u-generation: solving systems of polynomials equation-by-equation

We develop a new method that improves the efficiency of equation-by-equation homotopy continuation methods for solving polynomial systems. Our method is based on a novel geometric construction and reduces the total number of homotopy paths that must be numerically continued. These improvements may b...

Full description

Saved in:
Bibliographic Details
Published inNumerical algorithms Vol. 95; no. 2; pp. 813 - 838
Main Authors Duff, Timothy, Leykin, Anton, Rodriguez, Jose Israel
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2024
Subjects
Online AccessGet full text
ISSN1017-1398
1572-9265
DOI10.1007/s11075-023-01590-1

Cover

Abstract We develop a new method that improves the efficiency of equation-by-equation homotopy continuation methods for solving polynomial systems. Our method is based on a novel geometric construction and reduces the total number of homotopy paths that must be numerically continued. These improvements may be applied to the basic algorithms of numerical algebraic geometry in the settings of both projective and multiprojective varieties. Our computational experiments demonstrate significant savings obtained on several benchmark systems. We also present an extended case study on maximum likelihood estimation for rank-constrained symmetric n × n matrices, in which multiprojective u -generation allows us to complete the list of ML degrees for n ≤ 6 .
AbstractList We develop a new method that improves the efficiency of equation-by-equation homotopy continuation methods for solving polynomial systems. Our method is based on a novel geometric construction and reduces the total number of homotopy paths that must be numerically continued. These improvements may be applied to the basic algorithms of numerical algebraic geometry in the settings of both projective and multiprojective varieties. Our computational experiments demonstrate significant savings obtained on several benchmark systems. We also present an extended case study on maximum likelihood estimation for rank-constrained symmetric n × n matrices, in which multiprojective u -generation allows us to complete the list of ML degrees for n ≤ 6 .
Author Rodriguez, Jose Israel
Duff, Timothy
Leykin, Anton
Author_xml – sequence: 1
  givenname: Timothy
  surname: Duff
  fullname: Duff, Timothy
  email: timduff@uw.edu
  organization: Department of Mathematics, University of Washington
– sequence: 2
  givenname: Anton
  surname: Leykin
  fullname: Leykin, Anton
  organization: School of Mathematics, Georgia Institute of Technology
– sequence: 3
  givenname: Jose Israel
  surname: Rodriguez
  fullname: Rodriguez, Jose Israel
  organization: Department of Mathematics, University of Wisconsin-Madison
BookMark eNp9kE1OwzAQhS1UJNrCBVjlAgaPHccxu6riT6rEBtaW49pRqsQudoKU22Na2LKap5n3RjPfCi188BahWyB3QIi4TwBEcEwowwS4JBgu0BK4oFjSii-yJiAwMFlfoVVKB0JyjIol2ky4td5GPXbBPxQp9F-db4s0p9EOqQiuOIZ-9mHodJ8K-zmdjLiZ8Z--Rpcuz-zNb12jj6fH9-0L3r09v243O2xoSUdsaV3RfVOCM9wJ4Vgtpal1tXeCS14Co7npDNUcBLXCgDAsv6K1MyV3TcPWiJ73mhhSitapY-wGHWcFRP1AUGcIKkNQJwgKcoidQymbfWujOoQp-nznf6lvIyJiVg
Cites_doi 10.1090/S0025-5718-1995-1297471-4
10.2140/jsag.2021.11.53
10.1515/advgeom-2020-0006
10.18409/jas.v5i1.23
10.1007/978-0-387-75155-9_8
10.1214/14-AOS1282
10.1137/1.9781611972702
10.1007/978-3-319-96418-8_54
10.1145/3373207.3403995
10.1137/S0036142901397101
10.1007/978-3-662-44199-2_30
10.2140/jsag.2011.3.5
10.1145/120694.120708
10.1145/317275.317286
10.1093/imrn/rnt128
10.1007/978-0-387-75155-9_5
10.1090/gsm/194
10.1090/S0025-5718-2010-02399-3
10.1006/jcom.2000.0554
10.1142/5763
10.1093/imanum/dry017
10.1016/j.jsc.2016.07.019
10.1137/19M1288036
10.1006/jcom.2000.0571
10.1090/mcom/3566
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11075-023-01590-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 838
ExternalDocumentID 10_1007_s11075_023_01590_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c242t-e2862db41fc5f77f3899c8a6df7595413277ffc2a5172e7c17c3015aafc45fbb3
IEDL.DBID U2A
ISSN 1017-1398
IngestDate Wed Oct 01 00:39:02 EDT 2025
Fri Feb 21 02:41:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Regeneration
68W30
Solving polynomials
65H20
14Q65
Numerical algebraic geometry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-e2862db41fc5f77f3899c8a6df7595413277ffc2a5172e7c17c3015aafc45fbb3
PageCount 26
ParticipantIDs crossref_primary_10_1007_s11075_023_01590_1
springer_journals_10_1007_s11075_023_01590_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240200
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 2
  year: 2024
  text: 20240200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2024
Publisher Springer US
Publisher_xml – name: Springer US
References D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler. Numerically solving polynomial systems with Bertini, volume 25 of Software, Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013
D. R. Grayson and M. E. Stillman. Macaulay2, a software sy,stem for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2
A. J. Sommese and C. W. Wampler, II. The numerical solution of systems of polynomials. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. Arising in engineering and science
A. N. Jensen. Tropical homotopy continuation. arXiv preprint arXiv:1601.02818, 2016
S. Katsura. Spin glass problem by the method of integral equation of the effective field. New Trends in Magnetism, pages 110–121, 1990
A. J. Sommese, J. Verschelde, and C. W. Wampler. Solving polynomial systems equation by equation. In Algorithms in algebraic geometry, volume 146 of IMA Vol. Math. Appl., pages 133–152. Springer, New York, 2008
F. Sottile. General witness sets for numerical algebraic geometry. In Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, ISSAC ’20, page 418–425, New York, NY, USA, 2020. Association for Computing Machinery
HuberBSturmfelsBA polyhedral method for solving sparse polynomial systemsMath. Comp.19956421215411555129747110.1090/S0025-5718-1995-1297471-4
S. Sullivant. Algebraic statistics, volume 194 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2018
BrysiewiczTRodriguezJISottileFYahlTDecomposable sparse polynomial systemsJ. Softw. Algebra Geom.20211115359428576410.2140/jsag.2021.11.53
VerscheldeJAlgorithm 795: Phcpack: a general-purpose solver for polynomial systems by homotopy continuationACM Transactions on Mathematical Software199925225127610.1145/317275.317286
J. Backelin and R. Fröberg. How we proved that there are exactly 924 cyclic 7-roots. In S. M. Watt, editor, Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, ISSAC ’91, Bonn, Germany, July 15-17, 1991, pages 103–111. ACM, 1991
A. J. Sommese and J. Verschelde. Numerical homotopies to compute generic points on positive dimensional algebraic sets. journal of complexity, 16(3):572–602, 2000
HauensteinJDSommeseAJWitness sets of projectionsAppl. Math. Comput.20102177334933542733776
BernsteinDNThe number of roots of a system of equationsFunkcional. Anal. i Priložen.19759314435072
D. Mumford. Stability of projective varieties. Enseign. Math. (2), 23(1-2):39–110, 1977
DuffTHillCJensenALeeKLeykinASommarsJSolving polynomial systems via homotopy continuation and monodromyIMA J. Numer. Anal.201939314211446398406210.1093/imanum/dry017
HauensteinJDWamplerCWUnification and extension of intersection algorithms in numerical algebraic geometryAppl. Math. Comput.20172932262433549665
HauensteinJDSommeseAJWamplerCWRegenerative cascade homotopies for solving polynomial systemsAppl. Math. Comput.20112184124012462831632
D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler. Bertini: Software for Numerical Algebraic Geometry. Available at bertini.nd.edu with permanent doi: dx.doi.org/10.7274/R0H41PB5
KubjasKRobevaESturmfelsBFixed points EM algorithm and nonnegative rank boundariesAnn. Statist.2015431422461331186510.1214/14-AOS1282
P. Breiding and S. Timme. Homotopycontinuation.jl: A package for homotopy continuation in Julia. In Mathematical Software – ICMS 2018, pages 458–465. Springer International Publishing, 2018
T. Chen, T.-L. Lee, and T.-Y. Li. Hom4ps-3: a parallel numerical solver for systems of polynomial equations based on polyhedral homotopy continuation methods. In International Congress on Mathematical Software, pages 183–190. Springer, 2014
A. J. Sommese, J. Verschelde, and C. W. Wampler. Symmetric functions applied to decomposing solution sets of polynomial systems. SIAM J. Numer. Anal., 40(6):2026–2046 (2003), 2002
GiustiMLecerfGSalvyBA Gröbner free alternative for polynomial system solvingJ. Complexity2001171154211181761210.1006/jcom.2000.0571
HauensteinJDRodriguezJIMultiprojective witness sets and a trace testAdv. Geom.2020203297318412133610.1515/advgeom-2020-0006
HauensteinJDSommeseAJWamplerCWRegeneration homotopies for solving systems of polynomialsMath. Comp.201180273345377272898310.1090/S0025-5718-2010-02399-3
DraismaJRodriguezJMaximum likelihood duality for determinantal varietiesInt. Math. Res. Not. IMRN20142056485666327118410.1093/imrn/rnt128
A. Leykin, J. Verschelde, and A. Zhao. Higher-order deflation for polynomial systems with isolated singular solutions. In Algorithms in algebraic geometry, volume 146 of IMA Vol. Math. Appl., pages 79–97. Springer, New York, 2008
A. N. Jensen. Gfan, a software system for Gröbner fans and tropical varieties. Available at http://home.imf.au.dk/jensen/software/gfan/gfan.html
TelenSVan BarelMVerscheldeJA robust numerical path tracking algorithm for polynomial homotopy continuationSIAM J. Sci. Comput.2020426A3610A3637417158910.1137/19M1288036
HauensteinJRodriguezJISturmfelsBMaximum likelihood for matrices with rank constraintsJ. Algebr. Stat.2014511838327995210.18409/jas.v5i1.23
HauensteinJDLeykinARodriguezJISottileFA numerical toolkit for multiprojective varietiesMath. Comp.202190327413440416646710.1090/mcom/3566
A. Martín del Campo and J. I. Rodriguez. Critical points via monodromy and local methods. J. Symbolic Comput., 79(part 3):559–574, 2017
LeykinANumerical algebraic geometryJournal of Software for Algebra and Geometry201131510288126210.2140/jsag.2011.3.5
S Telen (1590_CR34) 2020; 42
1590_CR28
1590_CR27
1590_CR1
M Giusti (1590_CR10) 2001; 17
JD Hauenstein (1590_CR14) 2020; 20
JD Hauenstein (1590_CR16) 2011; 80
1590_CR2
A Leykin (1590_CR24) 2011; 3
1590_CR29
J Draisma (1590_CR8) 2014; 20
1590_CR26
1590_CR25
1590_CR20
1590_CR22
1590_CR21
J Verschelde (1590_CR35) 1999; 25
K Kubjas (1590_CR23) 2015; 43
T Brysiewicz (1590_CR6) 2021; 11
J Hauenstein (1590_CR12) 2014; 5
B Huber (1590_CR19) 1995; 64
T Duff (1590_CR9) 2019; 39
JD Hauenstein (1590_CR15) 2010; 217
1590_CR31
1590_CR30
1590_CR11
1590_CR33
1590_CR32
JD Hauenstein (1590_CR17) 2011; 218
JD Hauenstein (1590_CR18) 2017; 293
JD Hauenstein (1590_CR13) 2021; 90
1590_CR3
1590_CR5
1590_CR7
DN Bernstein (1590_CR4) 1975; 9
References_xml – reference: HauensteinJDSommeseAJWitness sets of projectionsAppl. Math. Comput.20102177334933542733776
– reference: D. R. Grayson and M. E. Stillman. Macaulay2, a software sy,stem for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/
– reference: LeykinANumerical algebraic geometryJournal of Software for Algebra and Geometry201131510288126210.2140/jsag.2011.3.5
– reference: D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler. Numerically solving polynomial systems with Bertini, volume 25 of Software, Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013
– reference: DuffTHillCJensenALeeKLeykinASommarsJSolving polynomial systems via homotopy continuation and monodromyIMA J. Numer. Anal.201939314211446398406210.1093/imanum/dry017
– reference: J. Backelin and R. Fröberg. How we proved that there are exactly 924 cyclic 7-roots. In S. M. Watt, editor, Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, ISSAC ’91, Bonn, Germany, July 15-17, 1991, pages 103–111. ACM, 1991
– reference: A. Leykin, J. Verschelde, and A. Zhao. Higher-order deflation for polynomial systems with isolated singular solutions. In Algorithms in algebraic geometry, volume 146 of IMA Vol. Math. Appl., pages 79–97. Springer, New York, 2008
– reference: D. Mumford. Stability of projective varieties. Enseign. Math. (2), 23(1-2):39–110, 1977
– reference: HuberBSturmfelsBA polyhedral method for solving sparse polynomial systemsMath. Comp.19956421215411555129747110.1090/S0025-5718-1995-1297471-4
– reference: P. Breiding and S. Timme. Homotopycontinuation.jl: A package for homotopy continuation in Julia. In Mathematical Software – ICMS 2018, pages 458–465. Springer International Publishing, 2018
– reference: A. N. Jensen. Gfan, a software system for Gröbner fans and tropical varieties. Available at http://home.imf.au.dk/jensen/software/gfan/gfan.html
– reference: BernsteinDNThe number of roots of a system of equationsFunkcional. Anal. i Priložen.19759314435072
– reference: KubjasKRobevaESturmfelsBFixed points EM algorithm and nonnegative rank boundariesAnn. Statist.2015431422461331186510.1214/14-AOS1282
– reference: F. Sottile. General witness sets for numerical algebraic geometry. In Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, ISSAC ’20, page 418–425, New York, NY, USA, 2020. Association for Computing Machinery
– reference: HauensteinJDWamplerCWUnification and extension of intersection algorithms in numerical algebraic geometryAppl. Math. Comput.20172932262433549665
– reference: BrysiewiczTRodriguezJISottileFYahlTDecomposable sparse polynomial systemsJ. Softw. Algebra Geom.20211115359428576410.2140/jsag.2021.11.53
– reference: T. Chen, T.-L. Lee, and T.-Y. Li. Hom4ps-3: a parallel numerical solver for systems of polynomial equations based on polyhedral homotopy continuation methods. In International Congress on Mathematical Software, pages 183–190. Springer, 2014
– reference: HauensteinJDSommeseAJWamplerCWRegenerative cascade homotopies for solving polynomial systemsAppl. Math. Comput.20112184124012462831632
– reference: A. Martín del Campo and J. I. Rodriguez. Critical points via monodromy and local methods. J. Symbolic Comput., 79(part 3):559–574, 2017
– reference: DraismaJRodriguezJMaximum likelihood duality for determinantal varietiesInt. Math. Res. Not. IMRN20142056485666327118410.1093/imrn/rnt128
– reference: A. N. Jensen. Tropical homotopy continuation. arXiv preprint arXiv:1601.02818, 2016
– reference: A. J. Sommese, J. Verschelde, and C. W. Wampler. Symmetric functions applied to decomposing solution sets of polynomial systems. SIAM J. Numer. Anal., 40(6):2026–2046 (2003), 2002
– reference: D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler. Bertini: Software for Numerical Algebraic Geometry. Available at bertini.nd.edu with permanent doi: dx.doi.org/10.7274/R0H41PB5
– reference: HauensteinJDLeykinARodriguezJISottileFA numerical toolkit for multiprojective varietiesMath. Comp.202190327413440416646710.1090/mcom/3566
– reference: HauensteinJDSommeseAJWamplerCWRegeneration homotopies for solving systems of polynomialsMath. Comp.201180273345377272898310.1090/S0025-5718-2010-02399-3
– reference: A. J. Sommese, J. Verschelde, and C. W. Wampler. Solving polynomial systems equation by equation. In Algorithms in algebraic geometry, volume 146 of IMA Vol. Math. Appl., pages 133–152. Springer, New York, 2008
– reference: GiustiMLecerfGSalvyBA Gröbner free alternative for polynomial system solvingJ. Complexity2001171154211181761210.1006/jcom.2000.0571
– reference: A. J. Sommese and J. Verschelde. Numerical homotopies to compute generic points on positive dimensional algebraic sets. journal of complexity, 16(3):572–602, 2000
– reference: S. Sullivant. Algebraic statistics, volume 194 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2018
– reference: S. Katsura. Spin glass problem by the method of integral equation of the effective field. New Trends in Magnetism, pages 110–121, 1990
– reference: HauensteinJRodriguezJISturmfelsBMaximum likelihood for matrices with rank constraintsJ. Algebr. Stat.2014511838327995210.18409/jas.v5i1.23
– reference: HauensteinJDRodriguezJIMultiprojective witness sets and a trace testAdv. Geom.2020203297318412133610.1515/advgeom-2020-0006
– reference: A. J. Sommese and C. W. Wampler, II. The numerical solution of systems of polynomials. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. Arising in engineering and science
– reference: TelenSVan BarelMVerscheldeJA robust numerical path tracking algorithm for polynomial homotopy continuationSIAM J. Sci. Comput.2020426A3610A3637417158910.1137/19M1288036
– reference: VerscheldeJAlgorithm 795: Phcpack: a general-purpose solver for polynomial systems by homotopy continuationACM Transactions on Mathematical Software199925225127610.1145/317275.317286
– volume: 64
  start-page: 1541
  issue: 212
  year: 1995
  ident: 1590_CR19
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1995-1297471-4
– volume: 11
  start-page: 53
  issue: 1
  year: 2021
  ident: 1590_CR6
  publication-title: J. Softw. Algebra Geom.
  doi: 10.2140/jsag.2021.11.53
– ident: 1590_CR22
– ident: 1590_CR20
– volume: 20
  start-page: 297
  issue: 3
  year: 2020
  ident: 1590_CR14
  publication-title: Adv. Geom.
  doi: 10.1515/advgeom-2020-0006
– volume: 5
  start-page: 18
  issue: 1
  year: 2014
  ident: 1590_CR12
  publication-title: J. Algebr. Stat.
  doi: 10.18409/jas.v5i1.23
– ident: 1590_CR30
  doi: 10.1007/978-0-387-75155-9_8
– volume: 43
  start-page: 422
  issue: 1
  year: 2015
  ident: 1590_CR23
  publication-title: Ann. Statist.
  doi: 10.1214/14-AOS1282
– ident: 1590_CR3
  doi: 10.1137/1.9781611972702
– ident: 1590_CR5
  doi: 10.1007/978-3-319-96418-8_54
– ident: 1590_CR32
  doi: 10.1145/3373207.3403995
– ident: 1590_CR11
– ident: 1590_CR29
  doi: 10.1137/S0036142901397101
– ident: 1590_CR7
  doi: 10.1007/978-3-662-44199-2_30
– volume: 217
  start-page: 3349
  issue: 7
  year: 2010
  ident: 1590_CR15
  publication-title: Appl. Math. Comput.
– ident: 1590_CR27
– volume: 3
  start-page: 5
  issue: 1
  year: 2011
  ident: 1590_CR24
  publication-title: Journal of Software for Algebra and Geometry
  doi: 10.2140/jsag.2011.3.5
– ident: 1590_CR1
  doi: 10.1145/120694.120708
– ident: 1590_CR21
– volume: 25
  start-page: 251
  issue: 2
  year: 1999
  ident: 1590_CR35
  publication-title: ACM Transactions on Mathematical Software
  doi: 10.1145/317275.317286
– volume: 20
  start-page: 5648
  year: 2014
  ident: 1590_CR8
  publication-title: Int. Math. Res. Not. IMRN
  doi: 10.1093/imrn/rnt128
– ident: 1590_CR25
  doi: 10.1007/978-0-387-75155-9_5
– volume: 9
  start-page: 1
  issue: 3
  year: 1975
  ident: 1590_CR4
  publication-title: Funkcional. Anal. i Priložen.
– ident: 1590_CR33
  doi: 10.1090/gsm/194
– volume: 80
  start-page: 345
  issue: 273
  year: 2011
  ident: 1590_CR16
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-2010-02399-3
– ident: 1590_CR28
  doi: 10.1006/jcom.2000.0554
– ident: 1590_CR31
  doi: 10.1142/5763
– volume: 39
  start-page: 1421
  issue: 3
  year: 2019
  ident: 1590_CR9
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/dry017
– ident: 1590_CR26
  doi: 10.1016/j.jsc.2016.07.019
– volume: 42
  start-page: A3610
  issue: 6
  year: 2020
  ident: 1590_CR34
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1288036
– ident: 1590_CR2
– volume: 293
  start-page: 226
  year: 2017
  ident: 1590_CR18
  publication-title: Appl. Math. Comput.
– volume: 17
  start-page: 154
  issue: 1
  year: 2001
  ident: 1590_CR10
  publication-title: J. Complexity
  doi: 10.1006/jcom.2000.0571
– volume: 90
  start-page: 413
  issue: 327
  year: 2021
  ident: 1590_CR13
  publication-title: Math. Comp.
  doi: 10.1090/mcom/3566
– volume: 218
  start-page: 1240
  issue: 4
  year: 2011
  ident: 1590_CR17
  publication-title: Appl. Math. Comput.
SSID ssj0010027
Score 2.3506727
Snippet We develop a new method that improves the efficiency of equation-by-equation homotopy continuation methods for solving polynomial systems. Our method is based...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 813
SubjectTerms Algebra
Algorithms
Computer Science
Numeric Computing
Numerical Analysis
Original Paper
Theory of Computation
Title u-generation: solving systems of polynomials equation-by-equation
URI https://link.springer.com/article/10.1007/s11075-023-01590-1
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: AFBBN
  dateStart: 19910201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MXPTgAzU-SQ_etAkt7S54WwxINHCSBE-bttt6MYAuHPj3TrsthMSYeNrNZLKH6UxnZmfmG4TulE4Yo8aSjoIUhXdtQsAJU2JoyzCpuOJ-f8ponAwn_GUqpmEorIzd7rEk6W_q7bAbZCpumtj1_4hui0DOUxcOzgu0eMKyTe3AZVq-xgn3L8Q3nTAq8_s3dt3Rbi3Uu5jBMToMsSHOqsM8QXtm1kBHIU7EwQpLIMVVDJHWQAejDfxqeYqyFfnwcNJO6o8Y1Mv9NsAVanOJ5xYv5p9rN5AMyofNVwX3TdSaxPczNBn0356GJOxKIBqc7JIYBqlJoTi1Wtg0tQ42T3dkUthUdAV4KgZEq5kUELGYVNNUg2kLKa3mwirVPke12XxmLhBuq4TKQsPhpoZLzZUpTGK5ZoYBzdJLdB9Fli8qSIx8C37sBJyDgHMv4By4H6JU82Ae5R_sV_9jv0b7DKKMqo36BtWW3ytzC1HCUjVRPRv0emP3fH5_7Te9kvwAcX-3xA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4YOKgHUdT4dg_etMQt7S54IwZEeZwgwdNmW1oPGkB3OeCvd7rbQjDGhNtm0jTNdDqPnZlvAG6EDCj1lSY1gSEKq-uAoBH2ifLvFY0FEyybn9LrB-0hexnxkW0KS1y1u0tJZpp61eyGkYrpJjb1P7x-TzDmKTIMUGgBio2n105zmT0wsVaW5UQNjB5OzTbL_L3LukFaz4ZmRqZVgqE7Xl5b8l6Zp6Iiv38hN256_n3Ys16n18jF5AC21KQMJeuBevZ9J0hyQx4crQy7vSWwa3IIjTl5y4CqzX0-eCi45oeEl-NBJ95Ue7Ppx8K0OqNYe-ozBxInYkHc9xEMW83BY5vYKQxEovlOiaIY9IwF87XkOgy1AeSTtTgY65DXOdpAikQtaczRF1Kh9EOJSoPHsZaMayGqx1CYTCfqBLyqCPx4LFFsQsViyYQaq0AzSRVFmvZP4dZdRTTLwTaiFayyYV-E7Isy9kW4-s4xOrIPL_ln-dlmy69huz3odaPuc79zDjsUfZm8WPsCCunXXF2iL5KKKyt6P9wR1Is
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QkBAceAwQb3LgBtGWLGk3bhMwjccmDkzaLUrShAvqBu0O-_c4absxCSFxqyyrBz9qu7Y_I3SlTcQYtY60NZQovOMiAkGYEkublinNNQ_3UwbDqD_iT2Mx_rHFH6bdq5ZksdPgUZrSvDFNXGO5-AZVi98s9rNAotMkUP-scw-UABY9Yt1FH8FXXaHfCd9iyHXa5drM7-9YDU2rfdEQbnq7aLvME3G3UOweWrNpHe2UOSMuPTIDUnWWoaLV0dZgAcWa7aPujLwHaGmvgVsMpuZ_IeACwTnDE4enk4-5X04GQ8T2s4D-JnpOqucDNOo9vN31SXk3gRgIuDmxDMqURHPqjHBx7DyEnmmrKHGx6AiIWgyIzjAlIHuxsaGxATcXSjnDhdO6dYhq6SS1Rwi3dERVYkDRseXKcG0TGzlumGVAc_QYXVcik9MCHkMugZC9gCUIWAYBS-C-qaQqS1fJ_mA_-R_7Jdp4ve_Jl8fh8ynaZJB8FNPVZ6iWf83sOSQPub4I9vENlVK73A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=u-generation%3A+solving+systems+of+polynomials+equation-by-equation&rft.jtitle=Numerical+algorithms&rft.au=Duff%2C+Timothy&rft.au=Leykin%2C+Anton&rft.au=Rodriguez%2C+Jose+Israel&rft.date=2024-02-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=95&rft.issue=2&rft.spage=813&rft.epage=838&rft_id=info:doi/10.1007%2Fs11075-023-01590-1&rft.externalDocID=10_1007_s11075_023_01590_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon