLS models were 17.24 and 21.31, respectively, indicating their relative estimation performance. The essential input parameters used in the models can be selected by sensitivity analysis. The RMSE for each model was calculated again after a sequential input selection process was used to remove insignificant input parameters. The RMSE of the LSSVM was then 13.21, which is better than the previous RMSE with all 16 parameters. The results show that LSSVM model using 13 input parameters can be utilized to calculate the required values for oxygen volume and coolant needed to optimally adjust the steel target temperature. KCI Citation Count: 4 |
|---|---|
| AbstractList | The basic oxygen furnace (BOF) steelmaking process in the steel industry is highly complicated, and subject to variations in raw material composition. During the BOF steelmaking process, it is essential to maintain the carbon content and the endpoint temperature at their set points in the liquid steel. This paper presents intelligent models used to estimate the endpoint temperature in the basic oxygen furnace (BOF) steelmaking process. An artificial neural network (ANN) model and a least-squares support vector machine (LSSVM) model are proposed and their estimation performance compared. The classical partial least-squares (PLS) method was also compared with the others. Results of the estimations using the ANN, LSSVM and PLS models were compared with the operation data, and the root-mean square error (RMSE) for each model was calculated to evaluate estimation performance. The RMSE of the LSSVM model 15.91, which turned out to be the best estimation. RMSE values for the ANN and PLS models were 17.24 and 21.31, respectively, indicating their relative estimation performance. The essential input parameters used in the models can be selected by sensitivity analysis. The RMSE for each model was calculated again after a sequential input selection process was used to remove insignificant input parameters. The RMSE of the LSSVM was then 13.21, which is better than the previous RMSE with all 16 parameters. The results show that LSSVM model using 13 input parameters can be utilized to calculate the required values for oxygen volume and coolant needed to optimally adjust the steel target temperature. KCI Citation Count: 4 |
| Author | Jin, Il Bong Kim, Beom Seok Kim, Tae Young Yeo, Yeong Koo Park, Tae Chang |
| Author_xml | – sequence: 1 givenname: Tae Chang surname: Park fullname: Park, Tae Chang – sequence: 2 givenname: Beom Seok surname: Kim fullname: Kim, Beom Seok – sequence: 3 givenname: Tae Young surname: Kim fullname: Kim, Tae Young – sequence: 4 givenname: Il Bong surname: Jin fullname: Jin, Il Bong – sequence: 5 givenname: Yeong Koo surname: Yeo fullname: Yeo, Yeong Koo |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002401035$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNptkU1u2zAQhYkiBeqmOUE23HZhVSNSP16mhtO6jZEg8Z6gyZHNWiIFkkrqa-TEkeyiiySrGQze92Yw7zM5s84iIZeQJowV-bffv1arJEuhSvIiAUgqYB_IJMuqalplHM7IBEo29ln1iVyEYDZpmsMsr3I-Ic9z13bSy2gekT7EXh-oq-kiRNMOM2fpCuPO6TBO4w7pwurOGRvpGtsOB673SI2l32Uwit7-PWzR0uveW6lGP8SmlXtjt_TOO4Uh0CcTd_QBG1RH-8F2abs-0rvhiBYj-vCFfKxlE_DiXz0n6-vFev5zenP7Yzm_upmqjDM2BVUzzVPGtAJe1nkhFWjOFNRqA1CmkOlaF5mSWqucQwobrnPIADkvoUR2Tr6ebK2vxV4Z4aQ51q0Tey-u7tdLwcqKsxkMWn7S9raThyfZNKLzw4f8QUAqxhTE_k_bijEFkRcCQAwpDNjshCnvQvBYC2Xi8a3RS9P8Z8cE37LsFft643vUC8qqojg |
| CitedBy_id | crossref_primary_10_1007_s40831_024_00798_2 crossref_primary_10_3390_app9142835 crossref_primary_10_3390_met14080926 crossref_primary_10_1002_mgea_6 crossref_primary_10_3390_pr9111987 crossref_primary_10_1016_j_dche_2023_100094 crossref_primary_10_3390_app12157757 crossref_primary_10_1007_s12613_023_2646_1 crossref_primary_10_1109_TIM_2020_3037953 crossref_primary_10_3233_JIFS_210007 |
| Cites_doi | 10.1016/S1006-706X(12)60040-5 10.1016/j.eswa.2009.04.015 10.1016/j.eswa.2015.01.030 10.1016/j.robot.2004.09.007 10.1016/j.patcog.2005.03.028 10.1016/j.neucom.2005.12.126 10.1016/j.neucom.2013.08.003 10.1016/j.engappai.2005.06.002 10.1016/j.jhazmat.2008.04.004 10.1016/j.ijleo.2010.04.018 10.1016/j.engappai.2009.12.007 10.1016/S0924-0136(01)01136-0 10.3182/20020721-6-ES-1901.00726 10.3182/20110828-6-IT-1002.01832 10.1016/j.eswa.2011.05.071 10.1016/S1006-706X(14)60028-5 10.1016/j.scient.2011.03.007 10.3182/20080706-5-KR-1001.01864 10.1016/j.asoc.2013.09.012 10.1016/j.neucom.2014.09.003 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY ACYCR |
| DOI | 10.3365/KJMM.2018.56.11.813 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall Korean Citation Index |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2288-8241 |
| EndPage | 821 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_3784391 10.3365/kjmm.2018.56.11.813 10_3365_KJMM_2018_56_11_813 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E ADTOC UNPAY ACYCR |
| ID | FETCH-LOGICAL-c2433-1cf3d4033dc147f56ac1d43c1fcb117012dfd62caddc54101b4d5121e44717e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1738-8228 2288-8241 |
| IngestDate | Tue Nov 21 21:05:50 EST 2023 Wed Oct 01 16:26:31 EDT 2025 Thu Apr 24 22:50:56 EDT 2025 Wed Oct 01 03:21:32 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2433-1cf3d4033dc147f56ac1d43c1fcb117012dfd62caddc54101b4d5121e44717e3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://kjmm.org/upload/pdf/kjmm-2018-56-11-813.pdf |
| PageCount | 9 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_3784391 unpaywall_primary_10_3365_kjmm_2018_56_11_813 crossref_citationtrail_10_3365_KJMM_2018_56_11_813 crossref_primary_10_3365_KJMM_2018_56_11_813 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Korean Journal of Metals and Materials |
| PublicationYear | 2018 |
| Publisher | 대한금속·재료학회 |
| Publisher_xml | – name: 대한금속·재료학회 |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref18 Kim (ref22) 2015 Lee (ref19) 2008 ref25 ref20 Raschka (ref23) 2017 Park (ref24) 2009 Park (ref21) 2011 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref6 doi: 10.1016/S1006-706X(12)60040-5 – start-page: 148 year: 2008 ident: ref19 – ident: ref11 doi: 10.1016/j.eswa.2009.04.015 – start-page: 236 year: 2011 ident: ref21 – ident: ref9 doi: 10.1016/j.eswa.2015.01.030 – ident: ref18 doi: 10.1016/j.robot.2004.09.007 – ident: ref12 doi: 10.1016/j.patcog.2005.03.028 – year: 2017 ident: ref23 – ident: ref13 doi: 10.1016/j.neucom.2005.12.126 – ident: ref17 doi: 10.1016/j.neucom.2013.08.003 – ident: ref3 doi: 10.1016/j.engappai.2005.06.002 – ident: ref20 doi: 10.1016/j.jhazmat.2008.04.004 – ident: ref8 doi: 10.1016/j.ijleo.2010.04.018 – ident: ref10 doi: 10.1016/j.engappai.2009.12.007 – ident: ref7 doi: 10.1016/S0924-0136(01)01136-0 – ident: ref5 doi: 10.3182/20020721-6-ES-1901.00726 – ident: ref15 doi: 10.3182/20110828-6-IT-1002.01832 – ident: ref2 doi: 10.1016/j.eswa.2011.05.071 – start-page: 879 year: 2009 ident: ref24 – ident: ref4 doi: 10.1016/S1006-706X(14)60028-5 – ident: ref25 doi: 10.1016/j.scient.2011.03.007 – ident: ref14 doi: 10.3182/20080706-5-KR-1001.01864 – ident: ref1 doi: 10.1016/j.asoc.2013.09.012 – ident: ref16 doi: 10.1016/j.neucom.2014.09.003 – start-page: 222 year: 2015 ident: ref22 |
| SSID | ssib005195854 ssib006262540 ssib044734076 ssib023167440 ssib036264765 ssib001148846 ssib002806993 ssib014806100 |
| Score | 2.1715004 |
| Snippet | The basic oxygen furnace (BOF) steelmaking process in the steel industry is highly complicated, and subject to variations in raw material composition. During... |
| SourceID | nrf unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 813 |
| SubjectTerms | 재료공학 |
| Title | Comparative Study of Estimation Methods of the Endpoint Temperature in Basic Oxygen Furnace Steelmaking Process with Selection of Input Parameters |
| URI | http://kjmm.org/upload/pdf/kjmm-2018-56-11-813.pdf https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002401035 |
| UnpaywallVersion | publishedVersion |
| Volume | 56 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | 대한금속·재료학회지, 2018, 56(11), 544, pp.813-821 |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2288-8241 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044734076 issn: 1738-8228 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELa62wNceAgQS6GyEEeyrGMn8R5Ltau2KKUSW6mcrMQPtGw2ibaJynLgR_CLmXHS8qiE1EsSWc5E8Yw93ySebwh5Y-0057GEsAT8ayCsywOZTxIIVXKnxXTipN9Ek57GR-fi5CK62CHXhf9WX9dr__--rYsqM-9q43wbKJPJACnzWCAZhH_GDchuHAH-HpLd89Ozg88-8xFmL3g8X4YulHgtWEc1xHkcddJR0jiKYa0YS8b_ckeDcgPHe21ZZ9urrCj-8DTzh13236UnKMQNJqtx2-Rj_f02feMdXuIRedADT3rQWcpjsmPLJ-Tn4W_yb4pbCre0cnQG077LaKSpLzB9ia2AFOmsNHW1LBu6sAC3Ozpmuizp-wyUTT9-24I50jk-SaM8a4u1r3ZF-3wEip996SdfewfFg9jjsm4bepbhJjFk-nxKFvPZ4vAo6Ks0BDoUnAdMO27EhHOjmUhcFGeaGcE1czrHsjYsNM7EoYaFVEcCVoBcGEAZzArwi4nlz8iwrEr7nFANYInl0iTaGAFIcCpimTmXTZBkEMK2EQmvdaV0z2COhTQKBZEMKlh9OElThaOsohhiGwWjPCJvb26qOwKP_3d_DUagVnqpkHgbz18qtdooCC-OFU8kZiqPSHBjI7eEoqb_Efrijv33yH1vKj7l8SUZNpvWvgLs0-T7ZJD-mO33Jv8L28b_3A |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELba7QEuPASI5SULcSTLOnYS77FUu2qLtlRiK5WTlfiBls060TYRLD-DX8yMkz6gElIvSWQ5E8Uz9nyTeL4h5J21k4KnEsIS8K-RsK6IZDHOIFQpnBaTsZNhE838JD08E8fnyfkOuSz8t_q-Xof_921dVrn5UBsX2kCZTEZImcciySD8M26X7KUJ4O8B2Ts7Od3_GjIfYfaCxwtl6GKJ14J1VEOcp0knHSWNkhTWipFk_C93tOs3cLzX-jrf_sjL8oanmT3ssv8uAkEhbjBZjdqmGOlft-kb7_ASj8iDHnjS_c5SHpMd65-Q3wfX5N8UtxRuaeXoFKZ9l9FI56HA9AW2AlKkU2_qaukburAAtzs6Zrr09GMOyqaff27BHOkMn6RRnrXlOlS7on0-AsXPvvRLqL2D4kHska_bhp7muEkMmT6fksVsujg4jPoqDZGOBecR044bMebcaCYyl6S5ZkZwzZwusKwNi40zaaxhIdWJgBWgEAZQBrMC_GJm-TMy8JW3zwnVAJZYIU2mjRGABCcilblz-RhJBiFsG5L4UldK9wzmWEijVBDJoILVp-P5XOEoqySF2EbBKA_J-6ub6o7A4__d34IRqJVeKiTexvO3Sq02CsKLI8UziZnKQxJd2cgtoajpf4S-uGP_l-R-MJWQ8viKDJpNa18D9mmKN72x_wHhGv6r |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Study+of+Estimation+Methods+of+the+Endpoint+Temperature+in+Basic+Oxygen+Furnace+Steelmaking+Process+with+Selection+of+Input+Parameters&rft.jtitle=%EB%8C%80%ED%95%9C%EA%B8%88%EC%86%8D%C2%B7%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C%EC%A7%80%2C+56%2811%29&rft.au=%EB%B0%95%ED%83%9C%EC%B0%BD&rft.au=%EA%B9%80%EB%B2%94%EC%84%9D&rft.au=%EA%B9%80%ED%83%9C%EC%98%81&rft.au=%EC%A7%84%EC%9D%BC%EB%B4%89&rft.date=2018-11-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B8%88%EC%86%8D%C2%B7%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C&rft.issn=1738-8228&rft.eissn=2288-8241&rft.spage=813&rft.epage=821&rft_id=info:doi/10.3365%2FKJMM.2018.56.11.813&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_3784391 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-8228&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-8228&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-8228&client=summon |