Improving ASP-Based ORS Schedules through Machine Learning Predictions

The operating room scheduling (ORS) problem deals with the optimization of daily operating room surgery schedules. It is a challenging problem subject to many constraints, like to determine the starting time of different surgeries and allocating the required resources, including the availability of...

Full description

Saved in:
Bibliographic Details
Published inTheory and practice of logic programming Vol. 25; no. 4; pp. 558 - 578
Main Authors BRUNO, PIERANGELA, DODARO, CARMINE, GALATÀ, GIUSEPPE, MARATEA, MARCO, MOCHI, MARCO
Format Journal Article
LanguageEnglish
Published 22.08.2025
Online AccessGet full text
ISSN1471-0684
1475-3081
1475-3081
DOI10.1017/S1471068425100136

Cover

Abstract The operating room scheduling (ORS) problem deals with the optimization of daily operating room surgery schedules. It is a challenging problem subject to many constraints, like to determine the starting time of different surgeries and allocating the required resources, including the availability of beds in different department units. Recently, solutions to this problem based on answer set programming (ASP) have been delivered. Such solutions are overall satisfying but, when applied to real data, they can currently only verify whether the encoding aligns with the actual data and, at most, suggest alternative schedules that could have been computed. As a consequence, it is not currently possible to generate provisional schedules. Furthermore, the resulting schedules are not always robust. In this paper, we integrate inductive and deductive techniques for solving these issues. We first employ machine learning algorithms to predict the surgery duration, from historical data, to compute provisional schedules. Then, we consider the confidence of such predictions as an additional input to our problem and update the encoding correspondingly in order to compute more robust schedules. Results on historical data from the ASL1 Liguria in Italy confirm the viability of our integration.
AbstractList The operating room scheduling (ORS) problem deals with the optimization of daily operating room surgery schedules. It is a challenging problem subject to many constraints, like to determine the starting time of different surgeries and allocating the required resources, including the availability of beds in different department units. Recently, solutions to this problem based on answer set programming (ASP) have been delivered. Such solutions are overall satisfying but, when applied to real data, they can currently only verify whether the encoding aligns with the actual data and, at most, suggest alternative schedules that could have been computed. As a consequence, it is not currently possible to generate provisional schedules. Furthermore, the resulting schedules are not always robust. In this paper, we integrate inductive and deductive techniques for solving these issues. We first employ machine learning algorithms to predict the surgery duration, from historical data, to compute provisional schedules. Then, we consider the confidence of such predictions as an additional input to our problem and update the encoding correspondingly in order to compute more robust schedules. Results on historical data from the ASL1 Liguria in Italy confirm the viability of our integration.
Author GALATÀ, GIUSEPPE
MARATEA, MARCO
DODARO, CARMINE
MOCHI, MARCO
BRUNO, PIERANGELA
Author_xml – sequence: 1
  givenname: PIERANGELA
  surname: BRUNO
  fullname: BRUNO, PIERANGELA
– sequence: 2
  givenname: CARMINE
  orcidid: 0000-0002-5617-5286
  surname: DODARO
  fullname: DODARO, CARMINE
– sequence: 3
  givenname: GIUSEPPE
  surname: GALATÀ
  fullname: GALATÀ, GIUSEPPE
– sequence: 4
  givenname: MARCO
  orcidid: 0000-0002-9034-2527
  surname: MARATEA
  fullname: MARATEA, MARCO
– sequence: 5
  givenname: MARCO
  orcidid: 0000-0002-5849-3667
  surname: MOCHI
  fullname: MOCHI, MARCO
BookMark eNplkEFOwzAQRS1UJNrCAdjlAgGP4zjJslQUKgW1IrCOHHvcBKVOZbeg3r4JZUVX8zUz7y_ehIxsZ5GQe6APQCF5LIAnQEXKWQyUQiSuyLhfxWFEUxj9ZgiH-w2ZeP_Vv4iI8TFZLLc71303dhPMinX4JD3qYPVeBIWqUR9a9MG-dt1hUwdvUtWNxSBH6ewArB3qRu2bzvpbcm1k6_Hub07J5-L5Y_4a5quX5XyWh4pxtg-NqjDNeCziVJpEcagMMg06E1QLkXBkkmMGscqYqLTgojKCa8oMUkahyqIpYefeg93J449s23Lnmq10xxJoOZgo_X8TPQRnSLnOe4fmgrmwF50Av_dg3w
Cites_doi 10.1109/ACCESS.2024.3433513
10.1016/j.promfg.2016.08.005
10.1214/aos/1013203451
10.1080/00031305.1992.10475879
10.1023/A:1010933404324
10.1016/j.orhc.2016.01.001
10.1093/logcom/exae041
10.55576/job.v2i4.23
10.1017/S1471068413000094
10.1145/2043174.2043195
10.1017/S1471068421000090
10.3233/IA-190020
10.1016/j.dss.2012.10.019
10.1017/S1471068414000210
10.3233/AIC-2011-0493
10.1017/S1471068419000450
10.1017/S1471068422000229
10.1016/j.jclinane.2010.02.003
10.3389/frobt.2019.00125
10.1017/S1471068422000163
10.1016/j.cor.2014.08.014
10.1007/978-1-4614-6849-3_3
10.1016/j.inffus.2021.11.011
10.1109/TNNLS.2022.3229161
10.1016/j.cor.2019.04.010
10.1017/S1471068423000170
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1017/S1471068425100136
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1475-3081
EndPage 578
ExternalDocumentID 10.1017/s1471068425100136
10_1017_S1471068425100136
GroupedDBID -E.
.FH
09C
09E
0E1
0R~
123
29Q
4.4
5VS
74X
74Y
7~V
8FE
8FG
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAFUK
AAGFV
AAKTX
AANRG
AARAB
AASVR
AAUKB
AAYXX
ABBXD
ABGDZ
ABITZ
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVKB
ABVZP
ABXHF
ABZCX
ACAJB
ACBMC
ACDLN
ACGFS
ACIMK
ACNCT
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADKIL
ADOVH
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AFFHD
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKMAY
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCTKK
CFAFE
CHEAL
CITATION
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IPYYG
IS6
I~P
J36
J38
J3A
J9A
JHPGK
JQKCU
K6V
K7-
KCGVB
KFECR
L98
LW7
M-V
NIKVX
O9-
OYBOY
P2P
P62
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PYCCK
Q2X
RAMDC
RCA
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
WFFJZ
WQ3
WXU
WYP
ZYDXJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c242t-fcbe8945658af7c41bfe2d1d960d6674e2a4e915c926bd646bf64d02fe0201b93
IEDL.DBID UNPAY
ISSN 1471-0684
1475-3081
IngestDate Wed Oct 29 12:13:51 EDT 2025
Wed Oct 29 21:26:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-fcbe8945658af7c41bfe2d1d960d6674e2a4e915c926bd646bf64d02fe0201b93
ORCID 0000-0002-9034-2527
0000-0002-5849-3667
0000-0002-5617-5286
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B93B14FEED83BCBD8B6EA4F986A1D42D/S1471068425100136a.pdf/div-class-title-improving-asp-based-ors-schedules-through-machine-learning-predictions-div.pdf
PageCount 21
ParticipantIDs unpaywall_primary_10_1017_s1471068425100136
crossref_primary_10_1017_S1471068425100136
PublicationCentury 2000
PublicationDate 2025-08-22
PublicationDateYYYYMMDD 2025-08-22
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-22
  day: 22
PublicationDecade 2020
PublicationTitle Theory and practice of logic programming
PublicationYear 2025
References Chen (S1471068425100136_ref15) 2016
S1471068425100136_ref29
Arik (S1471068425100136_ref4) 2021
S1471068425100136_ref27
Cunnington (S1471068425100136_ref16) 2023
S1471068425100136_ref43
S1471068425100136_ref20
Bruno (S1471068425100136_ref13) 2022; 13416
S1471068425100136_ref41
S1471068425100136_ref40
Yang (S1471068425100136_ref46) 2020
S1471068425100136_ref25
S1471068425100136_ref24
Liu (S1471068425100136_ref36) 2022; 13416
S1471068425100136_ref44
Eiter (S1471068425100136_ref23) 2023
Dodaro (S1471068425100136_ref21) 2022; 13416
Sheth (S1471068425100136_ref42) 2024; 39
Tarzariol (S1471068425100136_ref45) 2023
Basu (S1471068425100136_ref8) 2020; 12007
S1471068425100136_ref18
S1471068425100136_ref39
Zhang (S1471068425100136_ref47) 2017
Şeyda (S1471068425100136_ref28) 2018; 2018
S1471068425100136_ref38
Breiman (S1471068425100136_ref11) 1984; 40
S1471068425100136_ref19
S1471068425100136_ref10
S1471068425100136_ref32
Lundberg (S1471068425100136_ref37) 2017; 30
S1471068425100136_ref31
Drucker (S1471068425100136_ref22) 1996
S1471068425100136_ref9
S1471068425100136_ref30
Galatà (S1471068425100136_ref26) 2021; 3065
S1471068425100136_ref7
S1471068425100136_ref14
S1471068425100136_ref35
S1471068425100136_ref6
S1471068425100136_ref5
S1471068425100136_ref34
S1471068425100136_ref12
S1471068425100136_ref33
S1471068425100136_ref3
Almeida (S1471068425100136_ref2) 2020
S1471068425100136_ref1
Dekking (S1471068425100136_ref17) 2005
References_xml – ident: S1471068425100136_ref31
  doi: 10.1109/ACCESS.2024.3433513
– ident: S1471068425100136_ref1
  doi: 10.1016/j.promfg.2016.08.005
– start-page: 1755
  volume-title: IJCAI
  year: 2020
  ident: S1471068425100136_ref46
– volume: 40
  start-page: 358
  year: 1984
  ident: S1471068425100136_ref11
  article-title: Classification and regression
  publication-title: Trees
– start-page: 1
  volume-title: ICAC
  year: 2017
  ident: S1471068425100136_ref47
– ident: S1471068425100136_ref25
  doi: 10.1214/aos/1013203451
– volume-title: Springer Texts in Statistics
  year: 2005
  ident: S1471068425100136_ref17
– volume: 13416
  start-page: 415
  volume-title: LPNMR
  year: 2022
  ident: S1471068425100136_ref36
– ident: S1471068425100136_ref3
  doi: 10.1080/00031305.1992.10475879
– ident: S1471068425100136_ref10
  doi: 10.1023/A:1010933404324
– start-page: 785
  volume-title: SIGKDD
  year: 2016
  ident: S1471068425100136_ref15
– start-page: 9
  volume-title: Advances in Neural Information Processing Systems
  year: 1996
  ident: S1471068425100136_ref22
– volume: 39
  start-page: 5
  year: 2024
  ident: S1471068425100136_ref42
  article-title: Neurosymbolic value-inspired artificial intelligence (why, what, and how)
  publication-title: IEEE Intelligent Systems
– start-page: 6679
  volume-title: AAAI
  year: 2021
  ident: S1471068425100136_ref4
– volume: 2018
  start-page: 5341394
  year: 2018
  ident: S1471068425100136_ref28
  article-title: Application of operational research techniques in operating room scheduling problems: literature overview
  publication-title: Journal of Healthcare Engineering
– volume: 3065
  volume-title: IPS and RCRA
  year: 2021
  ident: S1471068425100136_ref26
– ident: S1471068425100136_ref34
  doi: 10.1016/j.orhc.2016.01.001
– ident: S1471068425100136_ref18
  doi: 10.1093/logcom/exae041
– ident: S1471068425100136_ref32
– ident: S1471068425100136_ref44
  doi: 10.55576/job.v2i4.23
– start-page: 6541
  volume-title: AAAI
  year: 2023
  ident: S1471068425100136_ref45
– ident: S1471068425100136_ref39
  doi: 10.1017/S1471068413000094
– ident: S1471068425100136_ref12
  doi: 10.1145/2043174.2043195
– start-page: C1
  volume-title: Handbook of Neural Computation
  year: 2020
  ident: S1471068425100136_ref2
– ident: S1471068425100136_ref19
  doi: 10.1017/S1471068421000090
– start-page: 3668
  volume-title: IJCAI
  year: 2023
  ident: S1471068425100136_ref23
– ident: S1471068425100136_ref20
  doi: 10.3233/IA-190020
– ident: S1471068425100136_ref40
  doi: 10.1016/j.dss.2012.10.019
– volume: 13416
  start-page: 145
  volume-title: LPNMR
  year: 2022
  ident: S1471068425100136_ref21
– ident: S1471068425100136_ref30
  doi: 10.1017/S1471068414000210
– ident: S1471068425100136_ref6
  doi: 10.3233/AIC-2011-0493
– volume: 12007
  start-page: 57
  volume-title: PADL
  year: 2020
  ident: S1471068425100136_ref8
– ident: S1471068425100136_ref14
  doi: 10.1017/S1471068419000450
– ident: S1471068425100136_ref24
  doi: 10.1017/S1471068422000229
– ident: S1471068425100136_ref38
  doi: 10.1016/j.jclinane.2010.02.003
– ident: S1471068425100136_ref41
  doi: 10.3389/frobt.2019.00125
– ident: S1471068425100136_ref27
  doi: 10.1017/S1471068422000163
– ident: S1471068425100136_ref5
  doi: 10.1016/j.cor.2014.08.014
– ident: S1471068425100136_ref33
  doi: 10.1007/978-1-4614-6849-3_3
– ident: S1471068425100136_ref43
  doi: 10.1016/j.inffus.2021.11.011
– ident: S1471068425100136_ref9
  doi: 10.1109/TNNLS.2022.3229161
– ident: S1471068425100136_ref29
  doi: 10.1016/j.cor.2019.04.010
– volume: 13416
  start-page: 505
  volume-title: LPNMR
  year: 2022
  ident: S1471068425100136_ref13
– volume: 30
  start-page: 4768
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: S1471068425100136_ref37
– ident: S1471068425100136_ref35
– start-page: 3586
  volume-title: IJCAI
  year: 2023
  ident: S1471068425100136_ref16
– ident: S1471068425100136_ref7
  doi: 10.1017/S1471068423000170
SSID ssj0016324
Score 2.3733268
Snippet The operating room scheduling (ORS) problem deals with the optimization of daily operating room surgery schedules. It is a challenging problem subject to many...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 558
Title Improving ASP-Based ORS Schedules through Machine Learning Predictions
URI https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B93B14FEED83BCBD8B6EA4F986A1D42D/S1471068425100136a.pdf/div-class-title-improving-asp-based-ors-schedules-through-machine-learning-predictions-div.pdf
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAEN
  databaseName: Cambridge Wholly Gold Open Access Journals
  customDbUrl:
  eissn: 1475-3081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016324
  issn: 1475-3081
  databaseCode: IPYYG
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.cambridge.org
  providerName: Cambridge University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V1Lj9MwELaW9gCXXZ7aXWCVAyfQNLHrOMkx2TYsSCwVpdL2VMWv1YrSRn2A4MfyV8B2nALbE1dukTzyRPY8PnvGMwi9IMYFxJwSEDomQDHnkAmhQCWRwlxmxm24BNlLdjGhb6_iqwP0o30LY9MqdzUOXCTf9Udbe8UJq2UNu3FwYzan2xjo0F6lh0XWLzAth8NB2i_Oi0FasGFOyyxlOR5QMgjH2JjjyEWfsCtYVvVqqUN58wWExavgNglu2iM9VOsarEeRsFytwRw5jQuYK0PX9NGBzy7pUYHv8nAN9cqGWJzUgJnWTn8HdVlszgod1J1cjvKpe_KU2JQj1xLZfMfQN865Dbti-7bv1n_-5Tjvbhd19e1rNZ__4Q3LI_SzXccmCeZTb7vhPfH9VonJ_3eh76NDD-SDvNG8B-hALR6io7ZJRuBt5iNU7q5tgnw8gsKyDt5_GBsKzzrwrIN3DevA17y9Dka_WT9Gk3L48fwCfPMKEAb1bEALrtLM4uW00okwWqAVkVgaKZCMJVSRiqoMxyIjjEtGGdeMyohoZQA85ln_Ceoslgt1jIJIGSCn4kikWUy51rxKokREkkuZ6lgnJ-hlKxmzuqlRMmuS95LZ3i6coFc72dmj3hO603-iforuEdseOTLGlzxDnc1qq54bzLbhZ6j7ZjSdvj7zCvAL7FpCbw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V1Lj9MwELaW7gEuLE-xvJQDJ9A0ses4yTHZNlohsVSUSsupil-r1ZY26mNX8GP5KzB2kgLbE1dukTzyRPZ4Zuz5ZoaQNwxNQCw5A2VjBpxKCZlSBkwSGSp1hmbDA2TPxOmUvz-Pzw_Ijy4XxsEqdzUOfCTf90dbtwcnrJY17MbBjzlMNyro0D2lh0U2KCgvR6NhOihOimFaiFHOyywVOR1yNgwnFNVx5KNP1Bcsq_q1tqG-vAbl_FXwmwSX3ZUeqnUNzqJoWK7WgFdONAFzg3RNHx346kGPBtouDxdQr1yIxUsN4LRu-jvkUMR4V-iRw-nZOP_iU54SBznyLZHxO4YBGucu7Epdbt-t__zLcN7dLurq2001n_9hDcsj8rNbxwYEc9XfbmRffb9VYvL_XegH5H7ryAd5c_IekgOzeESOuiYZQaszH5Ny92wT5JMxFI518PHTBCla1kHLOvjQsA7amrcXwfg36ydkWo4-n5xC27wCFHo9G7BKmjRz_nJa2UThKbCGaapRCrQQCTes4iajscqYkFpwIa3gOmLWoANPZTZ4SnqL5cI8I0Fk0JEzcaTSLObSWlklUaIiLbVObWyTY_K2k4xZ3dQomTXgvWS2twvH5N1Odvao94Tu-T9RvyD3mGuPHKHyZS9Jb7Pamlfos23k61bwfwHghUC6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+ASP-Based+ORS+Schedules+through+Machine+Learning+Predictions&rft.jtitle=Theory+and+practice+of+logic+programming&rft.au=BRUNO%2C+PIERANGELA&rft.au=DODARO%2C+CARMINE&rft.au=GALAT%C3%80%2C+GIUSEPPE&rft.au=MARATEA%2C+MARCO&rft.date=2025-08-22&rft.issn=1471-0684&rft.eissn=1475-3081&rft.volume=25&rft.issue=4&rft.spage=558&rft.epage=578&rft_id=info:doi/10.1017%2FS1471068425100136&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S1471068425100136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0684&client=summon