A day at the races Using best arm identification algorithms to reduce the cost of information retrieval user studies

Two major barriers to conducting user studies are the costs involved in recruiting participants and researcher time in performing studies. Typical solutions are to study convenience samples or design studies that can be deployed on crowd-sourcing platforms. Both solutions have benefits but also draw...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 52; no. 5; pp. 5617 - 5632
Main Authors Losada, David E., Elsweiler, David, Harvey, Morgan, Trattner, Christoph
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2022
Subjects
Online AccessGet full text
ISSN0924-669X
1573-7497
DOI10.1007/s10489-021-02719-2

Cover

Abstract Two major barriers to conducting user studies are the costs involved in recruiting participants and researcher time in performing studies. Typical solutions are to study convenience samples or design studies that can be deployed on crowd-sourcing platforms. Both solutions have benefits but also drawbacks. Even in cases where these approaches make sense, it is still reasonable to ask whether we are using our resources – participants’ and our time – efficiently and whether we can do better. Typically user studies compare randomly-assigned experimental conditions, such that a uniform number of opportunities are assigned to each condition. This sampling approach, as has been demonstrated in clinical trials, is sub-optimal. The goal of many Information Retrieval (IR) user studies is to determine which strategy (e.g., behaviour or system) performs the best. In such a setup, it is not wise to waste participant and researcher time and money on conditions that are obviously inferior. In this work we explore whether Best Arm Identification (BAI) algorithms provide a natural solution to this problem. BAI methods are a class of Multi-armed Bandits (MABs) where the only goal is to output a recommended arm and the algorithms are evaluated by the average payoff of the recommended arm. Using three datasets associated with previously published IR-related user studies and a series of simulations, we test the extent to which the cost required to run user studies can be reduced by employing BAI methods. Our results suggest that some BAI instances ( racing algorithms ) are promising devices to reduce the cost of user studies. One of the racing algorithms studied, Hoeffding, holds particular promise. This algorithm offered consistent savings across both the real and simulated data sets and only extremely rarely returned a result inconsistent with the result of the full trial. We believe the results can have an important impact on the way research is performed in this field. The results show that the conditions assigned to participants could be dynamically changed, automatically, to make efficient use of participant and experimenter time.
AbstractList Two major barriers to conducting user studies are the costs involved in recruiting participants and researcher time in performing studies. Typical solutions are to study convenience samples or design studies that can be deployed on crowd-sourcing platforms. Both solutions have benefits but also drawbacks. Even in cases where these approaches make sense, it is still reasonable to ask whether we are using our resources – participants’ and our time – efficiently and whether we can do better. Typically user studies compare randomly-assigned experimental conditions, such that a uniform number of opportunities are assigned to each condition. This sampling approach, as has been demonstrated in clinical trials, is sub-optimal. The goal of many Information Retrieval (IR) user studies is to determine which strategy (e.g., behaviour or system) performs the best. In such a setup, it is not wise to waste participant and researcher time and money on conditions that are obviously inferior. In this work we explore whether Best Arm Identification (BAI) algorithms provide a natural solution to this problem. BAI methods are a class of Multi-armed Bandits (MABs) where the only goal is to output a recommended arm and the algorithms are evaluated by the average payoff of the recommended arm. Using three datasets associated with previously published IR-related user studies and a series of simulations, we test the extent to which the cost required to run user studies can be reduced by employing BAI methods. Our results suggest that some BAI instances ( racing algorithms ) are promising devices to reduce the cost of user studies. One of the racing algorithms studied, Hoeffding, holds particular promise. This algorithm offered consistent savings across both the real and simulated data sets and only extremely rarely returned a result inconsistent with the result of the full trial. We believe the results can have an important impact on the way research is performed in this field. The results show that the conditions assigned to participants could be dynamically changed, automatically, to make efficient use of participant and experimenter time.
Author Losada, David E.
Harvey, Morgan
Trattner, Christoph
Elsweiler, David
Author_xml – sequence: 1
  givenname: David E.
  orcidid: 0000-0001-8823-7501
  surname: Losada
  fullname: Losada, David E.
  email: david.losada@usc.es
  organization: Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela
– sequence: 2
  givenname: David
  surname: Elsweiler
  fullname: Elsweiler, David
  organization: University of Regensburg
– sequence: 3
  givenname: Morgan
  surname: Harvey
  fullname: Harvey, Morgan
  organization: University of Sheffield
– sequence: 4
  givenname: Christoph
  surname: Trattner
  fullname: Trattner, Christoph
  organization: University of Bergen
BookMark eNp9j01LAzEQhoNUsK1ePHraPxCdSbKb5FiKX1DwouAtTNOJWnRXkvXQf290PXsYBoZ5Xt5nIWb90LMQFwiXCGCvCoJxXoLCOha9VEdijq3V0hpvZ2IOXhnZdf75RCxK2QOA1oBzcb5qdnRoaGzGV24yRS6n4jjRe-Gzv70UTzfXj-s7uXm4vV-vNjIqo0bpYtuyQgbWiSD6LdWLamFnXNwSsXUOHXZJY0J2nTM2aUuGnG8768HqpVBTbsxDKZlT-MxvH5QPASH8WIXJKlSr8GsVVIX0BJX63L9wDvvhK_e153_UN6qTTsA
Cites_doi 10.1177/1740774507079442
10.1016/j.cct.2017.04.010
10.1007/s10489-012-0346-z
10.1086/209469
10.1080/01621459.1978.10480109
10.1145/2766462.2767731
10.1007/s10791-012-9197-9
10.1007/s11109-007-9037-6
10.1146/annurev-clinpsy-021815-093623
10.1186/1741-7015-8-17
10.1257/jep.21.2.153
10.1007/s11257-019-09245-4
10.1145/2382438.2382439
10.1002/(SICI)1097-0258(19990730)18:14<1833::AID-SIM221>3.0.CO;2-3
10.1086/323732
10.1145/3077136.3080826
10.24963/ijcai.2019/532
10.1007/s10489-020-01635-1
10.1007/s10489-020-01922-x
10.1561/1500000012
10.1108/EUM0000000007204
10.1370/afm.681
10.1080/01621459.1963.10500830
10.1542/peds.76.4.479
10.1145/2433396.2433429
10.1145/1978942.1979166
10.1007/978-3-540-75225-7_15
10.1016/j.ins.2018.04.008
10.6028/NIST.SP.500-324.core-overview
10.1145/1357054.1357074
10.1145/2623330.2623344
10.1145/2365952.2365956
10.1186/1750-1172-3-11
10.1016/j.ipm.2017.04.005
10.1007/978-3-319-16354-3_94
10.1145/1390156.1390255
10.1145/2858036.2858498
10.1145/2009916.2009967
10.1177/0165551507086989
10.1145/1060745.1060831
10.1016/j.eswa.2020.113441
10.1145/1553374.1553527
10.1017/9781108571401
10.1145/2851613.2851692
10.1109/HICSS.2016.543
10.1145/3331184.3331353
10.1063/1.5129551
10.1007/s10489-017-0977-1
10.1145/2911451.2911492
10.1093/bioinformatics/btx638
10.2200/S00368ED1V01Y201105ICR019
10.1145/3295750.3298952
10.1145/634067.634236
10.1145/1390156.1390241
10.1080/01621459.1969.10500959
10.1214/14-SS106
10.1108/EUM0000000007076
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10489-021-02719-2
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 5632
ExternalDocumentID 10_1007_s10489_021_02719_2
GrantInformation_xml – fundername: Ministerio de Ciencia, Innovación y Universidades
  grantid: RTI2018-093336-B-C21
  funderid: https://doi.org/10.13039/100014440
– fundername: Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia
  grantid: ED431C 2018/19
– fundername: Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia
  grantid: ED431C2018/29
– fundername: Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia
  grantid: 2019-2022 ED431G-2019/04
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c242t-8c55e21e0e3fa0c9ba8c5250d48cbaae7881816f31f1e86847f37a4a895679073
IEDL.DBID C6C
ISSN 0924-669X
IngestDate Wed Oct 01 04:09:51 EDT 2025
Fri Feb 21 02:47:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Racing algorithms
User studies
Best arm identification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-8c55e21e0e3fa0c9ba8c5250d48cbaae7881816f31f1e86847f37a4a895679073
ORCID 0000-0001-8823-7501
OpenAccessLink https://doi.org/10.1007/s10489-021-02719-2
PageCount 16
ParticipantIDs crossref_primary_10_1007_s10489_021_02719_2
springer_journals_10_1007_s10489_021_02719_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2022
Publisher Springer US
Publisher_xml – name: Springer US
References DjenouriYBelhadiADjenouriDLinC-WCluster-based information retrieval using pattern miningAppl Intell20215111610.1007/s10489-020-01922-x
Levitt SD, List JA (2007) What do laboratory experiments measuring social preferences reveal about the real world? J Econ Perspect, 21(2)
Robertson S (2008) On the history of evaluation in ir. J Inf Sci 34(4)
Yin G, Lam CK, Shi H (2017) Bayesian randomized clinical trials: From fixed to adaptive design. Contemp Clin Trials 59
Aula A, Jhaveri N, Käki M (2005) Information search and re-access strategies of experienced web users. In: Proceedings of WWW ’05
Epstein S (2009) Inclusion: the politics of difference in medical research. Chicago Studies in Practices of Meaning
Kelly D (2009) Methods for evaluating interactive information retrieval systems with users. Found Trends Inf Retr 3(1–2)
Harman D (2011) Information retrieval evaluation. Synthesis Lectures on Information Concepts Retrieval, and Services 3(2)
LosadaDEParaparJBarreiroAMulti-armed bandits for adjudicating documents in pooling-based evaluation of information retrieval systemsInf Process Manag20175351005102510.1016/j.ipm.2017.04.005
Peterson RA (2001) On the use of college students in social science research: Insights from a second-order meta-analysis. J Consum Res 28(3)
RahmanMOhJCGraph bandit for diverse user coverage in online recommendationAppl Intell2018481979199510.1007/s10489-017-0977-1
Yue Y, Joachims T (2009) Interactively optimizing information retrieval systems as a dueling bandits problem. In: Proceedings of ICML ’09
Even-Dar E, Mannor S, Mansour Y (2006) Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. J Mach Learn Res 7
Ellis D, Haugan M (1997) Modelling the information seeking patterns of engineers and research scientists in an industrial environment. J Doc 53(4)
Sverdlov O, Wong WK, Ryeznik Y et al (2014) Adaptive clinical trial designs for phase i cancer studies. Stat Surv 8
Wanigasekara N, Liang Y, Goh ST, Ye L, Williams JJ, Rosenblum DS (2019) Learning multi-objective rewards and user utility function in contextual bandits for personalized ranking. In: Proceedings of IJCAI ’19
DjenouriYBelhadiAFournier-VigerPLinJC-WFast and effective cluster-based information retrieval using frequent closed itemsetsInform Sci2018453154167380443110.1016/j.ins.2018.04.008
BhopaleAPTiwariASwarm optimized cluster based framework for information retrievalExpert Syst Appl202015411344110.1016/j.eswa.2020.113441
Sakai T (2016) Statistical power, and sample sizes significance: A systematic review of sigir and tois, 2006-2015. In: Proceedings of SIGIR ’16
AzizMKaufmannERiviereM-KOn multi-armed bandit designs for dose-finding clinical trialsJ Mach Learn Res202122138425370707370531
Dervin B, Nilan M (1986) Information needs and uses. Ann Rev Inf Sci Technol 21
Kalyanakrishnan S, Tewari A, Auer P, Stone P (2012) Pac subset selection in stochastic multi-armed bandits. In: Proceedings of ICML’12
Kam CD, Wilking JR, Zechmeister EJ (2007) Beyond the “narrow data base”: Another convenience sample for experimental research. Polit Behav 29(4)
TerayamaKShinobuATsudaKTakemuraKKitaoAevERdock BAI: Machine-learning-guided selection of protein-protein complex structureJ Chem Phys20191512121510410.1063/1.5129551
Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 58(301)
Mnih V, Szepesvári C, Audibert J-Y (2008) Empirical bernstein stopping. In: Proceedings of ICML ’08
Bauer P, Kieser M (1999) Combining different phases in the development of medical treatments within a single trial. Stat Med 18(14)
KaufmannECappéOGarivierAOn the complexity of best-arm identification in multi-armed bandit modelsJ Mach Learn Res201617114234829211360.62433
Garivier A, Kaufmann E (2016) Optimal best arm identification with fixed confidence. In: Feldman V, Rakhlin A, Shamir O (eds) 29th annual conference on learning theory, volume 49 of proceedings of machine learning research. PMLR. Columbia University, New York, pp 998–1027
TangXZhangCMengWWangKJoint user mention behavior modeling for mentionee recommendationAppl Intell2020502449246410.1007/s10489-020-01635-1
Trattner C, Jannach D (2019) Learning to recommend similar items from human judgments. User Modeling and User-Adapted Interaction
Woolrych A, Cockton G (2001) Why and when five test users aren’t enough. In: Proceedings of IHM-HCI ’01, vol 2
Kuhlthau CC, Tama SL (2001) Information search process of lawyers: a call for’just for me’information services. J Doc 57(1)
Even-Dar E, Mannor S, Mansour Y (2012) PAC bounds for multi-armed bandit and markov decision processes. In: Proceedings of COLT ’02
Chandler J, Shapiro D (2016) Conducting clinical research using crowdsourced convenience samples. Ann Rev Clin Psychol 12
Knijnenburg BP (2012) Conducting user experiments in recommender systems. In: Proceedings of RecSys ’12
Bartlett RH, Roloff DW, Cornell RG, Andrews AF, Dillon PW, Zwischenberger JB (1985) Extracorporeal circulation in neonatal respiratory failure: a prospective randomized study. Pediatrics 76(4)
Colton T (1962) A model for selecting one of two medical treatments. Bull Inst Int Statist 39(3)
Fern EF, Monroe KB (1996) Effect-size estimates: Issues and problems in interpretation. J Consum Res 23(2)
González-González AI, Dawes M, Sánchez-Mateos J, Riesgo-Fuertes R, Escortell-Mayor E, Sanz-Cuesta T, Hernandez-Fernandez T (2007) Information needs and information-seeking behavior of primary care physicians. The Annals of Family Medicine 5(4)
GranmoOCGlimsdalSAccelerated bayesian learning for decentralized two-armed bandit based decision making with applications to the goore gameAppl Intell20133847948810.1007/s10489-012-0346-z
Nielsen J (2006) Quantitative studies: How many users to test. Alertbox
Wei L-J, Durham S (1978) The randomized play-the-winner rule in medical trials. J Am Stat Assoc 73(364)
Audibert J-Y, Munos R, Szepesvári C (2007) Tuning bandit algorithms in stochastic environments. In: Proceedings of ALT ’07
Losada DE, Parapar J, Barreiro A (2016) Feeling lucky? multi-armed bandits for ordering judgements in pooling-based evaluation. In: Proceedings of the 31st ACM symposium on applied computing, SAC ’16. ACM, pp 1027–1034
Maron O, Moore AW (1993) Hoeffding races: Accelerating model selection search for classification and function approximation. In: Proceedings of NIPS’93
Burtini G, Loeppky J, Lawrence R (2015) A survey of online experiment design with the stochastic multi-armed bandit. arXiv:1510.00757
Bacchetti P (2010) Current sample size conventions: flaws, harms, and alternatives. BMC Med 8(1)
Ingwersen P, Järvelin K (2006) The turn: Integration of information seeking and retrieval in context. vol 18
Spool J, Schroeder W (2001) Testing web sites: Five users is nowhere near enough. In: Proceedings of CHI ’01 extended abstracts
Zelen M (1969) Play the winner rule and the controlled clinical trial. J Am Stat Assoc 64(325)
Radlinski F, Craswell N (2013) Optimized interleaving for online retrieval evaluation. In: Proceedings of WSDM ’13
Audibert J-Y, Bubeck S, Munos R (2010) Best arm identification in multi-armed bandits. In: Proceedings of COLT ’10
Kelly D (2015) Statistical power analysis for sample size estimation in information retrieval experiments with users. In: Proceedings of ECIR ’15
Xu L, Zhou X, Gadiraju U (2019) Revealing the role of user moods in struggling search tasks. In: Proceedings of SIGIR ’19
Greenberg S, Buxton B (2008) Usability evaluation considered harmful (some of the time). In: Proceedings of CHI ’08
Caine K (2016) Local standards for sample size at chi. In: Proceedings of CHI ’16
Chow S-C, Chang M (2008) Adaptive design methods in clinical trials–a review. Orphanet J Rare Dis 3(1)
Allan J, Harman D, Kanoulas E, Li D, Van Gysel C, Voorhees EM (2017) Trec 2017 common core track overview. In: Proceedings of the 26th text retrieval conference, TREC 2017. NIST
Radlinski F, Kleinberg R, Joachims T (2008) Learning diverse rankings with multi-armed bandits. In: Proceedings of ICML ’08
Ji Y, Li Y, Bekele BN (2007) Dose-finding in phase i clinical trials based on toxicity probability intervals. Clin Trials 4(3)
Nielsen J (2007) Usability testing with 5 users is enough. Sited on http://www.useit.com/alertbox
Zimmerman S, Thorpe A, Fox C, Kruschwitz U (2019) Privacy nudging in search: Investigating potential impacts. In: Proceedings of CHIIR ’19
Heting C, Qing K (2017) Research methods: What’s in the name? Libr Inf Sci Res 39(4)
Morschheuser B, Hamari J, Koivisto J (2016) Gamification in crowdsourcing: a review. In: Proceedings of HICSS ’16
Hofmann K, Whiteson S, de Rijke M (2013) Balancing exploration and exploitation in listwise and pairwise online learning to rank for information retrieval. Inf Retr 16(1)
Allan J, Harman D, Kanoulas E, Li D, Gysel CV, Voorhees EM (2017) TREC 2017 common core track overview. In: Proceedings of TREC ’17
Martín A, Fernández-Isabel A, Martín de Diego I, Beltrán M (2021) A survey for user behavior analysis based on machine learning techniques: current models and applications. Appl Intell
Kelly D, Gyllstrom K (2011) An examination of two delivery modes for interactive search system experiments: remote and laboratory. In: Proceedings of CHI ’11
LattimoreTSzepesváriCBandit algorithms2020CambridgeCambridge University Press10.1017/9781108571401
TerayamaKIwataHArakiMOkunoYTsudaKMachine learning accelerates MD-based binding pose prediction between ligands and proteinsBioinformatics201734577077810.1093/bioinformatics/btx638
Bendersky M, Garcia-Pueyo L, Harmsen J, Josifovski V, Lepikhin D (2014) Up next: retrieval methods for large scale related video suggestion. In: Proceedings of KDD ’14
Moon T, Chu W, Li L, Zheng Z, Chang Y (2012) An online learning framework for refining recency search results with user click feedback. ACM Trans Inf Syst (TOIS) 30(4)
Harvey M, Hauff C, Elsweiler D (2015) Learning by example: training users with high-quality query suggestions. In: Proceedings of SIGIR ’15
Lagun D, Agichtein E (2011) Viewser: E
2719_CR38
M Aziz (2719_CR5) 2021; 22
2719_CR36
2719_CR37
2719_CR34
2719_CR35
2719_CR32
2719_CR76
2719_CR33
2719_CR41
2719_CR42
2719_CR40
M Rahman (2719_CR60) 2018; 48
DE Losada (2719_CR49) 2017; 53
AP Bhopale (2719_CR10) 2020; 154
2719_CR29
T Lattimore (2719_CR46) 2020
2719_CR27
K Terayama (2719_CR66) 2017; 34
2719_CR25
2719_CR69
2719_CR26
2719_CR23
2719_CR24
2719_CR68
2719_CR21
2719_CR22
2719_CR30
2719_CR74
2719_CR31
2719_CR75
2719_CR72
Y Djenouri (2719_CR18) 2021; 51
2719_CR73
2719_CR70
2719_CR71
X Tang (2719_CR65) 2020; 50
E Kaufmann (2719_CR39) 2016; 17
2719_CR9
2719_CR7
2719_CR16
2719_CR8
2719_CR17
2719_CR14
2719_CR58
2719_CR6
2719_CR15
2719_CR59
2719_CR3
2719_CR12
2719_CR56
2719_CR4
2719_CR13
2719_CR57
2719_CR1
2719_CR54
2719_CR2
2719_CR11
2719_CR55
2719_CR63
2719_CR20
2719_CR64
K Terayama (2719_CR67) 2019; 151
2719_CR61
2719_CR62
Y Djenouri (2719_CR19) 2018; 453
2719_CR47
2719_CR48
2719_CR45
OC Granmo (2719_CR28) 2013; 38
2719_CR43
2719_CR44
2719_CR52
2719_CR53
2719_CR50
2719_CR51
References_xml – reference: DjenouriYBelhadiADjenouriDLinC-WCluster-based information retrieval using pattern miningAppl Intell20215111610.1007/s10489-020-01922-x
– reference: Bauer P, Kieser M (1999) Combining different phases in the development of medical treatments within a single trial. Stat Med 18(14)
– reference: Yue Y, Joachims T (2009) Interactively optimizing information retrieval systems as a dueling bandits problem. In: Proceedings of ICML ’09
– reference: Bartlett RH, Roloff DW, Cornell RG, Andrews AF, Dillon PW, Zwischenberger JB (1985) Extracorporeal circulation in neonatal respiratory failure: a prospective randomized study. Pediatrics 76(4)
– reference: Losada DE, Parapar J, Barreiro A (2016) Feeling lucky? multi-armed bandits for ordering judgements in pooling-based evaluation. In: Proceedings of the 31st ACM symposium on applied computing, SAC ’16. ACM, pp 1027–1034
– reference: Radlinski F, Craswell N (2013) Optimized interleaving for online retrieval evaluation. In: Proceedings of WSDM ’13
– reference: Nielsen J (2007) Usability testing with 5 users is enough. Sited on http://www.useit.com/alertbox/
– reference: Zelen M (1969) Play the winner rule and the controlled clinical trial. J Am Stat Assoc 64(325)
– reference: Trattner C, Jannach D (2019) Learning to recommend similar items from human judgments. User Modeling and User-Adapted Interaction
– reference: Epstein S (2009) Inclusion: the politics of difference in medical research. Chicago Studies in Practices of Meaning
– reference: Kam CD, Wilking JR, Zechmeister EJ (2007) Beyond the “narrow data base”: Another convenience sample for experimental research. Polit Behav 29(4)
– reference: Colton T (1962) A model for selecting one of two medical treatments. Bull Inst Int Statist 39(3)
– reference: KaufmannECappéOGarivierAOn the complexity of best-arm identification in multi-armed bandit modelsJ Mach Learn Res201617114234829211360.62433
– reference: Allan J, Harman D, Kanoulas E, Li D, Gysel CV, Voorhees EM (2017) TREC 2017 common core track overview. In: Proceedings of TREC ’17
– reference: Aula A, Jhaveri N, Käki M (2005) Information search and re-access strategies of experienced web users. In: Proceedings of WWW ’05
– reference: Yin G, Lam CK, Shi H (2017) Bayesian randomized clinical trials: From fixed to adaptive design. Contemp Clin Trials 59
– reference: Audibert J-Y, Bubeck S, Munos R (2010) Best arm identification in multi-armed bandits. In: Proceedings of COLT ’10
– reference: AzizMKaufmannERiviereM-KOn multi-armed bandit designs for dose-finding clinical trialsJ Mach Learn Res202122138425370707370531
– reference: Bacchetti P (2010) Current sample size conventions: flaws, harms, and alternatives. BMC Med 8(1)
– reference: Even-Dar E, Mannor S, Mansour Y (2006) Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. J Mach Learn Res 7
– reference: Kuhlthau CC, Tama SL (2001) Information search process of lawyers: a call for’just for me’information services. J Doc 57(1)
– reference: Sverdlov O, Wong WK, Ryeznik Y et al (2014) Adaptive clinical trial designs for phase i cancer studies. Stat Surv 8
– reference: Kelly D (2009) Methods for evaluating interactive information retrieval systems with users. Found Trends Inf Retr 3(1–2)
– reference: LosadaDEParaparJBarreiroAMulti-armed bandits for adjudicating documents in pooling-based evaluation of information retrieval systemsInf Process Manag20175351005102510.1016/j.ipm.2017.04.005
– reference: Nielsen J (2006) Quantitative studies: How many users to test. Alertbox
– reference: TerayamaKIwataHArakiMOkunoYTsudaKMachine learning accelerates MD-based binding pose prediction between ligands and proteinsBioinformatics201734577077810.1093/bioinformatics/btx638
– reference: Audibert J-Y, Munos R, Szepesvári C (2007) Tuning bandit algorithms in stochastic environments. In: Proceedings of ALT ’07
– reference: Martín A, Fernández-Isabel A, Martín de Diego I, Beltrán M (2021) A survey for user behavior analysis based on machine learning techniques: current models and applications. Appl Intell
– reference: Hofmann K, Whiteson S, de Rijke M (2013) Balancing exploration and exploitation in listwise and pairwise online learning to rank for information retrieval. Inf Retr 16(1)
– reference: Radlinski F, Kleinberg R, Joachims T (2008) Learning diverse rankings with multi-armed bandits. In: Proceedings of ICML ’08
– reference: Burtini G, Loeppky J, Lawrence R (2015) A survey of online experiment design with the stochastic multi-armed bandit. arXiv:1510.00757
– reference: Maron O, Moore AW (1993) Hoeffding races: Accelerating model selection search for classification and function approximation. In: Proceedings of NIPS’93
– reference: Allan J, Harman D, Kanoulas E, Li D, Van Gysel C, Voorhees EM (2017) Trec 2017 common core track overview. In: Proceedings of the 26th text retrieval conference, TREC 2017. NIST
– reference: Kelly D (2015) Statistical power analysis for sample size estimation in information retrieval experiments with users. In: Proceedings of ECIR ’15
– reference: RahmanMOhJCGraph bandit for diverse user coverage in online recommendationAppl Intell2018481979199510.1007/s10489-017-0977-1
– reference: Chow S-C, Chang M (2008) Adaptive design methods in clinical trials–a review. Orphanet J Rare Dis 3(1)
– reference: Garivier A, Kaufmann E (2016) Optimal best arm identification with fixed confidence. In: Feldman V, Rakhlin A, Shamir O (eds) 29th annual conference on learning theory, volume 49 of proceedings of machine learning research. PMLR. Columbia University, New York, pp 998–1027
– reference: Greenberg S, Buxton B (2008) Usability evaluation considered harmful (some of the time). In: Proceedings of CHI ’08
– reference: Kalyanakrishnan S, Tewari A, Auer P, Stone P (2012) Pac subset selection in stochastic multi-armed bandits. In: Proceedings of ICML’12
– reference: Even-Dar E, Mannor S, Mansour Y (2012) PAC bounds for multi-armed bandit and markov decision processes. In: Proceedings of COLT ’02
– reference: Moon T, Chu W, Li L, Zheng Z, Chang Y (2012) An online learning framework for refining recency search results with user click feedback. ACM Trans Inf Syst (TOIS) 30(4)
– reference: Morschheuser B, Hamari J, Koivisto J (2016) Gamification in crowdsourcing: a review. In: Proceedings of HICSS ’16
– reference: Wei L-J, Durham S (1978) The randomized play-the-winner rule in medical trials. J Am Stat Assoc 73(364)
– reference: BhopaleAPTiwariASwarm optimized cluster based framework for information retrievalExpert Syst Appl202015411344110.1016/j.eswa.2020.113441
– reference: Dervin B, Nilan M (1986) Information needs and uses. Ann Rev Inf Sci Technol 21
– reference: Zimmerman S, Thorpe A, Fox C, Kruschwitz U (2019) Privacy nudging in search: Investigating potential impacts. In: Proceedings of CHIIR ’19
– reference: TangXZhangCMengWWangKJoint user mention behavior modeling for mentionee recommendationAppl Intell2020502449246410.1007/s10489-020-01635-1
– reference: Robertson S (2008) On the history of evaluation in ir. J Inf Sci 34(4)
– reference: Woolrych A, Cockton G (2001) Why and when five test users aren’t enough. In: Proceedings of IHM-HCI ’01, vol 2
– reference: Caine K (2016) Local standards for sample size at chi. In: Proceedings of CHI ’16
– reference: LattimoreTSzepesváriCBandit algorithms2020CambridgeCambridge University Press10.1017/9781108571401
– reference: Xu L, Zhou X, Gadiraju U (2019) Revealing the role of user moods in struggling search tasks. In: Proceedings of SIGIR ’19
– reference: DjenouriYBelhadiAFournier-VigerPLinJC-WFast and effective cluster-based information retrieval using frequent closed itemsetsInform Sci2018453154167380443110.1016/j.ins.2018.04.008
– reference: Wanigasekara N, Liang Y, Goh ST, Ye L, Williams JJ, Rosenblum DS (2019) Learning multi-objective rewards and user utility function in contextual bandits for personalized ranking. In: Proceedings of IJCAI ’19
– reference: Mnih V, Szepesvári C, Audibert J-Y (2008) Empirical bernstein stopping. In: Proceedings of ICML ’08
– reference: Heting C, Qing K (2017) Research methods: What’s in the name? Libr Inf Sci Res 39(4)
– reference: Chandler J, Shapiro D (2016) Conducting clinical research using crowdsourced convenience samples. Ann Rev Clin Psychol 12
– reference: Peterson RA (2001) On the use of college students in social science research: Insights from a second-order meta-analysis. J Consum Res 28(3)
– reference: Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 58(301)
– reference: Sakai T (2016) Statistical power, and sample sizes significance: A systematic review of sigir and tois, 2006-2015. In: Proceedings of SIGIR ’16
– reference: Lagun D, Agichtein E (2011) Viewser: Enabling large-scale remote user studies of web search examination and interaction. In: Proceedings of SIGIR ’11
– reference: González-González AI, Dawes M, Sánchez-Mateos J, Riesgo-Fuertes R, Escortell-Mayor E, Sanz-Cuesta T, Hernandez-Fernandez T (2007) Information needs and information-seeking behavior of primary care physicians. The Annals of Family Medicine 5(4)
– reference: Bendersky M, Garcia-Pueyo L, Harmsen J, Josifovski V, Lepikhin D (2014) Up next: retrieval methods for large scale related video suggestion. In: Proceedings of KDD ’14
– reference: Fern EF, Monroe KB (1996) Effect-size estimates: Issues and problems in interpretation. J Consum Res 23(2)
– reference: Ellis D, Haugan M (1997) Modelling the information seeking patterns of engineers and research scientists in an industrial environment. J Doc 53(4)
– reference: Harman D (2011) Information retrieval evaluation. Synthesis Lectures on Information Concepts Retrieval, and Services 3(2)
– reference: Knijnenburg BP (2012) Conducting user experiments in recommender systems. In: Proceedings of RecSys ’12
– reference: GranmoOCGlimsdalSAccelerated bayesian learning for decentralized two-armed bandit based decision making with applications to the goore gameAppl Intell20133847948810.1007/s10489-012-0346-z
– reference: Ji Y, Li Y, Bekele BN (2007) Dose-finding in phase i clinical trials based on toxicity probability intervals. Clin Trials 4(3)
– reference: TerayamaKShinobuATsudaKTakemuraKKitaoAevERdock BAI: Machine-learning-guided selection of protein-protein complex structureJ Chem Phys20191512121510410.1063/1.5129551
– reference: Elsweiler D, Trattner C, Harvey M (2017) Exploiting food choice biases for healthier recipe recommendation. In: Proceedings of SIGIR ’17
– reference: Kelly D, Gyllstrom K (2011) An examination of two delivery modes for interactive search system experiments: remote and laboratory. In: Proceedings of CHI ’11
– reference: Harvey M, Hauff C, Elsweiler D (2015) Learning by example: training users with high-quality query suggestions. In: Proceedings of SIGIR ’15
– reference: Ingwersen P, Järvelin K (2006) The turn: Integration of information seeking and retrieval in context. vol 18
– reference: Spool J, Schroeder W (2001) Testing web sites: Five users is nowhere near enough. In: Proceedings of CHI ’01 extended abstracts
– reference: Levitt SD, List JA (2007) What do laboratory experiments measuring social preferences reveal about the real world? J Econ Perspect, 21(2)
– ident: 2719_CR36
  doi: 10.1177/1740774507079442
– ident: 2719_CR73
  doi: 10.1016/j.cct.2017.04.010
– volume: 38
  start-page: 479
  year: 2013
  ident: 2719_CR28
  publication-title: Appl Intell
  doi: 10.1007/s10489-012-0346-z
– ident: 2719_CR25
  doi: 10.1086/209469
– ident: 2719_CR70
  doi: 10.1080/01621459.1978.10480109
– ident: 2719_CR31
  doi: 10.1145/2766462.2767731
– ident: 2719_CR33
  doi: 10.1007/s10791-012-9197-9
– ident: 2719_CR38
  doi: 10.1007/s11109-007-9037-6
– ident: 2719_CR13
  doi: 10.1146/annurev-clinpsy-021815-093623
– ident: 2719_CR6
  doi: 10.1186/1741-7015-8-17
– ident: 2719_CR11
– ident: 2719_CR34
– ident: 2719_CR47
  doi: 10.1257/jep.21.2.153
– ident: 2719_CR68
  doi: 10.1007/s11257-019-09245-4
– volume: 22
  start-page: 1
  year: 2021
  ident: 2719_CR5
  publication-title: J Mach Learn Res
– ident: 2719_CR53
  doi: 10.1145/2382438.2382439
– ident: 2719_CR15
– ident: 2719_CR16
– ident: 2719_CR8
  doi: 10.1002/(SICI)1097-0258(19990730)18:14<1833::AID-SIM221>3.0.CO;2-3
– ident: 2719_CR2
– ident: 2719_CR57
  doi: 10.1086/323732
– ident: 2719_CR21
  doi: 10.1145/3077136.3080826
– ident: 2719_CR69
  doi: 10.24963/ijcai.2019/532
– volume: 50
  start-page: 2449
  year: 2020
  ident: 2719_CR65
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01635-1
– volume: 51
  start-page: 1
  year: 2021
  ident: 2719_CR18
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01922-x
– ident: 2719_CR40
  doi: 10.1561/1500000012
– ident: 2719_CR20
  doi: 10.1108/EUM0000000007204
– ident: 2719_CR26
– ident: 2719_CR27
  doi: 10.1370/afm.681
– ident: 2719_CR22
– ident: 2719_CR32
  doi: 10.1080/01621459.1963.10500830
– ident: 2719_CR7
  doi: 10.1542/peds.76.4.479
– ident: 2719_CR58
  doi: 10.1145/2433396.2433429
– ident: 2719_CR37
– ident: 2719_CR71
– ident: 2719_CR42
  doi: 10.1145/1978942.1979166
– ident: 2719_CR50
– ident: 2719_CR3
  doi: 10.1007/978-3-540-75225-7_15
– volume: 453
  start-page: 154
  year: 2018
  ident: 2719_CR19
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2018.04.008
– ident: 2719_CR35
  doi: 10.6028/NIST.SP.500-324.core-overview
– ident: 2719_CR17
– ident: 2719_CR29
  doi: 10.1145/1357054.1357074
– ident: 2719_CR9
  doi: 10.1145/2623330.2623344
– ident: 2719_CR43
  doi: 10.1145/2365952.2365956
– ident: 2719_CR14
  doi: 10.1186/1750-1172-3-11
– ident: 2719_CR1
– volume: 53
  start-page: 1005
  issue: 5
  year: 2017
  ident: 2719_CR49
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2017.04.005
– ident: 2719_CR41
  doi: 10.1007/978-3-319-16354-3_94
– ident: 2719_CR23
– ident: 2719_CR55
– ident: 2719_CR59
  doi: 10.1145/1390156.1390255
– ident: 2719_CR12
  doi: 10.1145/2858036.2858498
– ident: 2719_CR45
  doi: 10.1145/2009916.2009967
– ident: 2719_CR61
  doi: 10.1177/0165551507086989
– ident: 2719_CR4
  doi: 10.1145/1060745.1060831
– volume: 154
  start-page: 113441
  year: 2020
  ident: 2719_CR10
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113441
– ident: 2719_CR74
  doi: 10.1145/1553374.1553527
– ident: 2719_CR51
– volume-title: Bandit algorithms
  year: 2020
  ident: 2719_CR46
  doi: 10.1017/9781108571401
– ident: 2719_CR48
  doi: 10.1145/2851613.2851692
– ident: 2719_CR54
  doi: 10.1109/HICSS.2016.543
– ident: 2719_CR72
  doi: 10.1145/3331184.3331353
– volume: 151
  start-page: 215104
  issue: 21
  year: 2019
  ident: 2719_CR67
  publication-title: J Chem Phys
  doi: 10.1063/1.5129551
– volume: 48
  start-page: 1979
  year: 2018
  ident: 2719_CR60
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-0977-1
– ident: 2719_CR62
  doi: 10.1145/2911451.2911492
– volume: 34
  start-page: 770
  issue: 5
  year: 2017
  ident: 2719_CR66
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx638
– ident: 2719_CR30
  doi: 10.2200/S00368ED1V01Y201105ICR019
– ident: 2719_CR76
  doi: 10.1145/3295750.3298952
– ident: 2719_CR63
  doi: 10.1145/634067.634236
– ident: 2719_CR24
– ident: 2719_CR52
  doi: 10.1145/1390156.1390241
– ident: 2719_CR75
  doi: 10.1080/01621459.1969.10500959
– ident: 2719_CR56
– ident: 2719_CR64
  doi: 10.1214/14-SS106
– ident: 2719_CR44
  doi: 10.1108/EUM0000000007076
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  ident: 2719_CR39
  publication-title: J Mach Learn Res
SSID ssj0003301
Score 2.3191648
Snippet Two major barriers to conducting user studies are the costs involved in recruiting participants and researcher time in performing studies. Typical solutions...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 5617
SubjectTerms Artificial Intelligence
Computer Science
Machines
Manufacturing
Mechanical Engineering
Processes
Subtitle Using best arm identification algorithms to reduce the cost of information retrieval user studies
Title A day at the races
URI https://link.springer.com/article/10.1007/s10489-021-02719-2
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdmEBykOUR-WBDSzZieM4Y1q1VCA6UalM0cVxxoJKOvDvObspqAghscRRbEXyXeLvPt0L4MZYgZqmuMrihCubWG5qkfBSoSSNo3ChEtPTTE_n6mGRLNoyOT4X5of_3qe4KR_UE0nvbZQZp-O2SyClg2NWj75OXeLloTse8QmudbZoE2R-f8cuCO16QAOwTI7goLUIWb5RYQ_23PIYDrfdFlj7851AL2cVfjBsGNlsbOVDqU5hPhk_j6a87WjALUFhw41NEhdJJ1xco7BZifSEjJBKGVsiOl_b3Uhdx7KWzmhCjjpOUaEhFpMSjY3PoLN8XbpzYFklsURVpRVxCisEZtbRHcbGqbISaR9ut1ss3jaFK4rvEsVeIAUJpAgCKaI-3G2lULQf8fsfyy_-t_wS9iOfNRBCt66g06zW7pqwvCkH0M0nw-HMj_cvj-NBUCpd51H-CYP6lRc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQOMAFGA8xnjlwg0hJm7bpcUJMA7adNmm3yE3T40Bbd-Df42QtMAkhcavaKFLtxJ8t258B7rQVmNInrvI44comlutKJLxQKEnjKFxgYhpP0uFMvcyTedMUtmqr3duUZLDUP5rdlC_viaTPO8qck-Hd9QRWnjF_FvW_7C9F6GFOHkUWPE3zedMq8_se23C0nQsNEDM4goPGN2T9jTK7sOMWx3DYzl1gzTU8gW6flfjBsGbkvbGlL6o6hdngafo45M1sA24JFGuubZK4SDrh4gqFzQukN-SOlErbAtF5lnct0yqWlXQ6JQyp4gwVaopnMgpo4zPoLN4W7hxYXkosUJVZSdGFFQJz6-gJY-1UUYqsB_ftL5r3DYWF-SYr9gIxJBATBGKiHjy0UjDNcV79sfzif8tvYW84HY_M6Hnyegn7ke8lCAVdV9Cpl2t3TQhfFzdBoZ-yaZgu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRALUB6iPD2wgVU7cRJnrApVeVUMVOpmXWxnDFUJA_-es5tAKyEktiixIuXO8Xef7r47Qq6U4ZDiIybzOGHSJIapkieskCDQ48Bd6MT0PEnHU_kwS2YrKv5Q7d6mJJeaBt-lqar7c1v2V4Rv0pf6RMLnIEXO8BDelIhufobBMB1-n8XI1sPMPGQZLE3zWSOb-f0d69C0nhcNcDPaIztNnEgHS8d2yYar9sluO4OBNr_kAekOqIVPCjXFSI4ufIHVIZmO7l6HY9bMOWAGAbJmyiSJi4TjLi6Bm7wAvIOhiZXKFADOd3xXIi1jUQqnUsSTMs5AgkJukyG5jY9Ip3qr3DGhuRVQgLSZRaZhOIfcOLyCWDlZWJ71yHX7iXq-bGehfxoXe4NoNIgOBtFRj9y0VtDN1n7_Y_nJ_5Zfkq2X25F-up88npLtyMsKQm3XGenUiw93jmBfFxfBn188CZxU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+day+at+the+races&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Losada%2C+David+E.&rft.au=Elsweiler%2C+David&rft.au=Harvey%2C+Morgan&rft.au=Trattner%2C+Christoph&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=5&rft.spage=5617&rft.epage=5632&rft_id=info:doi/10.1007%2Fs10489-021-02719-2&rft.externalDocID=10_1007_s10489_021_02719_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon