Precise feature selection using suffix array algorithm of bioinformatics

It is crucial to select the most relevant and informative features in a dataset to perform data analysis. Machine learning algorithms perform better when features are selected correctly. Feature selection is not solvable in polynomial time. The exact method takes exponential time, so the researchers...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 16; no. 7-8; pp. 4265 - 4294
Main Authors Zandvakili, Aboozar, Javidi, Mohammad Masoud, Mansouri, Najme
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2025
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-024-02509-5

Cover

Abstract It is crucial to select the most relevant and informative features in a dataset to perform data analysis. Machine learning algorithms perform better when features are selected correctly. Feature selection is not solvable in polynomial time. The exact method takes exponential time, so the researchers used approximate algorithms to reach semi-optimal solutions. It is impossible to explore and exploit the search space in a balanced manner when using heuristic algorithms and metaheuristic methods. To solve this problem, the proposed method replaces meta-heuristic algorithms with the linear time SKEW algorithm in bioinformatics. First, each feature is ranked using the Pearson correlation criterion. Each feature is labeled A , C , G , or T according to its rank. The best feature is A , and the worst feature is T . The dataset can now be viewed as Deoxyribonucleic Acid (DNA). In the second step, the SKEW algorithm is used to determine the lexico-graphical order of suffixes. Suffixes are considered and checked as selected features. The third step involves permuting the features, and the first and second steps are repeated. The best suffix with the lowest cost function is selected after multiple iterations (e.g., ten). As compared to Simulated Annealing (SA), Genetic Algorithm (GA), Gray Wolf Optimizer (GWO), Grasshopper Optimization Algorithm (GOA), Ant Colony Optimization (ACO), Greedy, Gravitational Search Algorithm (GSA), and Pyramid Gravitational Search Algorithm (PGSA), the proposed algorithm improves the objective function by 19.3%, 7.6%, 80.6%, 102.2%, 39.7%, 105.6%, 38.1%, and 14.2% respectively.
AbstractList It is crucial to select the most relevant and informative features in a dataset to perform data analysis. Machine learning algorithms perform better when features are selected correctly. Feature selection is not solvable in polynomial time. The exact method takes exponential time, so the researchers used approximate algorithms to reach semi-optimal solutions. It is impossible to explore and exploit the search space in a balanced manner when using heuristic algorithms and metaheuristic methods. To solve this problem, the proposed method replaces meta-heuristic algorithms with the linear time SKEW algorithm in bioinformatics. First, each feature is ranked using the Pearson correlation criterion. Each feature is labeled A , C , G , or T according to its rank. The best feature is A , and the worst feature is T . The dataset can now be viewed as Deoxyribonucleic Acid (DNA). In the second step, the SKEW algorithm is used to determine the lexico-graphical order of suffixes. Suffixes are considered and checked as selected features. The third step involves permuting the features, and the first and second steps are repeated. The best suffix with the lowest cost function is selected after multiple iterations (e.g., ten). As compared to Simulated Annealing (SA), Genetic Algorithm (GA), Gray Wolf Optimizer (GWO), Grasshopper Optimization Algorithm (GOA), Ant Colony Optimization (ACO), Greedy, Gravitational Search Algorithm (GSA), and Pyramid Gravitational Search Algorithm (PGSA), the proposed algorithm improves the objective function by 19.3%, 7.6%, 80.6%, 102.2%, 39.7%, 105.6%, 38.1%, and 14.2% respectively.
Author Javidi, Mohammad Masoud
Mansouri, Najme
Zandvakili, Aboozar
Author_xml – sequence: 1
  givenname: Aboozar
  surname: Zandvakili
  fullname: Zandvakili, Aboozar
  organization: Department of Computer Science, Shahid Bahonar University of Kerman
– sequence: 2
  givenname: Mohammad Masoud
  surname: Javidi
  fullname: Javidi, Mohammad Masoud
  organization: Faculty of Shahid, Bahonar University of Kerman
– sequence: 3
  givenname: Najme
  surname: Mansouri
  fullname: Mansouri, Najme
  email: najme.mansouri@gmail.com
  organization: Faculty of Shahid, Bahonar University of Kerman
BookMark eNp9kM9KAzEQh4MoWGtfwFNeYHWSbf70KEWtUNCDgreQZCc1pU0k2QX79q5WPDowzO8w3zB8F-Q05YSEXDG4ZgDqprIW5rwBPh9bwKIRJ2TCtNSNBv12-pcVOyezWrcwloS2BT4hq-eCPlakAW0_FKQVd-j7mBMdakwbWocQ4ie1pdgDtbtNLrF_39McqIs5ppDL3vbR10tyFuyu4ux3Tsnr_d3LctWsnx4el7frxvM57xvUHBQuNBcIYDvsPLOu0w67roWF6lyQnRXAlAxeOqe4lNY5IZXyDrXQ7ZTw411fcq0Fg_kocW_LwTAw3zrMUYcZdZgfHUaMUHuE6ricNljMNg8ljX_-R30B5yJmjQ
Cites_doi 10.1007/978-3-319-10247-4
10.1016/j.asoc.2023.110031
10.1096/fj.15-1101ufm
10.1109/ICDAR.1995.602124
10.1109/ACCESS.2024.3374890
10.1016/j.eswa.2023.121128
10.1016/j.neucom.2023.03.047
10.1007/s13042-022-01663-y
10.1109/34.574797
10.1016/j.knosys.2023.110462
10.1016/j.apm.2023.08.043
10.1007/s10489-022-03971-w
10.1007/978-3-662-45620-0
10.5772/252
10.1007/s11042-024-18327-4
10.1007/s12530-023-09557-2
10.1002/ima.23007
10.1007/s10489-022-03465-9
10.1007/s10916-023-02031-1
10.1007/s00521-024-09472-w
10.1016/j.ins.2009.03.004
10.1016/j.patcog.2023.109900
10.1017/S0016672398219586
10.1007/s44230-023-00041-3
10.25007/ajnu.v6n3a83
10.1371/journal.pone.0265351
10.1007/s10489-024-05555-2
10.1109/ACCESS.2019.2906757
10.1186/s12859-023-05605-5
10.1016/j.advengsoft.2017.01.004
10.1016/j.knosys.2017.10.028
10.1016/j.neucom.2019.01.017
10.1145/1217856.1217858
10.1007/978-1-4612-4380-9_16
10.1007/s13042-024-02111-9
10.1016/j.knosys.2023.110678
10.1016/j.asoc.2023.110837
10.1016/j.ins.2023.119619
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s13042-024-02509-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 4294
ExternalDocumentID 10_1007_s13042_024_02509_5
GroupedDBID 06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
ATHPR
AUKKA
AXYYD
AYFIA
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PHGZM
PHGZT
PQGLB
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~A9
AAYXX
CITATION
PUEGO
ID FETCH-LOGICAL-c242t-e8207e9825e00adedc1abd8bedd3097dbf6da50176fc6bb7266abb5677cbe8583
IEDL.DBID U2A
ISSN 1868-8071
IngestDate Wed Oct 01 05:25:04 EDT 2025
Fri Jul 25 01:19:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7-8
Keywords Feature selection
Correlation
Meta-heuristic
Suffix array
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-e8207e9825e00adedc1abd8bedd3097dbf6da50176fc6bb7266abb5677cbe8583
PageCount 30
ParticipantIDs crossref_primary_10_1007_s13042_024_02509_5
springer_journals_10_1007_s13042_024_02509_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250800
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 8
  year: 2025
  text: 20250800
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References W Abduallah (2509_CR1) 2017; 6
Y Wang (2509_CR37) 2024; 126
2509_CR26
Q Al-Tashi (2509_CR2) 2019; 7
2509_CR21
S Saremi (2509_CR28) 2017; 105
2509_CR43
L Antony Rosewelt (2509_CR3) 2020; 39
A Jain (2509_CR14) 1997; 19
2509_CR44
H Liu (2509_CR19) 2012
A Tahmouresi (2509_CR35) 2022; 17
A Yaqoob (2509_CR40) 2023; 3
K Yu (2509_CR42) 2023; 648
2509_CR29
J Kärkkäinen (2509_CR17) 2006; 53
R Mahto (2509_CR20) 2023; 24
RS Witte (2509_CR39) 2017
L Sun (2509_CR33) 2023; 147
A Yaqoob (2509_CR41) 2024; 48
RR Mostafa (2509_CR22) 2023; 269
M Braik (2509_CR6) 2024; 235
2509_CR30
K Li (2509_CR18) 2023; 538
AJ Myles (2509_CR23) 2004; 18
2509_CR36
2509_CR16
E Rashedi (2509_CR27) 2009; 179
L Sun (2509_CR34) 2023; 14
2509_CR38
2509_CR32
Y Zhu (2509_CR45) 2023; 53
S García (2509_CR10) 2015
2509_CR11
2509_CR7
2509_CR9
2509_CR8
U Stańczyk (2509_CR31) 2015
H Pan (2509_CR25) 2023; 135
2509_CR5
2509_CR4
F Han (2509_CR12) 2023; 53
M Nachaoui (2509_CR24) 2024; 36
AA Joshi (2509_CR15) 2024; 34
E Hancer (2509_CR13) 2018; 140
Y Zou (2509_CR46) 2024; 145
References_xml – volume-title: Data preprocessing in data mining
  year: 2015
  ident: 2509_CR10
  doi: 10.1007/978-3-319-10247-4
– volume: 135
  year: 2023
  ident: 2509_CR25
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110031
– ident: 2509_CR26
  doi: 10.1096/fj.15-1101ufm
– ident: 2509_CR30
  doi: 10.1109/ICDAR.1995.602124
– volume-title: Feature selection for knowledge discovery and data mining
  year: 2012
  ident: 2509_CR19
– ident: 2509_CR21
  doi: 10.1109/ACCESS.2024.3374890
– volume: 235
  year: 2024
  ident: 2509_CR6
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121128
– volume: 538
  year: 2023
  ident: 2509_CR18
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.03.047
– volume: 14
  start-page: 789
  year: 2023
  ident: 2509_CR34
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-022-01663-y
– volume: 19
  start-page: 153
  year: 1997
  ident: 2509_CR14
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.574797
– volume: 269
  year: 2023
  ident: 2509_CR22
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2023.110462
– volume: 126
  start-page: 310
  year: 2024
  ident: 2509_CR37
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2023.08.043
– volume: 53
  start-page: 13972
  year: 2023
  ident: 2509_CR45
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03971-w
– ident: 2509_CR43
– volume-title: Feature selection for data and pattern recognition: An introduction
  year: 2015
  ident: 2509_CR31
  doi: 10.1007/978-3-662-45620-0
– ident: 2509_CR7
  doi: 10.5772/252
– ident: 2509_CR16
  doi: 10.1007/s11042-024-18327-4
– ident: 2509_CR29
  doi: 10.1007/s12530-023-09557-2
– ident: 2509_CR5
– volume: 34
  year: 2024
  ident: 2509_CR15
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.23007
– volume: 53
  start-page: 3545
  year: 2023
  ident: 2509_CR12
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03465-9
– volume: 48
  start-page: 10
  year: 2024
  ident: 2509_CR41
  publication-title: J Med Syst
  doi: 10.1007/s10916-023-02031-1
– volume: 36
  start-page: 7471
  year: 2024
  ident: 2509_CR24
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-024-09472-w
– volume: 179
  start-page: 2232
  year: 2009
  ident: 2509_CR27
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.03.004
– volume: 145
  year: 2024
  ident: 2509_CR46
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2023.109900
– ident: 2509_CR8
  doi: 10.1017/S0016672398219586
– volume: 3
  start-page: 588
  year: 2023
  ident: 2509_CR40
  publication-title: Hum Centric Intell Syst
  doi: 10.1007/s44230-023-00041-3
– volume: 6
  start-page: 83
  year: 2017
  ident: 2509_CR1
  publication-title: Acad J Nawroz Univ
  doi: 10.25007/ajnu.v6n3a83
– volume: 17
  year: 2022
  ident: 2509_CR35
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0265351
– volume: 18
  start-page: 275
  year: 2004
  ident: 2509_CR23
  publication-title: J Chemomet J Chemomet Soc
– ident: 2509_CR32
  doi: 10.1007/s10489-024-05555-2
– volume: 7
  start-page: 39496
  year: 2019
  ident: 2509_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906757
– volume: 24
  start-page: 479
  year: 2023
  ident: 2509_CR20
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-023-05605-5
– volume: 105
  start-page: 30
  year: 2017
  ident: 2509_CR28
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 140
  start-page: 103
  year: 2018
  ident: 2509_CR13
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2017.10.028
– ident: 2509_CR11
  doi: 10.1016/j.neucom.2019.01.017
– volume: 53
  start-page: 918
  year: 2006
  ident: 2509_CR17
  publication-title: J ACM (JACM)
  doi: 10.1145/1217856.1217858
– ident: 2509_CR38
  doi: 10.1007/978-1-4612-4380-9_16
– ident: 2509_CR9
  doi: 10.1007/s13042-024-02111-9
– ident: 2509_CR44
– ident: 2509_CR4
– volume: 39
  start-page: 795
  year: 2020
  ident: 2509_CR3
  publication-title: J Intell Fuzzy Syst
– ident: 2509_CR36
  doi: 10.1016/j.knosys.2023.110678
– volume: 147
  year: 2023
  ident: 2509_CR33
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110837
– volume-title: Statistics
  year: 2017
  ident: 2509_CR39
– volume: 648
  year: 2023
  ident: 2509_CR42
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2023.119619
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.3519294
Snippet It is crucial to select the most relevant and informative features in a dataset to perform data analysis. Machine learning algorithms perform better when...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 4265
SubjectTerms Artificial Intelligence
Complex Systems
Computational Intelligence
Control
Engineering
Mechatronics
Original Article
Pattern Recognition
Robotics
Systems Biology
Title Precise feature selection using suffix array algorithm of bioinformatics
URI https://link.springer.com/article/10.1007/s13042-024-02509-5
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: AFBBN
  dateStart: 20101201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: U2A
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBbFWsj7IHD4ouJE12sz220loUiwcL9RT2qQVtJElB_72zaWItiOApsCwE5rHfzO7MNwidRUwoCCsUUcYLCSC0IgJQgkSSw4rnCaHdPeT9mI0m4e2UTsumsKyqdq-eJIuTetXs5jJvAphCHG53Cd1EderovMCKJ51eZUWB7_hVViAbBGHBM_V98-IxWFsWI3LGHRuvX3bT_P6bdcRafy4tUGi4i3bK8BH3lvpuoA0zb6LtH6SCTdQo3TXD5yWn9MUeGj04FovMYGsKJk-cFfNvQCnYVb4_42xh7ewDizQVn1i8PifpLH95w4nFcpaU7KqO0XkfTYaDx-sRKYcoEAXomxMDEB-ZLiSCIHqhjVa-kJpLo3XgdSMtLdOCgl8yq5iUEQC2kJIy0J80nPLgANXmydwcIkx9FXg8hACEQ1IXWemHklMlrNfRARO2hS4rQcXvS66MeMWK7MQag1jjQqwxbaGrSpZx6TfZH9uP_rf9GG113KTeolTvBNXydGFOIXzIZRvVe8N-f-y-N093g3ZhPV-IabtL
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60HtSDb_FtDh4Ujex2d7PpUUStTzxY0NOSpxa1le4W1F_vZJu1KiJ4DYGQmUm-mWTmG4CtlAmFboWiygQxRYRWVCBK0FRyHAkCIbR7h7y8Ys1WfHab3PqisLzKdq--JMubeljs5iJviphCHW43aDIKYzEGKPUajB2c3J0fVXYUhY5hZQizURSXTFOfby8Bw7FBOiJn3PHxhr6e5veFvmPW9w_TEoeOp6FV7WCQfvK43y_kvnr_Qe743y3OwJR3TMnBwJJmYcR05mDyC13hHMz6iyAn256temcemteOHyM3xJqSI5TkZWcdVDdxOfX3JO9b234lotcTb0Q83Xd77eLhmXQtke2u5211XNEL0Do-ujlsUt-egSrE9YIadB5S08AQE5UqtNEqFFJzabSOgkaqpWVaJHjimVVMyhRdASFlwtAypOEJjxah1ul2zBKQJFRRwGN0bTiGi6mVYSx5ooQN6jpiwi7DbqWA7GXAwpEN-Zad0DIUWlYKLUuWYa8Sb-ZPZP7H9JX_Td-E8ebN5UV2cXp1vgoTddcPuEwIXINa0eubdXRSCrnhbfIDs4LYFA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fS8MwEMeDThB9EDcV5888-KBoWLu2afY41DF_jT042FvJzznQdbQd6H_vpWvdBiL4GgKBu4TvJbn7HEIXIeUSwgpJpHZ8AgotCQeVIKFgMOI4nCv7DvnSo92B_zgMhktV_Hm2e_klOa9psJSmSdaYKtNYFL7ZWzgBfSFWw1skWEcbvgUlwI4eNNvljvJcy1pZCK7n-Tlz6ucVxqEwNk9MZJRZMq9bVNb8vsyqeq1-neaK1NlFO0Uoidtz31fRmp7U0PYSYLCGqsXRTfFlwZe-2kPdviVapBobnVM9cZr3wgEHYZsFP8LpzJjxJ-ZJwr8wfx_FyTh7-8CxwWIcF6RVS3feR4PO_ettlxQNFYgEJc6IBrkPdQsuheAGrrSSLheKCa2U57RCJQxVPIAzSo2kQoQg3lyIgIIvhWYB8w5QZRJP9CHCgSs9h_kQjDC44IVGuL5ggeTGaSqPclNH16WhoumcmxEtCMnWrBGYNcrNGgV1dFPaMirOUPrH9KP_TT9Hm_27TvT80Hs6RltN28A3z-A7QZUsmelTiCoycZZvnG8RDb9j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precise+feature+selection+using+suffix+array+algorithm+of+bioinformatics&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Zandvakili%2C+Aboozar&rft.au=Javidi%2C+Mohammad+Masoud&rft.au=Mansouri%2C+Najme&rft.date=2025-08-01&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=16&rft.issue=7-8&rft.spage=4265&rft.epage=4294&rft_id=info:doi/10.1007%2Fs13042-024-02509-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13042_024_02509_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon