Optical computation of discrete Fourier transform utilizing the temporal Talbot effect with input pulse trains of finite duration

The temporal Talbot effect (TTE) embodies the phenomenon of discrete Fourier transform (DFT). However, in an ideal temporal Talbot system, an infinitely long pulse train is required as input, which hinders the application of this property in optical computation of DFT. In this paper, we investigate...

Full description

Saved in:
Bibliographic Details
Published inOptical review (Tokyo, Japan) Vol. 31; no. 4; pp. 383 - 394
Main Authors Qiu, Yijun, Yang, Shuna, Yang, Bo, Chi, Hao
Format Journal Article
LanguageEnglish
Published Tokyo Springer Japan 01.08.2024
Subjects
Online AccessGet full text
ISSN1340-6000
1349-9432
DOI10.1007/s10043-024-00890-8

Cover

Abstract The temporal Talbot effect (TTE) embodies the phenomenon of discrete Fourier transform (DFT). However, in an ideal temporal Talbot system, an infinitely long pulse train is required as input, which hinders the application of this property in optical computation of DFT. In this paper, we investigate the phenomenon of DFT in the TTE with input pulse trains of finite duration, aiming to apply it to optical computation of DFT. It is found that precise DFT coefficients can be extracted from the output signal of a system with an input pulse train of finite duration, subject to a specific condition on the pulse train’s duration. A significant advantage of the system employing an input pulse train of finite duration is that the resulting output signal becomes band-limited. This crucially implies that an optical receiver with a limited bandwidth can be utilized to obtain a distortionless signal. We provide a concise and rigorous theoretical framework on the TTE-based DFT system, which fully explains the underlying mechanism for perfect DFT calculation and is consistent with simulation results. Furthermore, we have determined that the single-cycle DFT calculation, using an input pulse train of one period, is feasible. The performance of the single-cycle DFT has been systematically evaluated under various non-ideal conditions, such as sampling time jitter and limited detection bandwidth. This research establishes a foundation for future applications of TTE in optical DFT computation, as it removes the requirement of inputting infinitely long pulse trains.
AbstractList The temporal Talbot effect (TTE) embodies the phenomenon of discrete Fourier transform (DFT). However, in an ideal temporal Talbot system, an infinitely long pulse train is required as input, which hinders the application of this property in optical computation of DFT. In this paper, we investigate the phenomenon of DFT in the TTE with input pulse trains of finite duration, aiming to apply it to optical computation of DFT. It is found that precise DFT coefficients can be extracted from the output signal of a system with an input pulse train of finite duration, subject to a specific condition on the pulse train’s duration. A significant advantage of the system employing an input pulse train of finite duration is that the resulting output signal becomes band-limited. This crucially implies that an optical receiver with a limited bandwidth can be utilized to obtain a distortionless signal. We provide a concise and rigorous theoretical framework on the TTE-based DFT system, which fully explains the underlying mechanism for perfect DFT calculation and is consistent with simulation results. Furthermore, we have determined that the single-cycle DFT calculation, using an input pulse train of one period, is feasible. The performance of the single-cycle DFT has been systematically evaluated under various non-ideal conditions, such as sampling time jitter and limited detection bandwidth. This research establishes a foundation for future applications of TTE in optical DFT computation, as it removes the requirement of inputting infinitely long pulse trains.
Author Yang, Shuna
Yang, Bo
Chi, Hao
Qiu, Yijun
Author_xml – sequence: 1
  givenname: Yijun
  surname: Qiu
  fullname: Qiu, Yijun
  organization: School of Communication Engineering, Hangzhou Dianzi University
– sequence: 2
  givenname: Shuna
  surname: Yang
  fullname: Yang, Shuna
  organization: School of Communication Engineering, Hangzhou Dianzi University
– sequence: 3
  givenname: Bo
  surname: Yang
  fullname: Yang, Bo
  organization: School of Communication Engineering, Hangzhou Dianzi University
– sequence: 4
  givenname: Hao
  orcidid: 0000-0001-5913-2794
  surname: Chi
  fullname: Chi, Hao
  email: chihao@hdu.edu.cn
  organization: School of Communication Engineering, Hangzhou Dianzi University
BookMark eNp9kMtOAyEUhompibX6Aq54AZTL3FiaxqpJk27qmjAMtDQzMAEmRne-uUzr2g0HTs7_HfLdgoXzTgPwQPAjwbh-ivksGMK0QBg3HKPmCiwJKzjiBaOL8x2jCmN8A25jPGFMS8arJfjZjckq2UPlh3FKMlnvoDews1EFnTTc-ClYHWAK0kXjwwCnZHv7bd0BpqOGSQ-jDxmwl33rE9TGaJXgp01HaF1GwnHqo57z1sUZbayzGdxN4bztDlwbmSfu_-oKfGxe9us3tN29vq-ft0jRgiZkdEmVpJyxrmYl0URXNW9bVrTGzO9SkqbDlaJ1ldta8w53raKUNBWXXUvZCtALVwUfY9BGjMEOMnwJgsUsUVwkiixRnCWKJofYJRTzsDvoIE7Zh8v__C_1Cxtkes8
Cites_doi 10.1002/lpor.201900176
10.1364/JOSA.71.001373
10.1109/LPT.2012.2186632
10.1016/j.optcom.2017.05.071
10.1364/AOP.5.000083
10.1364/OL.24.000001
10.1109/JLT.2019.2942344
10.1364/OPTICA.428727
10.1364/OL.24.001672
10.1109/2944.974245
10.1080/09500349608232876
10.1038/s41467-020-17119-2
10.1364/OE.15.006351
10.1364/OL.38.004256
10.1109/3.301659
10.1364/OL.42.000767
10.1364/OL.43.000194
10.1109/LPT.2017.2783897
10.1109/LPT.2008.918242
10.1109/TASSP.1984.1164310
10.1364/OE.396870
10.1364/JOSAB.20.000083
10.1364/OE.15.008812
10.1364/OE.22.015251
10.1038/ncomms6163
10.1364/OE.23.003602
10.1109/LPT.2018.2848634
10.1364/JOSAA.34.000732
10.1109/JLT.2007.904030
10.1063/1.5139599
10.1016/j.yofte.2010.03.002
10.1364/OE.25.007520
10.1364/AOP.5.000274
10.1109/JLT.2022.3212708
10.1109/LPT.2018.2828131
10.1364/OE.425209
10.1109/LPT.2018.2803112
10.1109/LPT.2022.3185635
10.1364/OE.27.007922
10.1109/JLT.2014.2361293
ContentType Journal Article
Copyright The Optical Society of Japan 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Optical Society of Japan 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10043-024-00890-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1349-9432
EndPage 394
ExternalDocumentID 10_1007_s10043_024_00890_8
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LY22F050010
– fundername: National Natural Science Foundation of China
  grantid: 62375071; 62101168
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
0R~
0VY
123
1N0
2.D
203
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
53G
5VS
67Z
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JSF
JSH
JZLTJ
KDC
KOV
KQ8
LAS
LLZTM
M4Y
MA-
MC8
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OK1
PF0
PT4
QTG
R9I
RHV
RJT
RNS
ROL
RPX
RSV
RZJ
S16
S1Z
S27
S3B
SAP
SCLPG
SDH
SGB
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TKC
TR2
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c242t-fe52ca2933d7351e1e679bb34bff351e5a18d06c2769bbee9d0dbc221869adb23
IEDL.DBID AGYKE
ISSN 1340-6000
IngestDate Wed Oct 01 05:01:55 EDT 2025
Fri Feb 21 02:40:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Temporal Talbot effect
Finite duration
Self-imaging effect
Discrete Fourier transform
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-fe52ca2933d7351e1e679bb34bff351e5a18d06c2769bbee9d0dbc221869adb23
ORCID 0000-0001-5913-2794
PageCount 12
ParticipantIDs crossref_primary_10_1007_s10043_024_00890_8
springer_journals_10_1007_s10043_024_00890_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Optical review (Tokyo, Japan)
PublicationTitleAbbrev Opt Rev
PublicationYear 2024
Publisher Springer Japan
Publisher_xml – name: Springer Japan
References Pudo, Fernandez-Pousa, Chen (CR20) 2008; 20
Fernandez-Pousa (CR33) 2017; 402
Muriel, Azana, Carballar (CR27) 1999; 24
Li, Wang, Kang, Wei, Yung, Wong (CR15) 2017; 42
Azana, Muriel (CR6) 2001; 7
Xing, Wang, Chi (CR38) 2018; 30
Zou, Pan, Luo, Wang, Zhang (CR21) 2007; 15
Xie, Shu (CR34) 2017; 30
Zhao, Chen, Wang, Wang, Hu, Wang, Zhang, Zhang, Zhang (CR7) 2020; 5
Hu, Fabbri, Huang, Bres (CR9) 2019; 27
Wu, Lei, Dong, Hou, Zhang (CR25) 2014; 32
Yang, Wu, Yang, Zhai, Ou (CR29) 2022; 34
Jannson, Jannson (CR5) 1981; 71
Zheng, Li, Dai, Yin, Xu (CR24) 2018; 43
Xie, Zheng, Shu (CR22) 2018; 30
Konatham, Maram, Romero Cortés, Chang, Rusch, LaRochelle, Guillet de Chatellus, Azaña (CR28) 2020; 11
Salem, Foster, Gaeta (CR3) 2013; 5
Tainta, Erro, Garde, Muriel (CR32) 2014; 22
Oiwa, Minami, Tsuji, Onodera, Saruwatari (CR17) 2010; 16
Zhou (CR31) 2012; 24
Wen, Zhang, Xiao (CR2) 2013; 5
Chi, Hu, Zhai, Yang, Cao, Ou, Yang (CR36) 2020; 28
Kolner (CR4) 1994; 30
Chi, Wang, Yang, Zou, Yang, Li, Zhai (CR30) 2021; 29
Azana, Muriel (CR8) 1999; 24
Duan, Chen, Zhou, Zhou, Zhang, Zhang (CR26) 2017; 25
Berry, Klein (CR1) 1996; 43
Martens (CR40) 1984; 32
Xie, Zhuang, Shu (CR35) 2020; 38
Romero Cortés, Maram, Guillet de Chatellus, Azaña (CR10) 2019; 13
Zhang, Ge, Pan, Yao (CR23) 2013; 38
Crockett, Romero Cortes, Maram, Azana (CR13) 2022; 9
Fernandez-Pousa (CR39) 2017; 34
Azana (CR37) 2003; 20
Pudo, Depa, Chen (CR16) 2007; 25
Maram, Romero Cortes, Azana (CR18) 2015; 23
Maram, Seghilani, Jeon, Li, Romero Cortes, Van Howe, Azana (CR12) 2018; 30
Crockett, Romero Cortes, Azana (CR14) 2023; 41
Pudo, Chen (CR19) 2007; 15
Maram, Van Howe, Li, Azana (CR11) 2014; 5
M Muriel (890_CR27) 1999; 24
J Azana (890_CR8) 1999; 24
BH Kolner (890_CR4) 1994; 30
B Crockett (890_CR13) 2022; 9
J Xing (890_CR38) 2018; 30
H Chi (890_CR36) 2020; 28
R Maram (890_CR18) 2015; 23
J Azana (890_CR6) 2001; 7
S Tainta (890_CR32) 2014; 22
XH Zou (890_CR21) 2007; 15
Q Xie (890_CR22) 2018; 30
JB Martens (890_CR40) 1984; 32
MV Berry (890_CR1) 1996; 43
T Jannson (890_CR5) 1981; 71
M Oiwa (890_CR17) 2010; 16
L Romero Cortés (890_CR10) 2019; 13
R Maram (890_CR11) 2014; 5
R Salem (890_CR3) 2013; 5
Z Wu (890_CR25) 2014; 32
H Chi (890_CR30) 2021; 29
Y Zhao (890_CR7) 2020; 5
J Zhou (890_CR31) 2012; 24
CR Fernandez-Pousa (890_CR33) 2017; 402
Y Zheng (890_CR24) 2018; 43
B Crockett (890_CR14) 2023; 41
B Yang (890_CR29) 2022; 34
Q Xie (890_CR34) 2017; 30
F Zhang (890_CR23) 2013; 38
D Pudo (890_CR16) 2007; 25
D Pudo (890_CR19) 2007; 15
Y Duan (890_CR26) 2017; 25
J Azana (890_CR37) 2003; 20
JM Wen (890_CR2) 2013; 5
CR Fernandez-Pousa (890_CR39) 2017; 34
D Pudo (890_CR20) 2008; 20
J Hu (890_CR9) 2019; 27
R Maram (890_CR12) 2018; 30
Q Xie (890_CR35) 2020; 38
SR Konatham (890_CR28) 2020; 11
B Li (890_CR15) 2017; 42
References_xml – volume: 13
  start-page: 1900176
  year: 2019
  ident: CR10
  article-title: Arbitrary energy-preserving control of optical pulse trains and frequency combs through generalized Talbot effects
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201900176
– volume: 71
  start-page: 1373
  year: 1981
  end-page: 1376
  ident: CR5
  article-title: Temporal self-imaging effect in single-mode fibers
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.71.001373
– volume: 24
  start-page: 685
  year: 2012
  end-page: 687
  ident: CR31
  article-title: All-optical discrete Fourier transform based on multilevel phase modulation and a dispersive element
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2012.2186632
– volume: 402
  start-page: 97
  year: 2017
  end-page: 103
  ident: CR33
  article-title: A dispersion-balanced discrete Fourier transform of repetitive pulse sequences using temporal Talbot effect
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2017.05.071
– volume: 5
  start-page: 83
  year: 2013
  end-page: 130
  ident: CR2
  article-title: The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics
  publication-title: Adv. Opt. Photon.
  doi: 10.1364/AOP.5.000083
– volume: 24
  start-page: 1
  year: 1999
  end-page: 3
  ident: CR27
  article-title: Real-time Fourier transformer based on fiber gratings
  publication-title: Opt. Lett.
  doi: 10.1364/OL.24.000001
– volume: 38
  start-page: 339
  year: 2020
  end-page: 345
  ident: CR35
  article-title: Programmable schemes on temporal waveform processing of Optical Pulse Trains
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2019.2942344
– volume: 9
  start-page: 130
  year: 2022
  end-page: 138
  ident: CR13
  article-title: Optical signal denoising through temporal passive amplification”
  publication-title: Optica
  doi: 10.1364/OPTICA.428727
– volume: 24
  start-page: 1672
  year: 1999
  end-page: 1674
  ident: CR8
  article-title: Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings
  publication-title: Opt. Lett.
  doi: 10.1364/OL.24.001672
– volume: 7
  start-page: 728
  year: 2001
  end-page: 744
  ident: CR6
  article-title: Temporal self-imaging effects: theory and application for multiplying pulse repetition rates
  publication-title: IEEE. J. Sel. Topics Quantum Electron.
  doi: 10.1109/2944.974245
– volume: 43
  start-page: 2139
  year: 1996
  end-page: 2164
  ident: CR1
  article-title: Integer, fractional and fractal Talbot effects
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500349608232876
– volume: 11
  start-page: 3309
  year: 2020
  ident: CR28
  article-title: Real-time gap-free dynamic waveform spectral analysis with nanosecond resolutions through analog signal processing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17119-2
– volume: 15
  start-page: 6351
  year: 2007
  end-page: 6357
  ident: CR19
  article-title: Simple estimation of pulse amplitude noise and timing jitter evolution through the temporal Talbot effect
  publication-title: Opt. Express
  doi: 10.1364/OE.15.006351
– volume: 38
  start-page: 4256
  year: 2013
  end-page: 4259
  ident: CR23
  article-title: Photonics generation of pulsed microwave signals with tunable frequency and phase based on spectral shaping and frequency to time mapping
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.004256
– volume: 30
  start-page: 1951
  year: 1994
  end-page: 1963
  ident: CR4
  article-title: Space–time duality and the theory of temporal imaging
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.301659
– volume: 42
  start-page: 767
  year: 2017
  end-page: 770
  ident: CR15
  article-title: Extended temporal cloak based on the inverse temporal Talbot effect
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.000767
– volume: 43
  start-page: 194
  year: 2018
  end-page: 197
  ident: CR24
  article-title: Real-time Fourier transformation based on the bandwidth magnification of RF signals
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.000194
– volume: 30
  start-page: 242
  year: 2017
  end-page: 245
  ident: CR34
  article-title: Reconfigurable Envelope Generation of optical pulse train based on discrete Fourier transform
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2017.2783897
– volume: 20
  start-page: 496
  year: 2008
  end-page: 498
  ident: CR20
  article-title: Timing jitter transfer function in the temporal Talbot effect
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2008.918242
– volume: 32
  start-page: 390
  year: 1984
  end-page: 396
  ident: CR40
  article-title: Discrete Fourier transform algorithms for real valued sequences
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1984.1164310
– volume: 28
  start-page: 20543
  year: 2020
  end-page: 20552
  ident: CR36
  article-title: Real-time discrete Fourier transformer with complex-valued outputs based on the inverse temporal Talbot effect
  publication-title: Opt. Express
  doi: 10.1364/OE.396870
– volume: 20
  start-page: 83
  year: 2003
  end-page: 90
  ident: CR37
  article-title: Temporal self-imaging effects for periodic optical pulse sequences of finite duration
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.20.000083
– volume: 15
  start-page: 8812
  year: 2007
  end-page: 8817
  ident: CR21
  article-title: Spectral Talbot effect in sampled fiber Bragg gratings with super-periodic structures
  publication-title: Opt. Express
  doi: 10.1364/OE.15.008812
– volume: 22
  start-page: 15251
  year: 2014
  end-page: 15266
  ident: CR32
  article-title: Temporal self-imaging effect for periodically modulated trains of pulses
  publication-title: Opt. Express
  doi: 10.1364/OE.22.015251
– volume: 5
  start-page: 5163
  year: 2014
  ident: CR11
  article-title: Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6163
– volume: 23
  start-page: 3602
  year: 2015
  end-page: 3613
  ident: CR18
  article-title: Sub-harmonic periodic pulse train recovery from aperiodic optical pulse sequences through dispersion-induced temporal self-imaging
  publication-title: Opt. Express
  doi: 10.1364/OE.23.003602
– volume: 30
  start-page: 1376
  year: 2018
  end-page: 1379
  ident: CR38
  article-title: Modulation fading in temporal Talbot effect
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2018.2848634
– volume: 34
  start-page: 732
  year: 2017
  end-page: 742
  ident: CR39
  article-title: On the structure of quadratic Gauss sums in the Talbot effect
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.34.000732
– volume: 25
  start-page: 2898
  year: 2007
  end-page: 2903
  ident: CR16
  article-title: Single and multiwavelength all optical clock recovery in single-mode fiber using the temporal Talbot effect
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2007.904030
– volume: 5
  start-page: 046102
  year: 2020
  ident: CR7
  article-title: Repetition rate multiplication control of micro-combs assisted by perfect temporal Talbot effect
  publication-title: APL Photon.
  doi: 10.1063/1.5139599
– volume: 16
  start-page: 192
  year: 2010
  end-page: 204
  ident: CR17
  article-title: Study of all-optical clock recovery performance by the primary and the secondary temporal Talbot effects in a second-order dispersive medium
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2010.03.002
– volume: 25
  start-page: 7520
  year: 2017
  end-page: 7529
  ident: CR26
  article-title: Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification
  publication-title: Opt. Express
  doi: 10.1364/OE.25.007520
– volume: 5
  start-page: 274
  year: 2013
  end-page: 317
  ident: CR3
  article-title: Application of space–time duality to ultrahigh-speed optical signal processing
  publication-title: Adv. Opt. Photon.
  doi: 10.1364/AOP.5.000274
– volume: 41
  start-page: 797
  year: 2023
  end-page: 814
  ident: CR14
  article-title: Passive amplification and noise mitigation of optical signals through Talbot processing
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2022.3212708
– volume: 30
  start-page: 975
  year: 2018
  end-page: 978
  ident: CR22
  article-title: Wide-spaced optical frequency comb with programmable spacing
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2018.2828131
– volume: 29
  start-page: 16927
  year: 2021
  end-page: 16938
  ident: CR30
  article-title: Photonic arbitrary waveform generation based on the temporal Talbot effect
  publication-title: Opt. Express
  doi: 10.1364/OE.425209
– volume: 30
  start-page: 665
  year: 2018
  end-page: 668
  ident: CR12
  article-title: Demonstration of input-to-output gain and temporal noise mitigation in a Talbot amplifier
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2018.2803112
– volume: 34
  start-page: 749
  year: 2022
  end-page: 752
  ident: CR29
  article-title: Resolution-enhanced dynamic waveform spectral analysis based on the inverse temporal Talbot effect
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2022.3185635
– volume: 27
  start-page: 7922
  year: 2019
  end-page: 7934
  ident: CR9
  article-title: Investigation of temporal Talbot operation in a conventional optical tapped delay line structure
  publication-title: Opt. Express
  doi: 10.1364/OE.27.007922
– volume: 32
  start-page: 4565
  year: 2014
  end-page: 4570
  ident: CR25
  article-title: Reconfigurable temporal Fourier transformation and temporal Imaging
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2014.2361293
– volume: 34
  start-page: 749
  year: 2022
  ident: 890_CR29
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2022.3185635
– volume: 30
  start-page: 665
  year: 2018
  ident: 890_CR12
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2018.2803112
– volume: 30
  start-page: 242
  year: 2017
  ident: 890_CR34
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2017.2783897
– volume: 43
  start-page: 2139
  year: 1996
  ident: 890_CR1
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500349608232876
– volume: 38
  start-page: 339
  year: 2020
  ident: 890_CR35
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2019.2942344
– volume: 24
  start-page: 1672
  year: 1999
  ident: 890_CR8
  publication-title: Opt. Lett.
  doi: 10.1364/OL.24.001672
– volume: 25
  start-page: 2898
  year: 2007
  ident: 890_CR16
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2007.904030
– volume: 11
  start-page: 3309
  year: 2020
  ident: 890_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17119-2
– volume: 71
  start-page: 1373
  year: 1981
  ident: 890_CR5
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.71.001373
– volume: 23
  start-page: 3602
  year: 2015
  ident: 890_CR18
  publication-title: Opt. Express
  doi: 10.1364/OE.23.003602
– volume: 30
  start-page: 975
  year: 2018
  ident: 890_CR22
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2018.2828131
– volume: 16
  start-page: 192
  year: 2010
  ident: 890_CR17
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2010.03.002
– volume: 5
  start-page: 83
  year: 2013
  ident: 890_CR2
  publication-title: Adv. Opt. Photon.
  doi: 10.1364/AOP.5.000083
– volume: 5
  start-page: 274
  year: 2013
  ident: 890_CR3
  publication-title: Adv. Opt. Photon.
  doi: 10.1364/AOP.5.000274
– volume: 402
  start-page: 97
  year: 2017
  ident: 890_CR33
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2017.05.071
– volume: 32
  start-page: 390
  year: 1984
  ident: 890_CR40
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1984.1164310
– volume: 5
  start-page: 046102
  year: 2020
  ident: 890_CR7
  publication-title: APL Photon.
  doi: 10.1063/1.5139599
– volume: 34
  start-page: 732
  year: 2017
  ident: 890_CR39
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.34.000732
– volume: 43
  start-page: 194
  year: 2018
  ident: 890_CR24
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.000194
– volume: 13
  start-page: 1900176
  year: 2019
  ident: 890_CR10
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201900176
– volume: 5
  start-page: 5163
  year: 2014
  ident: 890_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6163
– volume: 24
  start-page: 685
  year: 2012
  ident: 890_CR31
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2012.2186632
– volume: 20
  start-page: 496
  year: 2008
  ident: 890_CR20
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2008.918242
– volume: 30
  start-page: 1376
  year: 2018
  ident: 890_CR38
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2018.2848634
– volume: 42
  start-page: 767
  year: 2017
  ident: 890_CR15
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.000767
– volume: 29
  start-page: 16927
  year: 2021
  ident: 890_CR30
  publication-title: Opt. Express
  doi: 10.1364/OE.425209
– volume: 20
  start-page: 83
  year: 2003
  ident: 890_CR37
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.20.000083
– volume: 25
  start-page: 7520
  year: 2017
  ident: 890_CR26
  publication-title: Opt. Express
  doi: 10.1364/OE.25.007520
– volume: 22
  start-page: 15251
  year: 2014
  ident: 890_CR32
  publication-title: Opt. Express
  doi: 10.1364/OE.22.015251
– volume: 30
  start-page: 1951
  year: 1994
  ident: 890_CR4
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.301659
– volume: 27
  start-page: 7922
  year: 2019
  ident: 890_CR9
  publication-title: Opt. Express
  doi: 10.1364/OE.27.007922
– volume: 32
  start-page: 4565
  year: 2014
  ident: 890_CR25
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2014.2361293
– volume: 15
  start-page: 8812
  year: 2007
  ident: 890_CR21
  publication-title: Opt. Express
  doi: 10.1364/OE.15.008812
– volume: 7
  start-page: 728
  year: 2001
  ident: 890_CR6
  publication-title: IEEE. J. Sel. Topics Quantum Electron.
  doi: 10.1109/2944.974245
– volume: 28
  start-page: 20543
  year: 2020
  ident: 890_CR36
  publication-title: Opt. Express
  doi: 10.1364/OE.396870
– volume: 15
  start-page: 6351
  year: 2007
  ident: 890_CR19
  publication-title: Opt. Express
  doi: 10.1364/OE.15.006351
– volume: 41
  start-page: 797
  year: 2023
  ident: 890_CR14
  publication-title: J. Lightw. Technol.
  doi: 10.1109/JLT.2022.3212708
– volume: 9
  start-page: 130
  year: 2022
  ident: 890_CR13
  publication-title: Optica
  doi: 10.1364/OPTICA.428727
– volume: 38
  start-page: 4256
  year: 2013
  ident: 890_CR23
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.004256
– volume: 24
  start-page: 1
  year: 1999
  ident: 890_CR27
  publication-title: Opt. Lett.
  doi: 10.1364/OL.24.000001
SSID ssj0025396
Score 2.340418
Snippet The temporal Talbot effect (TTE) embodies the phenomenon of discrete Fourier transform (DFT). However, in an ideal temporal Talbot system, an infinitely long...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 383
SubjectTerms Atomic
Lasers
Microwaves
Molecular
Optical and Plasma Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Quantum Optics
Regular Paper
RF and Optical Engineering
Title Optical computation of discrete Fourier transform utilizing the temporal Talbot effect with input pulse trains of finite duration
URI https://link.springer.com/article/10.1007/s10043-024-00890-8
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1349-9432
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025396
  issn: 1340-6000
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1349-9432
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025396
  issn: 1340-6000
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1349-9432
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025396
  issn: 1340-6000
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5si-DFt_gsc_CmW7rJPo9VrKKoFwt6WpJsAsXSlnZ78eY_d5LdVSsieNwlTMLMJPMl8wI45bk0KR2-HjMy8QIR-F4i_NBLVRoLzSJpfJvgfP8Q3QyC2-fwuUoKm9fR7rVL0p3U35LdrKeYbIpHdssmQDeg5eptNaHVu365u_q8aIXc9eXyuQ1tpz1fJcv8TmXZIC17Q52R6W_AoF5eGVvy2lkUsqPeflRu_O_6N2G9Qp3YK9VkC1b0eBtWXfSnmu_A--PUPWmjcj0enLBwYtCm7M4IVWO_7GyHRQ1zkfR1NHyj-ZEQJFYFrkb4JEZyUmAZJYL2kReHYyKJ0wXZYHQNKeaWtBlasIv5otTAXRj0r54ub7yqN4OnyKgXntEhU4KwAs9jHvra11GcSskDaYz9DoWf5N1IsTii31qneTeXirkOWCKXjO9BczwZ631AyZNIBF0e05hAB3kSCF-ZOJJMmYiugwdwVgsom5YlOLKvYsuWqRkxNXNMzZIDOK_Zn1Xbcf7H8MP_DT-CNeYkaCMAj6FZzBb6hFBJIdukhP2Li4d2pYxtaAxY7wPjXN3C
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86EX0RP3F-3oNvWliTNm0fhzimbvNlg72VJE1gMLqxdi---Z97SVt1IIKPLccFLpf8Lsn97gi5Y5k0CW6-HjUy9gIR-F4s_NBLVBIJTbk0viU4D0e8PwlepuG0JoUVTbZ78yTpduofZDf7UoyY4iFuWQL0NtmxBaxsxfwJ7X4ds0LmunL5zCa244qvqTK_69iEo823UAcxvUNyUMeG0K0m84hs6fyY7LocTVWckI-3pbt4BuU6MTiTwsKAJdauMPaFXtV_DsomGAX0qvnsHQcDjPOgLkM1h7GYy0UJVS4H2KtYmOWoEpZrREpwbSMKq9rMbEgK2bryk1My6T2NH_te3UHBUwi9pWd0SJVARGdZxEJf-5pHiZQskMbY71D4cdbhikYcf2udZJ1MKur6VIlMUnZGWvki1-cEJIu5CDosQplAB1kcCF-ZiEuqDMdDW5vcN4ZMl1WhjPS7JLI1e4pmT53Z07hNHhpbp_WiKf4Qv_if-C3Z64-Hg3TwPHq9JPvUzbfN2bsirXK11tcYR5TyxrnNJw6_wU0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60ongRn_h2Dt402OxuXseilvqqHlroLewTCiUtNr148587u0m1BRE8JgwTmJ3NN7sz3wwhl0xLm-HPN6BWpgEXPAxSEUZBprJEGBpLGzqC80s37vT54yAaLLD4fbX7PCVZcRpcl6aivJloe7NAfHNZY8SXADHMkaFXyRp3jRLQo_u09X3kipif0BUyV-SOu7-mzfyuYxmalvOiHm7a22SrjhOhVS3sDlkxxS5Z9_WaarpHPl8n_hIalJ_K4M0LYwuOZPuOcTC0q1l0UM4DU0APGw0_8GOAMR_ULalG0BMjOS6hqusAdy0LwwJVwmSGqAl-hMTUqbZDF56CnlU-s0_67fvebSeopykECmG4DKyJqBKI7kwnLApNaOIkk5Jxaa17jkSY6masaBLja2My3dRSUT-zSmhJ2QFpFOPCHBKQLI0Fb7IEZbjhOuUiVDaJJVU2xgPcEbmaGzKfVE0z8p_2yM7sOZo992bP0yNyPbd1Xm-g6R_ix_8TvyAbb3ft_Pmh-3RCNqlfble-d0oa5fvMnGFIUcpz7zVfYBPFiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+computation+of+discrete+Fourier+transform+utilizing+the+temporal+Talbot+effect+with+input+pulse+trains+of+finite+duration&rft.jtitle=Optical+review+%28Tokyo%2C+Japan%29&rft.au=Qiu%2C+Yijun&rft.au=Yang%2C+Shuna&rft.au=Yang%2C+Bo&rft.au=Chi%2C+Hao&rft.date=2024-08-01&rft.pub=Springer+Japan&rft.issn=1340-6000&rft.eissn=1349-9432&rft.volume=31&rft.issue=4&rft.spage=383&rft.epage=394&rft_id=info:doi/10.1007%2Fs10043-024-00890-8&rft.externalDocID=10_1007_s10043_024_00890_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-6000&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-6000&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-6000&client=summon