Precise feature selection using suffix array algorithm of bioinformatics
It is crucial to select the most relevant and informative features in a dataset to perform data analysis. Machine learning algorithms perform better when features are selected correctly. Feature selection is not solvable in polynomial time. The exact method takes exponential time, so the researchers...
        Saved in:
      
    
          | Published in | International journal of machine learning and cybernetics Vol. 16; no. 7-8; pp. 4265 - 4294 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.08.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1868-8071 1868-808X  | 
| DOI | 10.1007/s13042-024-02509-5 | 
Cover
| Abstract | It is crucial to select the most relevant and informative features in a dataset to perform data analysis. Machine learning algorithms perform better when features are selected correctly. Feature selection is not solvable in polynomial time. The exact method takes exponential time, so the researchers used approximate algorithms to reach semi-optimal solutions. It is impossible to explore and exploit the search space in a balanced manner when using heuristic algorithms and metaheuristic methods. To solve this problem, the proposed method replaces meta-heuristic algorithms with the linear time SKEW algorithm in bioinformatics. First, each feature is ranked using the Pearson correlation criterion. Each feature is labeled
A
,
C
,
G
, or
T
according to its rank. The best feature is
A
, and the worst feature is
T
. The dataset can now be viewed as Deoxyribonucleic Acid (DNA). In the second step, the SKEW algorithm is used to determine the lexico-graphical order of suffixes. Suffixes are considered and checked as selected features. The third step involves permuting the features, and the first and second steps are repeated. The best suffix with the lowest cost function is selected after multiple iterations (e.g., ten). As compared to Simulated Annealing (SA), Genetic Algorithm (GA), Gray Wolf Optimizer (GWO), Grasshopper Optimization Algorithm (GOA), Ant Colony Optimization (ACO), Greedy, Gravitational Search Algorithm (GSA), and Pyramid Gravitational Search Algorithm (PGSA), the proposed algorithm improves the objective function by 19.3%, 7.6%, 80.6%, 102.2%, 39.7%, 105.6%, 38.1%, and 14.2% respectively. | 
    
|---|---|
| AbstractList | It is crucial to select the most relevant and informative features in a dataset to perform data analysis. Machine learning algorithms perform better when features are selected correctly. Feature selection is not solvable in polynomial time. The exact method takes exponential time, so the researchers used approximate algorithms to reach semi-optimal solutions. It is impossible to explore and exploit the search space in a balanced manner when using heuristic algorithms and metaheuristic methods. To solve this problem, the proposed method replaces meta-heuristic algorithms with the linear time SKEW algorithm in bioinformatics. First, each feature is ranked using the Pearson correlation criterion. Each feature is labeled
A
,
C
,
G
, or
T
according to its rank. The best feature is
A
, and the worst feature is
T
. The dataset can now be viewed as Deoxyribonucleic Acid (DNA). In the second step, the SKEW algorithm is used to determine the lexico-graphical order of suffixes. Suffixes are considered and checked as selected features. The third step involves permuting the features, and the first and second steps are repeated. The best suffix with the lowest cost function is selected after multiple iterations (e.g., ten). As compared to Simulated Annealing (SA), Genetic Algorithm (GA), Gray Wolf Optimizer (GWO), Grasshopper Optimization Algorithm (GOA), Ant Colony Optimization (ACO), Greedy, Gravitational Search Algorithm (GSA), and Pyramid Gravitational Search Algorithm (PGSA), the proposed algorithm improves the objective function by 19.3%, 7.6%, 80.6%, 102.2%, 39.7%, 105.6%, 38.1%, and 14.2% respectively. | 
    
| Author | Javidi, Mohammad Masoud Mansouri, Najme Zandvakili, Aboozar  | 
    
| Author_xml | – sequence: 1 givenname: Aboozar surname: Zandvakili fullname: Zandvakili, Aboozar organization: Department of Computer Science, Shahid Bahonar University of Kerman – sequence: 2 givenname: Mohammad Masoud surname: Javidi fullname: Javidi, Mohammad Masoud organization: Faculty of Shahid, Bahonar University of Kerman – sequence: 3 givenname: Najme surname: Mansouri fullname: Mansouri, Najme email: najme.mansouri@gmail.com organization: Faculty of Shahid, Bahonar University of Kerman  | 
    
| BookMark | eNp9kM9KAzEQh4MoWGtfwFNeYHWSbf70KEWtUNCDgreQZCc1pU0k2QX79q5WPDowzO8w3zB8F-Q05YSEXDG4ZgDqprIW5rwBPh9bwKIRJ2TCtNSNBv12-pcVOyezWrcwloS2BT4hq-eCPlakAW0_FKQVd-j7mBMdakwbWocQ4ie1pdgDtbtNLrF_39McqIs5ppDL3vbR10tyFuyu4ux3Tsnr_d3LctWsnx4el7frxvM57xvUHBQuNBcIYDvsPLOu0w67roWF6lyQnRXAlAxeOqe4lNY5IZXyDrXQ7ZTw411fcq0Fg_kocW_LwTAw3zrMUYcZdZgfHUaMUHuE6ricNljMNg8ljX_-R30B5yJmjQ | 
    
| Cites_doi | 10.1007/978-3-319-10247-4 10.1016/j.asoc.2023.110031 10.1096/fj.15-1101ufm 10.1109/ICDAR.1995.602124 10.1109/ACCESS.2024.3374890 10.1016/j.eswa.2023.121128 10.1016/j.neucom.2023.03.047 10.1007/s13042-022-01663-y 10.1109/34.574797 10.1016/j.knosys.2023.110462 10.1016/j.apm.2023.08.043 10.1007/s10489-022-03971-w 10.1007/978-3-662-45620-0 10.5772/252 10.1007/s11042-024-18327-4 10.1007/s12530-023-09557-2 10.1002/ima.23007 10.1007/s10489-022-03465-9 10.1007/s10916-023-02031-1 10.1007/s00521-024-09472-w 10.1016/j.ins.2009.03.004 10.1016/j.patcog.2023.109900 10.1017/S0016672398219586 10.1007/s44230-023-00041-3 10.25007/ajnu.v6n3a83 10.1371/journal.pone.0265351 10.1007/s10489-024-05555-2 10.1109/ACCESS.2019.2906757 10.1186/s12859-023-05605-5 10.1016/j.advengsoft.2017.01.004 10.1016/j.knosys.2017.10.028 10.1016/j.neucom.2019.01.017 10.1145/1217856.1217858 10.1007/978-1-4612-4380-9_16 10.1007/s13042-024-02111-9 10.1016/j.knosys.2023.110678 10.1016/j.asoc.2023.110837 10.1016/j.ins.2023.119619  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1007/s13042-024-02509-5 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 1868-808X | 
    
| EndPage | 4294 | 
    
| ExternalDocumentID | 10_1007_s13042_024_02509_5 | 
    
| GroupedDBID | 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS ATHPR AUKKA AXYYD AYFIA AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PHGZM PHGZT PQGLB PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~A9 AAYXX CITATION PUEGO  | 
    
| ID | FETCH-LOGICAL-c242t-e8207e9825e00adedc1abd8bedd3097dbf6da50176fc6bb7266abb5677cbe8583 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1868-8071 | 
    
| IngestDate | Wed Oct 01 05:25:04 EDT 2025 Fri Jul 25 01:19:52 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7-8 | 
    
| Keywords | Feature selection Correlation Meta-heuristic Suffix array  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c242t-e8207e9825e00adedc1abd8bedd3097dbf6da50176fc6bb7266abb5677cbe8583 | 
    
| PageCount | 30 | 
    
| ParticipantIDs | crossref_primary_10_1007_s13042_024_02509_5 springer_journals_10_1007_s13042_024_02509_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20250800 2025-08-00  | 
    
| PublicationDateYYYYMMDD | 2025-08-01 | 
    
| PublicationDate_xml | – month: 8 year: 2025 text: 20250800  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg | 
    
| PublicationTitle | International journal of machine learning and cybernetics | 
    
| PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer Berlin Heidelberg | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg | 
    
| References | W Abduallah (2509_CR1) 2017; 6 Y Wang (2509_CR37) 2024; 126 2509_CR26 Q Al-Tashi (2509_CR2) 2019; 7 2509_CR21 S Saremi (2509_CR28) 2017; 105 2509_CR43 L Antony Rosewelt (2509_CR3) 2020; 39 A Jain (2509_CR14) 1997; 19 2509_CR44 H Liu (2509_CR19) 2012 A Tahmouresi (2509_CR35) 2022; 17 A Yaqoob (2509_CR40) 2023; 3 K Yu (2509_CR42) 2023; 648 2509_CR29 J Kärkkäinen (2509_CR17) 2006; 53 R Mahto (2509_CR20) 2023; 24 RS Witte (2509_CR39) 2017 L Sun (2509_CR33) 2023; 147 A Yaqoob (2509_CR41) 2024; 48 RR Mostafa (2509_CR22) 2023; 269 M Braik (2509_CR6) 2024; 235 2509_CR30 K Li (2509_CR18) 2023; 538 AJ Myles (2509_CR23) 2004; 18 2509_CR36 2509_CR16 E Rashedi (2509_CR27) 2009; 179 L Sun (2509_CR34) 2023; 14 2509_CR38 2509_CR32 Y Zhu (2509_CR45) 2023; 53 S García (2509_CR10) 2015 2509_CR11 2509_CR7 2509_CR9 2509_CR8 U Stańczyk (2509_CR31) 2015 H Pan (2509_CR25) 2023; 135 2509_CR5 2509_CR4 F Han (2509_CR12) 2023; 53 M Nachaoui (2509_CR24) 2024; 36 AA Joshi (2509_CR15) 2024; 34 E Hancer (2509_CR13) 2018; 140 Y Zou (2509_CR46) 2024; 145  | 
    
| References_xml | – volume-title: Data preprocessing in data mining year: 2015 ident: 2509_CR10 doi: 10.1007/978-3-319-10247-4 – volume: 135 year: 2023 ident: 2509_CR25 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.110031 – ident: 2509_CR26 doi: 10.1096/fj.15-1101ufm – ident: 2509_CR30 doi: 10.1109/ICDAR.1995.602124 – volume-title: Feature selection for knowledge discovery and data mining year: 2012 ident: 2509_CR19 – ident: 2509_CR21 doi: 10.1109/ACCESS.2024.3374890 – volume: 235 year: 2024 ident: 2509_CR6 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.121128 – volume: 538 year: 2023 ident: 2509_CR18 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.03.047 – volume: 14 start-page: 789 year: 2023 ident: 2509_CR34 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-022-01663-y – volume: 19 start-page: 153 year: 1997 ident: 2509_CR14 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.574797 – volume: 269 year: 2023 ident: 2509_CR22 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2023.110462 – volume: 126 start-page: 310 year: 2024 ident: 2509_CR37 publication-title: Appl Math Model doi: 10.1016/j.apm.2023.08.043 – volume: 53 start-page: 13972 year: 2023 ident: 2509_CR45 publication-title: Appl Intell doi: 10.1007/s10489-022-03971-w – ident: 2509_CR43 – volume-title: Feature selection for data and pattern recognition: An introduction year: 2015 ident: 2509_CR31 doi: 10.1007/978-3-662-45620-0 – ident: 2509_CR7 doi: 10.5772/252 – ident: 2509_CR16 doi: 10.1007/s11042-024-18327-4 – ident: 2509_CR29 doi: 10.1007/s12530-023-09557-2 – ident: 2509_CR5 – volume: 34 year: 2024 ident: 2509_CR15 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.23007 – volume: 53 start-page: 3545 year: 2023 ident: 2509_CR12 publication-title: Appl Intell doi: 10.1007/s10489-022-03465-9 – volume: 48 start-page: 10 year: 2024 ident: 2509_CR41 publication-title: J Med Syst doi: 10.1007/s10916-023-02031-1 – volume: 36 start-page: 7471 year: 2024 ident: 2509_CR24 publication-title: Neural Comput Appl doi: 10.1007/s00521-024-09472-w – volume: 179 start-page: 2232 year: 2009 ident: 2509_CR27 publication-title: Inf Sci doi: 10.1016/j.ins.2009.03.004 – volume: 145 year: 2024 ident: 2509_CR46 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2023.109900 – ident: 2509_CR8 doi: 10.1017/S0016672398219586 – volume: 3 start-page: 588 year: 2023 ident: 2509_CR40 publication-title: Hum Centric Intell Syst doi: 10.1007/s44230-023-00041-3 – volume: 6 start-page: 83 year: 2017 ident: 2509_CR1 publication-title: Acad J Nawroz Univ doi: 10.25007/ajnu.v6n3a83 – volume: 17 year: 2022 ident: 2509_CR35 publication-title: PLoS One doi: 10.1371/journal.pone.0265351 – volume: 18 start-page: 275 year: 2004 ident: 2509_CR23 publication-title: J Chemomet J Chemomet Soc – ident: 2509_CR32 doi: 10.1007/s10489-024-05555-2 – volume: 7 start-page: 39496 year: 2019 ident: 2509_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906757 – volume: 24 start-page: 479 year: 2023 ident: 2509_CR20 publication-title: BMC Bioinform doi: 10.1186/s12859-023-05605-5 – volume: 105 start-page: 30 year: 2017 ident: 2509_CR28 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.01.004 – volume: 140 start-page: 103 year: 2018 ident: 2509_CR13 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2017.10.028 – ident: 2509_CR11 doi: 10.1016/j.neucom.2019.01.017 – volume: 53 start-page: 918 year: 2006 ident: 2509_CR17 publication-title: J ACM (JACM) doi: 10.1145/1217856.1217858 – ident: 2509_CR38 doi: 10.1007/978-1-4612-4380-9_16 – ident: 2509_CR9 doi: 10.1007/s13042-024-02111-9 – ident: 2509_CR44 – ident: 2509_CR4 – volume: 39 start-page: 795 year: 2020 ident: 2509_CR3 publication-title: J Intell Fuzzy Syst – ident: 2509_CR36 doi: 10.1016/j.knosys.2023.110678 – volume: 147 year: 2023 ident: 2509_CR33 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.110837 – volume-title: Statistics year: 2017 ident: 2509_CR39 – volume: 648 year: 2023 ident: 2509_CR42 publication-title: Inf Sci doi: 10.1016/j.ins.2023.119619  | 
    
| SSID | ssj0000603302 ssib031263576 ssib033405570  | 
    
| Score | 2.3519294 | 
    
| Snippet | It is crucial to select the most relevant and informative features in a dataset to perform data analysis. Machine learning algorithms perform better when... | 
    
| SourceID | crossref springer  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 4265 | 
    
| SubjectTerms | Artificial Intelligence Complex Systems Computational Intelligence Control Engineering Mechatronics Original Article Pattern Recognition Robotics Systems Biology  | 
    
| Title | Precise feature selection using suffix array algorithm of bioinformatics | 
    
| URI | https://link.springer.com/article/10.1007/s13042-024-02509-5 | 
    
| Volume | 16 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: AFBBN dateStart: 20101201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: AGYKE dateStart: 20100101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: U2A dateStart: 20101201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBbFWsj7IHD4ouJE12sz220loUiwcL9RT2qQVtJElB_72zaWItiOApsCwE5rHfzO7MNwidRUwoCCsUUcYLCSC0IgJQgkSSw4rnCaHdPeT9mI0m4e2UTsumsKyqdq-eJIuTetXs5jJvAphCHG53Cd1EderovMCKJ51eZUWB7_hVViAbBGHBM_V98-IxWFsWI3LGHRuvX3bT_P6bdcRafy4tUGi4i3bK8BH3lvpuoA0zb6LtH6SCTdQo3TXD5yWn9MUeGj04FovMYGsKJk-cFfNvQCnYVb4_42xh7ewDizQVn1i8PifpLH95w4nFcpaU7KqO0XkfTYaDx-sRKYcoEAXomxMDEB-ZLiSCIHqhjVa-kJpLo3XgdSMtLdOCgl8yq5iUEQC2kJIy0J80nPLgANXmydwcIkx9FXg8hACEQ1IXWemHklMlrNfRARO2hS4rQcXvS66MeMWK7MQag1jjQqwxbaGrSpZx6TfZH9uP_rf9GG113KTeolTvBNXydGFOIXzIZRvVe8N-f-y-N093g3ZhPV-IabtL | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60HtSDb_FtDh4Ujex2d7PpUUStTzxY0NOSpxa1le4W1F_vZJu1KiJ4DYGQmUm-mWTmG4CtlAmFboWiygQxRYRWVCBK0FRyHAkCIbR7h7y8Ys1WfHab3PqisLzKdq--JMubeljs5iJviphCHW43aDIKYzEGKPUajB2c3J0fVXYUhY5hZQizURSXTFOfby8Bw7FBOiJn3PHxhr6e5veFvmPW9w_TEoeOp6FV7WCQfvK43y_kvnr_Qe743y3OwJR3TMnBwJJmYcR05mDyC13hHMz6iyAn256temcemteOHyM3xJqSI5TkZWcdVDdxOfX3JO9b234lotcTb0Q83Xd77eLhmXQtke2u5211XNEL0Do-ujlsUt-egSrE9YIadB5S08AQE5UqtNEqFFJzabSOgkaqpWVaJHjimVVMyhRdASFlwtAypOEJjxah1ul2zBKQJFRRwGN0bTiGi6mVYSx5ooQN6jpiwi7DbqWA7GXAwpEN-Zad0DIUWlYKLUuWYa8Sb-ZPZP7H9JX_Td-E8ebN5UV2cXp1vgoTddcPuEwIXINa0eubdXRSCrnhbfIDs4LYFA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fS8MwEMeDThB9EDcV5888-KBoWLu2afY41DF_jT042FvJzznQdbQd6H_vpWvdBiL4GgKBu4TvJbn7HEIXIeUSwgpJpHZ8AgotCQeVIKFgMOI4nCv7DvnSo92B_zgMhktV_Hm2e_klOa9psJSmSdaYKtNYFL7ZWzgBfSFWw1skWEcbvgUlwI4eNNvljvJcy1pZCK7n-Tlz6ucVxqEwNk9MZJRZMq9bVNb8vsyqeq1-neaK1NlFO0Uoidtz31fRmp7U0PYSYLCGqsXRTfFlwZe-2kPdviVapBobnVM9cZr3wgEHYZsFP8LpzJjxJ-ZJwr8wfx_FyTh7-8CxwWIcF6RVS3feR4PO_ettlxQNFYgEJc6IBrkPdQsuheAGrrSSLheKCa2U57RCJQxVPIAzSo2kQoQg3lyIgIIvhWYB8w5QZRJP9CHCgSs9h_kQjDC44IVGuL5ggeTGaSqPclNH16WhoumcmxEtCMnWrBGYNcrNGgV1dFPaMirOUPrH9KP_TT9Hm_27TvT80Hs6RltN28A3z-A7QZUsmelTiCoycZZvnG8RDb9j | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precise+feature+selection+using+suffix+array+algorithm+of+bioinformatics&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Zandvakili%2C+Aboozar&rft.au=Javidi%2C+Mohammad+Masoud&rft.au=Mansouri%2C+Najme&rft.date=2025-08-01&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=16&rft.issue=7-8&rft.spage=4265&rft.epage=4294&rft_id=info:doi/10.1007%2Fs13042-024-02509-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13042_024_02509_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |