Improving ASP-Based ORS Schedules through Machine Learning Predictions
The operating room scheduling (ORS) problem deals with the optimization of daily operating room surgery schedules. It is a challenging problem subject to many constraints, like to determine the starting time of different surgeries and allocating the required resources, including the availability of...
Saved in:
| Published in | Theory and practice of logic programming Vol. 25; no. 4; pp. 558 - 578 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
22.08.2025
|
| Online Access | Get full text |
| ISSN | 1471-0684 1475-3081 1475-3081 |
| DOI | 10.1017/S1471068425100136 |
Cover
| Abstract | The operating room scheduling (ORS) problem deals with the optimization of daily operating room surgery schedules. It is a challenging problem subject to many constraints, like to determine the starting time of different surgeries and allocating the required resources, including the availability of beds in different department units. Recently, solutions to this problem based on answer set programming (ASP) have been delivered. Such solutions are overall satisfying but, when applied to real data, they can currently only verify whether the encoding aligns with the actual data and, at most, suggest alternative schedules that could have been computed. As a consequence, it is not currently possible to generate provisional schedules. Furthermore, the resulting schedules are not always robust. In this paper, we integrate inductive and deductive techniques for solving these issues. We first employ machine learning algorithms to predict the surgery duration, from historical data, to compute provisional schedules. Then, we consider the confidence of such predictions as an additional input to our problem and update the encoding correspondingly in order to compute more robust schedules. Results on historical data from the ASL1 Liguria in Italy confirm the viability of our integration. |
|---|---|
| AbstractList | The operating room scheduling (ORS) problem deals with the optimization of daily operating room surgery schedules. It is a challenging problem subject to many constraints, like to determine the starting time of different surgeries and allocating the required resources, including the availability of beds in different department units. Recently, solutions to this problem based on answer set programming (ASP) have been delivered. Such solutions are overall satisfying but, when applied to real data, they can currently only verify whether the encoding aligns with the actual data and, at most, suggest alternative schedules that could have been computed. As a consequence, it is not currently possible to generate provisional schedules. Furthermore, the resulting schedules are not always robust. In this paper, we integrate inductive and deductive techniques for solving these issues. We first employ machine learning algorithms to predict the surgery duration, from historical data, to compute provisional schedules. Then, we consider the confidence of such predictions as an additional input to our problem and update the encoding correspondingly in order to compute more robust schedules. Results on historical data from the ASL1 Liguria in Italy confirm the viability of our integration. |
| Author | GALATÀ, GIUSEPPE MARATEA, MARCO DODARO, CARMINE MOCHI, MARCO BRUNO, PIERANGELA |
| Author_xml | – sequence: 1 givenname: PIERANGELA surname: BRUNO fullname: BRUNO, PIERANGELA – sequence: 2 givenname: CARMINE orcidid: 0000-0002-5617-5286 surname: DODARO fullname: DODARO, CARMINE – sequence: 3 givenname: GIUSEPPE surname: GALATÀ fullname: GALATÀ, GIUSEPPE – sequence: 4 givenname: MARCO orcidid: 0000-0002-9034-2527 surname: MARATEA fullname: MARATEA, MARCO – sequence: 5 givenname: MARCO orcidid: 0000-0002-5849-3667 surname: MOCHI fullname: MOCHI, MARCO |
| BookMark | eNplkEFOwzAQRS1UJNrCAdjlAgGP4zjJslQUKgW1IrCOHHvcBKVOZbeg3r4JZUVX8zUz7y_ehIxsZ5GQe6APQCF5LIAnQEXKWQyUQiSuyLhfxWFEUxj9ZgiH-w2ZeP_Vv4iI8TFZLLc71303dhPMinX4JD3qYPVeBIWqUR9a9MG-dt1hUwdvUtWNxSBH6ewArB3qRu2bzvpbcm1k6_Hub07J5-L5Y_4a5quX5XyWh4pxtg-NqjDNeCziVJpEcagMMg06E1QLkXBkkmMGscqYqLTgojKCa8oMUkahyqIpYefeg93J449s23Lnmq10xxJoOZgo_X8TPQRnSLnOe4fmgrmwF50Av_dg3w |
| Cites_doi | 10.1109/ACCESS.2024.3433513 10.1016/j.promfg.2016.08.005 10.1214/aos/1013203451 10.1080/00031305.1992.10475879 10.1023/A:1010933404324 10.1016/j.orhc.2016.01.001 10.1093/logcom/exae041 10.55576/job.v2i4.23 10.1017/S1471068413000094 10.1145/2043174.2043195 10.1017/S1471068421000090 10.3233/IA-190020 10.1016/j.dss.2012.10.019 10.1017/S1471068414000210 10.3233/AIC-2011-0493 10.1017/S1471068419000450 10.1017/S1471068422000229 10.1016/j.jclinane.2010.02.003 10.3389/frobt.2019.00125 10.1017/S1471068422000163 10.1016/j.cor.2014.08.014 10.1007/978-1-4614-6849-3_3 10.1016/j.inffus.2021.11.011 10.1109/TNNLS.2022.3229161 10.1016/j.cor.2019.04.010 10.1017/S1471068423000170 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1017/S1471068425100136 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1475-3081 |
| EndPage | 578 |
| ExternalDocumentID | 10.1017/s1471068425100136 10_1017_S1471068425100136 |
| GroupedDBID | -E. .FH 09C 09E 0E1 0R~ 123 29Q 4.4 5VS 74X 74Y 7~V 8FE 8FG 8R4 8R5 AAAZR AABES AABWE AACJH AAFUK AAGFV AAKTX AANRG AARAB AASVR AAUKB AAYXX ABBXD ABGDZ ABITZ ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVKB ABVZP ABXHF ABZCX ACAJB ACBMC ACDLN ACGFS ACIMK ACNCT ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADKIL ADOVH ADVJH AEBAK AEHGV AEMTW AENEX AENGE AFFHD AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKMAY ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BLZWO BMAJL BPHCQ C0O CAG CBIIA CCPQU CCQAD CCTKK CFAFE CHEAL CITATION CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EJD GNUQQ HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IPYYG IS6 I~P J36 J38 J3A J9A JHPGK JQKCU K6V K7- KCGVB KFECR L98 LW7 M-V NIKVX O9- OYBOY P2P P62 PHGZM PHGZT PQGLB PQQKQ PROAC PYCCK Q2X RAMDC RCA ROL RR0 S6- S6U SAAAG T9M UT1 WFFJZ WQ3 WXU WYP ZYDXJ ADTOC UNPAY |
| ID | FETCH-LOGICAL-c242t-fcbe8945658af7c41bfe2d1d960d6674e2a4e915c926bd646bf64d02fe0201b93 |
| IEDL.DBID | UNPAY |
| ISSN | 1471-0684 1475-3081 |
| IngestDate | Wed Oct 29 12:13:51 EDT 2025 Wed Oct 29 21:26:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c242t-fcbe8945658af7c41bfe2d1d960d6674e2a4e915c926bd646bf64d02fe0201b93 |
| ORCID | 0000-0002-9034-2527 0000-0002-5849-3667 0000-0002-5617-5286 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B93B14FEED83BCBD8B6EA4F986A1D42D/S1471068425100136a.pdf/div-class-title-improving-asp-based-ors-schedules-through-machine-learning-predictions-div.pdf |
| PageCount | 21 |
| ParticipantIDs | unpaywall_primary_10_1017_s1471068425100136 crossref_primary_10_1017_S1471068425100136 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-22 |
| PublicationDateYYYYMMDD | 2025-08-22 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | Theory and practice of logic programming |
| PublicationYear | 2025 |
| References | Chen (S1471068425100136_ref15) 2016 S1471068425100136_ref29 Arik (S1471068425100136_ref4) 2021 S1471068425100136_ref27 Cunnington (S1471068425100136_ref16) 2023 S1471068425100136_ref43 S1471068425100136_ref20 Bruno (S1471068425100136_ref13) 2022; 13416 S1471068425100136_ref41 S1471068425100136_ref40 Yang (S1471068425100136_ref46) 2020 S1471068425100136_ref25 S1471068425100136_ref24 Liu (S1471068425100136_ref36) 2022; 13416 S1471068425100136_ref44 Eiter (S1471068425100136_ref23) 2023 Dodaro (S1471068425100136_ref21) 2022; 13416 Sheth (S1471068425100136_ref42) 2024; 39 Tarzariol (S1471068425100136_ref45) 2023 Basu (S1471068425100136_ref8) 2020; 12007 S1471068425100136_ref18 S1471068425100136_ref39 Zhang (S1471068425100136_ref47) 2017 Şeyda (S1471068425100136_ref28) 2018; 2018 S1471068425100136_ref38 Breiman (S1471068425100136_ref11) 1984; 40 S1471068425100136_ref19 S1471068425100136_ref10 S1471068425100136_ref32 Lundberg (S1471068425100136_ref37) 2017; 30 S1471068425100136_ref31 Drucker (S1471068425100136_ref22) 1996 S1471068425100136_ref9 S1471068425100136_ref30 Galatà (S1471068425100136_ref26) 2021; 3065 S1471068425100136_ref7 S1471068425100136_ref14 S1471068425100136_ref35 S1471068425100136_ref6 S1471068425100136_ref5 S1471068425100136_ref34 S1471068425100136_ref12 S1471068425100136_ref33 S1471068425100136_ref3 Almeida (S1471068425100136_ref2) 2020 S1471068425100136_ref1 Dekking (S1471068425100136_ref17) 2005 |
| References_xml | – ident: S1471068425100136_ref31 doi: 10.1109/ACCESS.2024.3433513 – ident: S1471068425100136_ref1 doi: 10.1016/j.promfg.2016.08.005 – start-page: 1755 volume-title: IJCAI year: 2020 ident: S1471068425100136_ref46 – volume: 40 start-page: 358 year: 1984 ident: S1471068425100136_ref11 article-title: Classification and regression publication-title: Trees – start-page: 1 volume-title: ICAC year: 2017 ident: S1471068425100136_ref47 – ident: S1471068425100136_ref25 doi: 10.1214/aos/1013203451 – volume-title: Springer Texts in Statistics year: 2005 ident: S1471068425100136_ref17 – volume: 13416 start-page: 415 volume-title: LPNMR year: 2022 ident: S1471068425100136_ref36 – ident: S1471068425100136_ref3 doi: 10.1080/00031305.1992.10475879 – ident: S1471068425100136_ref10 doi: 10.1023/A:1010933404324 – start-page: 785 volume-title: SIGKDD year: 2016 ident: S1471068425100136_ref15 – start-page: 9 volume-title: Advances in Neural Information Processing Systems year: 1996 ident: S1471068425100136_ref22 – volume: 39 start-page: 5 year: 2024 ident: S1471068425100136_ref42 article-title: Neurosymbolic value-inspired artificial intelligence (why, what, and how) publication-title: IEEE Intelligent Systems – start-page: 6679 volume-title: AAAI year: 2021 ident: S1471068425100136_ref4 – volume: 2018 start-page: 5341394 year: 2018 ident: S1471068425100136_ref28 article-title: Application of operational research techniques in operating room scheduling problems: literature overview publication-title: Journal of Healthcare Engineering – volume: 3065 volume-title: IPS and RCRA year: 2021 ident: S1471068425100136_ref26 – ident: S1471068425100136_ref34 doi: 10.1016/j.orhc.2016.01.001 – ident: S1471068425100136_ref18 doi: 10.1093/logcom/exae041 – ident: S1471068425100136_ref32 – ident: S1471068425100136_ref44 doi: 10.55576/job.v2i4.23 – start-page: 6541 volume-title: AAAI year: 2023 ident: S1471068425100136_ref45 – ident: S1471068425100136_ref39 doi: 10.1017/S1471068413000094 – ident: S1471068425100136_ref12 doi: 10.1145/2043174.2043195 – start-page: C1 volume-title: Handbook of Neural Computation year: 2020 ident: S1471068425100136_ref2 – ident: S1471068425100136_ref19 doi: 10.1017/S1471068421000090 – start-page: 3668 volume-title: IJCAI year: 2023 ident: S1471068425100136_ref23 – ident: S1471068425100136_ref20 doi: 10.3233/IA-190020 – ident: S1471068425100136_ref40 doi: 10.1016/j.dss.2012.10.019 – volume: 13416 start-page: 145 volume-title: LPNMR year: 2022 ident: S1471068425100136_ref21 – ident: S1471068425100136_ref30 doi: 10.1017/S1471068414000210 – ident: S1471068425100136_ref6 doi: 10.3233/AIC-2011-0493 – volume: 12007 start-page: 57 volume-title: PADL year: 2020 ident: S1471068425100136_ref8 – ident: S1471068425100136_ref14 doi: 10.1017/S1471068419000450 – ident: S1471068425100136_ref24 doi: 10.1017/S1471068422000229 – ident: S1471068425100136_ref38 doi: 10.1016/j.jclinane.2010.02.003 – ident: S1471068425100136_ref41 doi: 10.3389/frobt.2019.00125 – ident: S1471068425100136_ref27 doi: 10.1017/S1471068422000163 – ident: S1471068425100136_ref5 doi: 10.1016/j.cor.2014.08.014 – ident: S1471068425100136_ref33 doi: 10.1007/978-1-4614-6849-3_3 – ident: S1471068425100136_ref43 doi: 10.1016/j.inffus.2021.11.011 – ident: S1471068425100136_ref9 doi: 10.1109/TNNLS.2022.3229161 – ident: S1471068425100136_ref29 doi: 10.1016/j.cor.2019.04.010 – volume: 13416 start-page: 505 volume-title: LPNMR year: 2022 ident: S1471068425100136_ref13 – volume: 30 start-page: 4768 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: S1471068425100136_ref37 – ident: S1471068425100136_ref35 – start-page: 3586 volume-title: IJCAI year: 2023 ident: S1471068425100136_ref16 – ident: S1471068425100136_ref7 doi: 10.1017/S1471068423000170 |
| SSID | ssj0016324 |
| Score | 2.3733268 |
| Snippet | The operating room scheduling (ORS) problem deals with the optimization of daily operating room surgery schedules. It is a challenging problem subject to many... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| StartPage | 558 |
| Title | Improving ASP-Based ORS Schedules through Machine Learning Predictions |
| URI | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/B93B14FEED83BCBD8B6EA4F986A1D42D/S1471068425100136a.pdf/div-class-title-improving-asp-based-ors-schedules-through-machine-learning-predictions-div.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAEN databaseName: Cambridge Wholly Gold Open Access Journals customDbUrl: eissn: 1475-3081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016324 issn: 1475-3081 databaseCode: IPYYG dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.cambridge.org providerName: Cambridge University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V1Lj9MwELaW9gCXXZ7aXWCVAyfQNLHrOMkx2TYsSCwVpdL2VMWv1YrSRn2A4MfyV8B2nALbE1dukTzyRPY8PnvGMwi9IMYFxJwSEDomQDHnkAmhQCWRwlxmxm24BNlLdjGhb6_iqwP0o30LY9MqdzUOXCTf9Udbe8UJq2UNu3FwYzan2xjo0F6lh0XWLzAth8NB2i_Oi0FasGFOyyxlOR5QMgjH2JjjyEWfsCtYVvVqqUN58wWExavgNglu2iM9VOsarEeRsFytwRw5jQuYK0PX9NGBzy7pUYHv8nAN9cqGWJzUgJnWTn8HdVlszgod1J1cjvKpe_KU2JQj1xLZfMfQN865Dbti-7bv1n_-5Tjvbhd19e1rNZ__4Q3LI_SzXccmCeZTb7vhPfH9VonJ_3eh76NDD-SDvNG8B-hALR6io7ZJRuBt5iNU7q5tgnw8gsKyDt5_GBsKzzrwrIN3DevA17y9Dka_WT9Gk3L48fwCfPMKEAb1bEALrtLM4uW00okwWqAVkVgaKZCMJVSRiqoMxyIjjEtGGdeMyohoZQA85ln_Ceoslgt1jIJIGSCn4kikWUy51rxKokREkkuZ6lgnJ-hlKxmzuqlRMmuS95LZ3i6coFc72dmj3hO603-iforuEdseOTLGlzxDnc1qq54bzLbhZ6j7ZjSdvj7zCvAL7FpCbw |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V1Lj9MwELaW7gEuLE-xvJQDJ9A0ses4yTHZNlohsVSUSsupil-r1ZY26mNX8GP5KzB2kgLbE1dukTzyRPZ4Zuz5ZoaQNwxNQCw5A2VjBpxKCZlSBkwSGSp1hmbDA2TPxOmUvz-Pzw_Ijy4XxsEqdzUOfCTf90dbtwcnrJY17MbBjzlMNyro0D2lh0U2KCgvR6NhOihOimFaiFHOyywVOR1yNgwnFNVx5KNP1Bcsq_q1tqG-vAbl_FXwmwSX3ZUeqnUNzqJoWK7WgFdONAFzg3RNHx346kGPBtouDxdQr1yIxUsN4LRu-jvkUMR4V-iRw-nZOP_iU54SBznyLZHxO4YBGucu7Epdbt-t__zLcN7dLurq2001n_9hDcsj8rNbxwYEc9XfbmRffb9VYvL_XegH5H7ryAd5c_IekgOzeESOuiYZQaszH5Ny92wT5JMxFI518PHTBCla1kHLOvjQsA7amrcXwfg36ydkWo4-n5xC27wCFHo9G7BKmjRz_nJa2UThKbCGaapRCrQQCTes4iajscqYkFpwIa3gOmLWoANPZTZ4SnqL5cI8I0Fk0JEzcaTSLObSWlklUaIiLbVObWyTY_K2k4xZ3dQomTXgvWS2twvH5N1Odvao94Tu-T9RvyD3mGuPHKHyZS9Jb7Pamlfos23k61bwfwHghUC6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+ASP-Based+ORS+Schedules+through+Machine+Learning+Predictions&rft.jtitle=Theory+and+practice+of+logic+programming&rft.au=BRUNO%2C+PIERANGELA&rft.au=DODARO%2C+CARMINE&rft.au=GALAT%C3%80%2C+GIUSEPPE&rft.au=MARATEA%2C+MARCO&rft.date=2025-08-22&rft.issn=1471-0684&rft.eissn=1475-3081&rft.volume=25&rft.issue=4&rft.spage=558&rft.epage=578&rft_id=info:doi/10.1017%2FS1471068425100136&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S1471068425100136 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0684&client=summon |