A day at the races Using best arm identification algorithms to reduce the cost of information retrieval user studies
Two major barriers to conducting user studies are the costs involved in recruiting participants and researcher time in performing studies. Typical solutions are to study convenience samples or design studies that can be deployed on crowd-sourcing platforms. Both solutions have benefits but also draw...
Saved in:
| Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 52; no. 5; pp. 5617 - 5632 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.03.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-669X 1573-7497 |
| DOI | 10.1007/s10489-021-02719-2 |
Cover
| Abstract | Two major barriers to conducting user studies are the costs involved in recruiting participants and researcher time in performing studies. Typical solutions are to study convenience samples or design studies that can be deployed on crowd-sourcing platforms. Both solutions have benefits but also drawbacks. Even in cases where these approaches make sense, it is still reasonable to ask whether we are using our resources – participants’ and our time – efficiently and whether we can do better. Typically user studies compare randomly-assigned experimental conditions, such that a uniform number of opportunities are assigned to each condition. This sampling approach, as has been demonstrated in clinical trials, is sub-optimal. The goal of many Information Retrieval (IR) user studies is to determine which strategy (e.g., behaviour or system) performs the best. In such a setup, it is not wise to waste participant and researcher time and money on conditions that are obviously inferior. In this work we explore whether Best Arm Identification (BAI) algorithms provide a natural solution to this problem. BAI methods are a class of Multi-armed Bandits (MABs) where the only goal is to output a recommended arm and the algorithms are evaluated by the average payoff of the recommended arm. Using three datasets associated with previously published IR-related user studies and a series of simulations, we test the extent to which the cost required to run user studies can be reduced by employing BAI methods. Our results suggest that some BAI instances (
racing algorithms
) are promising devices to reduce the cost of user studies. One of the racing algorithms studied, Hoeffding, holds particular promise. This algorithm offered consistent savings across both the real and simulated data sets and only extremely rarely returned a result inconsistent with the result of the full trial. We believe the results can have an important impact on the way research is performed in this field. The results show that the conditions assigned to participants could be dynamically changed, automatically, to make efficient use of participant and experimenter time. |
|---|---|
| AbstractList | Two major barriers to conducting user studies are the costs involved in recruiting participants and researcher time in performing studies. Typical solutions are to study convenience samples or design studies that can be deployed on crowd-sourcing platforms. Both solutions have benefits but also drawbacks. Even in cases where these approaches make sense, it is still reasonable to ask whether we are using our resources – participants’ and our time – efficiently and whether we can do better. Typically user studies compare randomly-assigned experimental conditions, such that a uniform number of opportunities are assigned to each condition. This sampling approach, as has been demonstrated in clinical trials, is sub-optimal. The goal of many Information Retrieval (IR) user studies is to determine which strategy (e.g., behaviour or system) performs the best. In such a setup, it is not wise to waste participant and researcher time and money on conditions that are obviously inferior. In this work we explore whether Best Arm Identification (BAI) algorithms provide a natural solution to this problem. BAI methods are a class of Multi-armed Bandits (MABs) where the only goal is to output a recommended arm and the algorithms are evaluated by the average payoff of the recommended arm. Using three datasets associated with previously published IR-related user studies and a series of simulations, we test the extent to which the cost required to run user studies can be reduced by employing BAI methods. Our results suggest that some BAI instances (
racing algorithms
) are promising devices to reduce the cost of user studies. One of the racing algorithms studied, Hoeffding, holds particular promise. This algorithm offered consistent savings across both the real and simulated data sets and only extremely rarely returned a result inconsistent with the result of the full trial. We believe the results can have an important impact on the way research is performed in this field. The results show that the conditions assigned to participants could be dynamically changed, automatically, to make efficient use of participant and experimenter time. |
| Author | Losada, David E. Harvey, Morgan Trattner, Christoph Elsweiler, David |
| Author_xml | – sequence: 1 givenname: David E. orcidid: 0000-0001-8823-7501 surname: Losada fullname: Losada, David E. email: david.losada@usc.es organization: Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela – sequence: 2 givenname: David surname: Elsweiler fullname: Elsweiler, David organization: University of Regensburg – sequence: 3 givenname: Morgan surname: Harvey fullname: Harvey, Morgan organization: University of Sheffield – sequence: 4 givenname: Christoph surname: Trattner fullname: Trattner, Christoph organization: University of Bergen |
| BookMark | eNp9j01LAzEQhoNUsK1ePHraPxCdSbKb5FiKX1DwouAtTNOJWnRXkvXQf290PXsYBoZ5Xt5nIWb90LMQFwiXCGCvCoJxXoLCOha9VEdijq3V0hpvZ2IOXhnZdf75RCxK2QOA1oBzcb5qdnRoaGzGV24yRS6n4jjRe-Gzv70UTzfXj-s7uXm4vV-vNjIqo0bpYtuyQgbWiSD6LdWLamFnXNwSsXUOHXZJY0J2nTM2aUuGnG8768HqpVBTbsxDKZlT-MxvH5QPASH8WIXJKlSr8GsVVIX0BJX63L9wDvvhK_e153_UN6qTTsA |
| Cites_doi | 10.1177/1740774507079442 10.1016/j.cct.2017.04.010 10.1007/s10489-012-0346-z 10.1086/209469 10.1080/01621459.1978.10480109 10.1145/2766462.2767731 10.1007/s10791-012-9197-9 10.1007/s11109-007-9037-6 10.1146/annurev-clinpsy-021815-093623 10.1186/1741-7015-8-17 10.1257/jep.21.2.153 10.1007/s11257-019-09245-4 10.1145/2382438.2382439 10.1002/(SICI)1097-0258(19990730)18:14<1833::AID-SIM221>3.0.CO;2-3 10.1086/323732 10.1145/3077136.3080826 10.24963/ijcai.2019/532 10.1007/s10489-020-01635-1 10.1007/s10489-020-01922-x 10.1561/1500000012 10.1108/EUM0000000007204 10.1370/afm.681 10.1080/01621459.1963.10500830 10.1542/peds.76.4.479 10.1145/2433396.2433429 10.1145/1978942.1979166 10.1007/978-3-540-75225-7_15 10.1016/j.ins.2018.04.008 10.6028/NIST.SP.500-324.core-overview 10.1145/1357054.1357074 10.1145/2623330.2623344 10.1145/2365952.2365956 10.1186/1750-1172-3-11 10.1016/j.ipm.2017.04.005 10.1007/978-3-319-16354-3_94 10.1145/1390156.1390255 10.1145/2858036.2858498 10.1145/2009916.2009967 10.1177/0165551507086989 10.1145/1060745.1060831 10.1016/j.eswa.2020.113441 10.1145/1553374.1553527 10.1017/9781108571401 10.1145/2851613.2851692 10.1109/HICSS.2016.543 10.1145/3331184.3331353 10.1063/1.5129551 10.1007/s10489-017-0977-1 10.1145/2911451.2911492 10.1093/bioinformatics/btx638 10.2200/S00368ED1V01Y201105ICR019 10.1145/3295750.3298952 10.1145/634067.634236 10.1145/1390156.1390241 10.1080/01621459.1969.10500959 10.1214/14-SS106 10.1108/EUM0000000007076 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 |
| Copyright_xml | – notice: The Author(s) 2021 |
| DBID | C6C AAYXX CITATION |
| DOI | 10.1007/s10489-021-02719-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 5632 |
| ExternalDocumentID | 10_1007_s10489_021_02719_2 |
| GrantInformation_xml | – fundername: Ministerio de Ciencia, Innovación y Universidades grantid: RTI2018-093336-B-C21 funderid: https://doi.org/10.13039/100014440 – fundername: Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia grantid: ED431C 2018/19 – fundername: Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia grantid: ED431C2018/29 – fundername: Consellería de Educación, Universidade e Formación Profesional, Xunta de Galicia grantid: 2019-2022 ED431G-2019/04 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO |
| ID | FETCH-LOGICAL-c242t-8c55e21e0e3fa0c9ba8c5250d48cbaae7881816f31f1e86847f37a4a895679073 |
| IEDL.DBID | C6C |
| ISSN | 0924-669X |
| IngestDate | Wed Oct 01 04:09:51 EDT 2025 Fri Feb 21 02:47:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Racing algorithms User studies Best arm identification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c242t-8c55e21e0e3fa0c9ba8c5250d48cbaae7881816f31f1e86847f37a4a895679073 |
| ORCID | 0000-0001-8823-7501 |
| OpenAccessLink | https://doi.org/10.1007/s10489-021-02719-2 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1007_s10489_021_02719_2 springer_journals_10_1007_s10489_021_02719_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220300 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 3 year: 2022 text: 20220300 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2022 |
| Publisher | Springer US |
| Publisher_xml | – name: Springer US |
| References | DjenouriYBelhadiADjenouriDLinC-WCluster-based information retrieval using pattern miningAppl Intell20215111610.1007/s10489-020-01922-x Levitt SD, List JA (2007) What do laboratory experiments measuring social preferences reveal about the real world? J Econ Perspect, 21(2) Robertson S (2008) On the history of evaluation in ir. J Inf Sci 34(4) Yin G, Lam CK, Shi H (2017) Bayesian randomized clinical trials: From fixed to adaptive design. Contemp Clin Trials 59 Aula A, Jhaveri N, Käki M (2005) Information search and re-access strategies of experienced web users. In: Proceedings of WWW ’05 Epstein S (2009) Inclusion: the politics of difference in medical research. Chicago Studies in Practices of Meaning Kelly D (2009) Methods for evaluating interactive information retrieval systems with users. Found Trends Inf Retr 3(1–2) Harman D (2011) Information retrieval evaluation. Synthesis Lectures on Information Concepts Retrieval, and Services 3(2) LosadaDEParaparJBarreiroAMulti-armed bandits for adjudicating documents in pooling-based evaluation of information retrieval systemsInf Process Manag20175351005102510.1016/j.ipm.2017.04.005 Peterson RA (2001) On the use of college students in social science research: Insights from a second-order meta-analysis. J Consum Res 28(3) RahmanMOhJCGraph bandit for diverse user coverage in online recommendationAppl Intell2018481979199510.1007/s10489-017-0977-1 Yue Y, Joachims T (2009) Interactively optimizing information retrieval systems as a dueling bandits problem. In: Proceedings of ICML ’09 Even-Dar E, Mannor S, Mansour Y (2006) Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. J Mach Learn Res 7 Ellis D, Haugan M (1997) Modelling the information seeking patterns of engineers and research scientists in an industrial environment. J Doc 53(4) Sverdlov O, Wong WK, Ryeznik Y et al (2014) Adaptive clinical trial designs for phase i cancer studies. Stat Surv 8 Wanigasekara N, Liang Y, Goh ST, Ye L, Williams JJ, Rosenblum DS (2019) Learning multi-objective rewards and user utility function in contextual bandits for personalized ranking. In: Proceedings of IJCAI ’19 DjenouriYBelhadiAFournier-VigerPLinJC-WFast and effective cluster-based information retrieval using frequent closed itemsetsInform Sci2018453154167380443110.1016/j.ins.2018.04.008 BhopaleAPTiwariASwarm optimized cluster based framework for information retrievalExpert Syst Appl202015411344110.1016/j.eswa.2020.113441 Sakai T (2016) Statistical power, and sample sizes significance: A systematic review of sigir and tois, 2006-2015. In: Proceedings of SIGIR ’16 AzizMKaufmannERiviereM-KOn multi-armed bandit designs for dose-finding clinical trialsJ Mach Learn Res202122138425370707370531 Dervin B, Nilan M (1986) Information needs and uses. Ann Rev Inf Sci Technol 21 Kalyanakrishnan S, Tewari A, Auer P, Stone P (2012) Pac subset selection in stochastic multi-armed bandits. In: Proceedings of ICML’12 Kam CD, Wilking JR, Zechmeister EJ (2007) Beyond the “narrow data base”: Another convenience sample for experimental research. Polit Behav 29(4) TerayamaKShinobuATsudaKTakemuraKKitaoAevERdock BAI: Machine-learning-guided selection of protein-protein complex structureJ Chem Phys20191512121510410.1063/1.5129551 Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 58(301) Mnih V, Szepesvári C, Audibert J-Y (2008) Empirical bernstein stopping. In: Proceedings of ICML ’08 Bauer P, Kieser M (1999) Combining different phases in the development of medical treatments within a single trial. Stat Med 18(14) KaufmannECappéOGarivierAOn the complexity of best-arm identification in multi-armed bandit modelsJ Mach Learn Res201617114234829211360.62433 Garivier A, Kaufmann E (2016) Optimal best arm identification with fixed confidence. In: Feldman V, Rakhlin A, Shamir O (eds) 29th annual conference on learning theory, volume 49 of proceedings of machine learning research. PMLR. Columbia University, New York, pp 998–1027 TangXZhangCMengWWangKJoint user mention behavior modeling for mentionee recommendationAppl Intell2020502449246410.1007/s10489-020-01635-1 Trattner C, Jannach D (2019) Learning to recommend similar items from human judgments. User Modeling and User-Adapted Interaction Woolrych A, Cockton G (2001) Why and when five test users aren’t enough. In: Proceedings of IHM-HCI ’01, vol 2 Kuhlthau CC, Tama SL (2001) Information search process of lawyers: a call for’just for me’information services. J Doc 57(1) Even-Dar E, Mannor S, Mansour Y (2012) PAC bounds for multi-armed bandit and markov decision processes. In: Proceedings of COLT ’02 Chandler J, Shapiro D (2016) Conducting clinical research using crowdsourced convenience samples. Ann Rev Clin Psychol 12 Knijnenburg BP (2012) Conducting user experiments in recommender systems. In: Proceedings of RecSys ’12 Bartlett RH, Roloff DW, Cornell RG, Andrews AF, Dillon PW, Zwischenberger JB (1985) Extracorporeal circulation in neonatal respiratory failure: a prospective randomized study. Pediatrics 76(4) Colton T (1962) A model for selecting one of two medical treatments. Bull Inst Int Statist 39(3) Fern EF, Monroe KB (1996) Effect-size estimates: Issues and problems in interpretation. J Consum Res 23(2) González-González AI, Dawes M, Sánchez-Mateos J, Riesgo-Fuertes R, Escortell-Mayor E, Sanz-Cuesta T, Hernandez-Fernandez T (2007) Information needs and information-seeking behavior of primary care physicians. The Annals of Family Medicine 5(4) GranmoOCGlimsdalSAccelerated bayesian learning for decentralized two-armed bandit based decision making with applications to the goore gameAppl Intell20133847948810.1007/s10489-012-0346-z Nielsen J (2006) Quantitative studies: How many users to test. Alertbox Wei L-J, Durham S (1978) The randomized play-the-winner rule in medical trials. J Am Stat Assoc 73(364) Audibert J-Y, Munos R, Szepesvári C (2007) Tuning bandit algorithms in stochastic environments. In: Proceedings of ALT ’07 Losada DE, Parapar J, Barreiro A (2016) Feeling lucky? multi-armed bandits for ordering judgements in pooling-based evaluation. In: Proceedings of the 31st ACM symposium on applied computing, SAC ’16. ACM, pp 1027–1034 Maron O, Moore AW (1993) Hoeffding races: Accelerating model selection search for classification and function approximation. In: Proceedings of NIPS’93 Burtini G, Loeppky J, Lawrence R (2015) A survey of online experiment design with the stochastic multi-armed bandit. arXiv:1510.00757 Bacchetti P (2010) Current sample size conventions: flaws, harms, and alternatives. BMC Med 8(1) Ingwersen P, Järvelin K (2006) The turn: Integration of information seeking and retrieval in context. vol 18 Spool J, Schroeder W (2001) Testing web sites: Five users is nowhere near enough. In: Proceedings of CHI ’01 extended abstracts Zelen M (1969) Play the winner rule and the controlled clinical trial. J Am Stat Assoc 64(325) Radlinski F, Craswell N (2013) Optimized interleaving for online retrieval evaluation. In: Proceedings of WSDM ’13 Audibert J-Y, Bubeck S, Munos R (2010) Best arm identification in multi-armed bandits. In: Proceedings of COLT ’10 Kelly D (2015) Statistical power analysis for sample size estimation in information retrieval experiments with users. In: Proceedings of ECIR ’15 Xu L, Zhou X, Gadiraju U (2019) Revealing the role of user moods in struggling search tasks. In: Proceedings of SIGIR ’19 Greenberg S, Buxton B (2008) Usability evaluation considered harmful (some of the time). In: Proceedings of CHI ’08 Caine K (2016) Local standards for sample size at chi. In: Proceedings of CHI ’16 Chow S-C, Chang M (2008) Adaptive design methods in clinical trials–a review. Orphanet J Rare Dis 3(1) Allan J, Harman D, Kanoulas E, Li D, Van Gysel C, Voorhees EM (2017) Trec 2017 common core track overview. In: Proceedings of the 26th text retrieval conference, TREC 2017. NIST Radlinski F, Kleinberg R, Joachims T (2008) Learning diverse rankings with multi-armed bandits. In: Proceedings of ICML ’08 Ji Y, Li Y, Bekele BN (2007) Dose-finding in phase i clinical trials based on toxicity probability intervals. Clin Trials 4(3) Nielsen J (2007) Usability testing with 5 users is enough. Sited on http://www.useit.com/alertbox Zimmerman S, Thorpe A, Fox C, Kruschwitz U (2019) Privacy nudging in search: Investigating potential impacts. In: Proceedings of CHIIR ’19 Heting C, Qing K (2017) Research methods: What’s in the name? Libr Inf Sci Res 39(4) Morschheuser B, Hamari J, Koivisto J (2016) Gamification in crowdsourcing: a review. In: Proceedings of HICSS ’16 Hofmann K, Whiteson S, de Rijke M (2013) Balancing exploration and exploitation in listwise and pairwise online learning to rank for information retrieval. Inf Retr 16(1) Allan J, Harman D, Kanoulas E, Li D, Gysel CV, Voorhees EM (2017) TREC 2017 common core track overview. In: Proceedings of TREC ’17 Martín A, Fernández-Isabel A, Martín de Diego I, Beltrán M (2021) A survey for user behavior analysis based on machine learning techniques: current models and applications. Appl Intell Kelly D, Gyllstrom K (2011) An examination of two delivery modes for interactive search system experiments: remote and laboratory. In: Proceedings of CHI ’11 LattimoreTSzepesváriCBandit algorithms2020CambridgeCambridge University Press10.1017/9781108571401 TerayamaKIwataHArakiMOkunoYTsudaKMachine learning accelerates MD-based binding pose prediction between ligands and proteinsBioinformatics201734577077810.1093/bioinformatics/btx638 Bendersky M, Garcia-Pueyo L, Harmsen J, Josifovski V, Lepikhin D (2014) Up next: retrieval methods for large scale related video suggestion. In: Proceedings of KDD ’14 Moon T, Chu W, Li L, Zheng Z, Chang Y (2012) An online learning framework for refining recency search results with user click feedback. ACM Trans Inf Syst (TOIS) 30(4) Harvey M, Hauff C, Elsweiler D (2015) Learning by example: training users with high-quality query suggestions. In: Proceedings of SIGIR ’15 Lagun D, Agichtein E (2011) Viewser: E 2719_CR38 M Aziz (2719_CR5) 2021; 22 2719_CR36 2719_CR37 2719_CR34 2719_CR35 2719_CR32 2719_CR76 2719_CR33 2719_CR41 2719_CR42 2719_CR40 M Rahman (2719_CR60) 2018; 48 DE Losada (2719_CR49) 2017; 53 AP Bhopale (2719_CR10) 2020; 154 2719_CR29 T Lattimore (2719_CR46) 2020 2719_CR27 K Terayama (2719_CR66) 2017; 34 2719_CR25 2719_CR69 2719_CR26 2719_CR23 2719_CR24 2719_CR68 2719_CR21 2719_CR22 2719_CR30 2719_CR74 2719_CR31 2719_CR75 2719_CR72 Y Djenouri (2719_CR18) 2021; 51 2719_CR73 2719_CR70 2719_CR71 X Tang (2719_CR65) 2020; 50 E Kaufmann (2719_CR39) 2016; 17 2719_CR9 2719_CR7 2719_CR16 2719_CR8 2719_CR17 2719_CR14 2719_CR58 2719_CR6 2719_CR15 2719_CR59 2719_CR3 2719_CR12 2719_CR56 2719_CR4 2719_CR13 2719_CR57 2719_CR1 2719_CR54 2719_CR2 2719_CR11 2719_CR55 2719_CR63 2719_CR20 2719_CR64 K Terayama (2719_CR67) 2019; 151 2719_CR61 2719_CR62 Y Djenouri (2719_CR19) 2018; 453 2719_CR47 2719_CR48 2719_CR45 OC Granmo (2719_CR28) 2013; 38 2719_CR43 2719_CR44 2719_CR52 2719_CR53 2719_CR50 2719_CR51 |
| References_xml | – reference: DjenouriYBelhadiADjenouriDLinC-WCluster-based information retrieval using pattern miningAppl Intell20215111610.1007/s10489-020-01922-x – reference: Bauer P, Kieser M (1999) Combining different phases in the development of medical treatments within a single trial. Stat Med 18(14) – reference: Yue Y, Joachims T (2009) Interactively optimizing information retrieval systems as a dueling bandits problem. In: Proceedings of ICML ’09 – reference: Bartlett RH, Roloff DW, Cornell RG, Andrews AF, Dillon PW, Zwischenberger JB (1985) Extracorporeal circulation in neonatal respiratory failure: a prospective randomized study. Pediatrics 76(4) – reference: Losada DE, Parapar J, Barreiro A (2016) Feeling lucky? multi-armed bandits for ordering judgements in pooling-based evaluation. In: Proceedings of the 31st ACM symposium on applied computing, SAC ’16. ACM, pp 1027–1034 – reference: Radlinski F, Craswell N (2013) Optimized interleaving for online retrieval evaluation. In: Proceedings of WSDM ’13 – reference: Nielsen J (2007) Usability testing with 5 users is enough. Sited on http://www.useit.com/alertbox/ – reference: Zelen M (1969) Play the winner rule and the controlled clinical trial. J Am Stat Assoc 64(325) – reference: Trattner C, Jannach D (2019) Learning to recommend similar items from human judgments. User Modeling and User-Adapted Interaction – reference: Epstein S (2009) Inclusion: the politics of difference in medical research. Chicago Studies in Practices of Meaning – reference: Kam CD, Wilking JR, Zechmeister EJ (2007) Beyond the “narrow data base”: Another convenience sample for experimental research. Polit Behav 29(4) – reference: Colton T (1962) A model for selecting one of two medical treatments. Bull Inst Int Statist 39(3) – reference: KaufmannECappéOGarivierAOn the complexity of best-arm identification in multi-armed bandit modelsJ Mach Learn Res201617114234829211360.62433 – reference: Allan J, Harman D, Kanoulas E, Li D, Gysel CV, Voorhees EM (2017) TREC 2017 common core track overview. In: Proceedings of TREC ’17 – reference: Aula A, Jhaveri N, Käki M (2005) Information search and re-access strategies of experienced web users. In: Proceedings of WWW ’05 – reference: Yin G, Lam CK, Shi H (2017) Bayesian randomized clinical trials: From fixed to adaptive design. Contemp Clin Trials 59 – reference: Audibert J-Y, Bubeck S, Munos R (2010) Best arm identification in multi-armed bandits. In: Proceedings of COLT ’10 – reference: AzizMKaufmannERiviereM-KOn multi-armed bandit designs for dose-finding clinical trialsJ Mach Learn Res202122138425370707370531 – reference: Bacchetti P (2010) Current sample size conventions: flaws, harms, and alternatives. BMC Med 8(1) – reference: Even-Dar E, Mannor S, Mansour Y (2006) Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems. J Mach Learn Res 7 – reference: Kuhlthau CC, Tama SL (2001) Information search process of lawyers: a call for’just for me’information services. J Doc 57(1) – reference: Sverdlov O, Wong WK, Ryeznik Y et al (2014) Adaptive clinical trial designs for phase i cancer studies. Stat Surv 8 – reference: Kelly D (2009) Methods for evaluating interactive information retrieval systems with users. Found Trends Inf Retr 3(1–2) – reference: LosadaDEParaparJBarreiroAMulti-armed bandits for adjudicating documents in pooling-based evaluation of information retrieval systemsInf Process Manag20175351005102510.1016/j.ipm.2017.04.005 – reference: Nielsen J (2006) Quantitative studies: How many users to test. Alertbox – reference: TerayamaKIwataHArakiMOkunoYTsudaKMachine learning accelerates MD-based binding pose prediction between ligands and proteinsBioinformatics201734577077810.1093/bioinformatics/btx638 – reference: Audibert J-Y, Munos R, Szepesvári C (2007) Tuning bandit algorithms in stochastic environments. In: Proceedings of ALT ’07 – reference: Martín A, Fernández-Isabel A, Martín de Diego I, Beltrán M (2021) A survey for user behavior analysis based on machine learning techniques: current models and applications. Appl Intell – reference: Hofmann K, Whiteson S, de Rijke M (2013) Balancing exploration and exploitation in listwise and pairwise online learning to rank for information retrieval. Inf Retr 16(1) – reference: Radlinski F, Kleinberg R, Joachims T (2008) Learning diverse rankings with multi-armed bandits. In: Proceedings of ICML ’08 – reference: Burtini G, Loeppky J, Lawrence R (2015) A survey of online experiment design with the stochastic multi-armed bandit. arXiv:1510.00757 – reference: Maron O, Moore AW (1993) Hoeffding races: Accelerating model selection search for classification and function approximation. In: Proceedings of NIPS’93 – reference: Allan J, Harman D, Kanoulas E, Li D, Van Gysel C, Voorhees EM (2017) Trec 2017 common core track overview. In: Proceedings of the 26th text retrieval conference, TREC 2017. NIST – reference: Kelly D (2015) Statistical power analysis for sample size estimation in information retrieval experiments with users. In: Proceedings of ECIR ’15 – reference: RahmanMOhJCGraph bandit for diverse user coverage in online recommendationAppl Intell2018481979199510.1007/s10489-017-0977-1 – reference: Chow S-C, Chang M (2008) Adaptive design methods in clinical trials–a review. Orphanet J Rare Dis 3(1) – reference: Garivier A, Kaufmann E (2016) Optimal best arm identification with fixed confidence. In: Feldman V, Rakhlin A, Shamir O (eds) 29th annual conference on learning theory, volume 49 of proceedings of machine learning research. PMLR. Columbia University, New York, pp 998–1027 – reference: Greenberg S, Buxton B (2008) Usability evaluation considered harmful (some of the time). In: Proceedings of CHI ’08 – reference: Kalyanakrishnan S, Tewari A, Auer P, Stone P (2012) Pac subset selection in stochastic multi-armed bandits. In: Proceedings of ICML’12 – reference: Even-Dar E, Mannor S, Mansour Y (2012) PAC bounds for multi-armed bandit and markov decision processes. In: Proceedings of COLT ’02 – reference: Moon T, Chu W, Li L, Zheng Z, Chang Y (2012) An online learning framework for refining recency search results with user click feedback. ACM Trans Inf Syst (TOIS) 30(4) – reference: Morschheuser B, Hamari J, Koivisto J (2016) Gamification in crowdsourcing: a review. In: Proceedings of HICSS ’16 – reference: Wei L-J, Durham S (1978) The randomized play-the-winner rule in medical trials. J Am Stat Assoc 73(364) – reference: BhopaleAPTiwariASwarm optimized cluster based framework for information retrievalExpert Syst Appl202015411344110.1016/j.eswa.2020.113441 – reference: Dervin B, Nilan M (1986) Information needs and uses. Ann Rev Inf Sci Technol 21 – reference: Zimmerman S, Thorpe A, Fox C, Kruschwitz U (2019) Privacy nudging in search: Investigating potential impacts. In: Proceedings of CHIIR ’19 – reference: TangXZhangCMengWWangKJoint user mention behavior modeling for mentionee recommendationAppl Intell2020502449246410.1007/s10489-020-01635-1 – reference: Robertson S (2008) On the history of evaluation in ir. J Inf Sci 34(4) – reference: Woolrych A, Cockton G (2001) Why and when five test users aren’t enough. In: Proceedings of IHM-HCI ’01, vol 2 – reference: Caine K (2016) Local standards for sample size at chi. In: Proceedings of CHI ’16 – reference: LattimoreTSzepesváriCBandit algorithms2020CambridgeCambridge University Press10.1017/9781108571401 – reference: Xu L, Zhou X, Gadiraju U (2019) Revealing the role of user moods in struggling search tasks. In: Proceedings of SIGIR ’19 – reference: DjenouriYBelhadiAFournier-VigerPLinJC-WFast and effective cluster-based information retrieval using frequent closed itemsetsInform Sci2018453154167380443110.1016/j.ins.2018.04.008 – reference: Wanigasekara N, Liang Y, Goh ST, Ye L, Williams JJ, Rosenblum DS (2019) Learning multi-objective rewards and user utility function in contextual bandits for personalized ranking. In: Proceedings of IJCAI ’19 – reference: Mnih V, Szepesvári C, Audibert J-Y (2008) Empirical bernstein stopping. In: Proceedings of ICML ’08 – reference: Heting C, Qing K (2017) Research methods: What’s in the name? Libr Inf Sci Res 39(4) – reference: Chandler J, Shapiro D (2016) Conducting clinical research using crowdsourced convenience samples. Ann Rev Clin Psychol 12 – reference: Peterson RA (2001) On the use of college students in social science research: Insights from a second-order meta-analysis. J Consum Res 28(3) – reference: Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 58(301) – reference: Sakai T (2016) Statistical power, and sample sizes significance: A systematic review of sigir and tois, 2006-2015. In: Proceedings of SIGIR ’16 – reference: Lagun D, Agichtein E (2011) Viewser: Enabling large-scale remote user studies of web search examination and interaction. In: Proceedings of SIGIR ’11 – reference: González-González AI, Dawes M, Sánchez-Mateos J, Riesgo-Fuertes R, Escortell-Mayor E, Sanz-Cuesta T, Hernandez-Fernandez T (2007) Information needs and information-seeking behavior of primary care physicians. The Annals of Family Medicine 5(4) – reference: Bendersky M, Garcia-Pueyo L, Harmsen J, Josifovski V, Lepikhin D (2014) Up next: retrieval methods for large scale related video suggestion. In: Proceedings of KDD ’14 – reference: Fern EF, Monroe KB (1996) Effect-size estimates: Issues and problems in interpretation. J Consum Res 23(2) – reference: Ellis D, Haugan M (1997) Modelling the information seeking patterns of engineers and research scientists in an industrial environment. J Doc 53(4) – reference: Harman D (2011) Information retrieval evaluation. Synthesis Lectures on Information Concepts Retrieval, and Services 3(2) – reference: Knijnenburg BP (2012) Conducting user experiments in recommender systems. In: Proceedings of RecSys ’12 – reference: GranmoOCGlimsdalSAccelerated bayesian learning for decentralized two-armed bandit based decision making with applications to the goore gameAppl Intell20133847948810.1007/s10489-012-0346-z – reference: Ji Y, Li Y, Bekele BN (2007) Dose-finding in phase i clinical trials based on toxicity probability intervals. Clin Trials 4(3) – reference: TerayamaKShinobuATsudaKTakemuraKKitaoAevERdock BAI: Machine-learning-guided selection of protein-protein complex structureJ Chem Phys20191512121510410.1063/1.5129551 – reference: Elsweiler D, Trattner C, Harvey M (2017) Exploiting food choice biases for healthier recipe recommendation. In: Proceedings of SIGIR ’17 – reference: Kelly D, Gyllstrom K (2011) An examination of two delivery modes for interactive search system experiments: remote and laboratory. In: Proceedings of CHI ’11 – reference: Harvey M, Hauff C, Elsweiler D (2015) Learning by example: training users with high-quality query suggestions. In: Proceedings of SIGIR ’15 – reference: Ingwersen P, Järvelin K (2006) The turn: Integration of information seeking and retrieval in context. vol 18 – reference: Spool J, Schroeder W (2001) Testing web sites: Five users is nowhere near enough. In: Proceedings of CHI ’01 extended abstracts – reference: Levitt SD, List JA (2007) What do laboratory experiments measuring social preferences reveal about the real world? J Econ Perspect, 21(2) – ident: 2719_CR36 doi: 10.1177/1740774507079442 – ident: 2719_CR73 doi: 10.1016/j.cct.2017.04.010 – volume: 38 start-page: 479 year: 2013 ident: 2719_CR28 publication-title: Appl Intell doi: 10.1007/s10489-012-0346-z – ident: 2719_CR25 doi: 10.1086/209469 – ident: 2719_CR70 doi: 10.1080/01621459.1978.10480109 – ident: 2719_CR31 doi: 10.1145/2766462.2767731 – ident: 2719_CR33 doi: 10.1007/s10791-012-9197-9 – ident: 2719_CR38 doi: 10.1007/s11109-007-9037-6 – ident: 2719_CR13 doi: 10.1146/annurev-clinpsy-021815-093623 – ident: 2719_CR6 doi: 10.1186/1741-7015-8-17 – ident: 2719_CR11 – ident: 2719_CR34 – ident: 2719_CR47 doi: 10.1257/jep.21.2.153 – ident: 2719_CR68 doi: 10.1007/s11257-019-09245-4 – volume: 22 start-page: 1 year: 2021 ident: 2719_CR5 publication-title: J Mach Learn Res – ident: 2719_CR53 doi: 10.1145/2382438.2382439 – ident: 2719_CR15 – ident: 2719_CR16 – ident: 2719_CR8 doi: 10.1002/(SICI)1097-0258(19990730)18:14<1833::AID-SIM221>3.0.CO;2-3 – ident: 2719_CR2 – ident: 2719_CR57 doi: 10.1086/323732 – ident: 2719_CR21 doi: 10.1145/3077136.3080826 – ident: 2719_CR69 doi: 10.24963/ijcai.2019/532 – volume: 50 start-page: 2449 year: 2020 ident: 2719_CR65 publication-title: Appl Intell doi: 10.1007/s10489-020-01635-1 – volume: 51 start-page: 1 year: 2021 ident: 2719_CR18 publication-title: Appl Intell doi: 10.1007/s10489-020-01922-x – ident: 2719_CR40 doi: 10.1561/1500000012 – ident: 2719_CR20 doi: 10.1108/EUM0000000007204 – ident: 2719_CR26 – ident: 2719_CR27 doi: 10.1370/afm.681 – ident: 2719_CR22 – ident: 2719_CR32 doi: 10.1080/01621459.1963.10500830 – ident: 2719_CR7 doi: 10.1542/peds.76.4.479 – ident: 2719_CR58 doi: 10.1145/2433396.2433429 – ident: 2719_CR37 – ident: 2719_CR71 – ident: 2719_CR42 doi: 10.1145/1978942.1979166 – ident: 2719_CR50 – ident: 2719_CR3 doi: 10.1007/978-3-540-75225-7_15 – volume: 453 start-page: 154 year: 2018 ident: 2719_CR19 publication-title: Inform Sci doi: 10.1016/j.ins.2018.04.008 – ident: 2719_CR35 doi: 10.6028/NIST.SP.500-324.core-overview – ident: 2719_CR17 – ident: 2719_CR29 doi: 10.1145/1357054.1357074 – ident: 2719_CR9 doi: 10.1145/2623330.2623344 – ident: 2719_CR43 doi: 10.1145/2365952.2365956 – ident: 2719_CR14 doi: 10.1186/1750-1172-3-11 – ident: 2719_CR1 – volume: 53 start-page: 1005 issue: 5 year: 2017 ident: 2719_CR49 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2017.04.005 – ident: 2719_CR41 doi: 10.1007/978-3-319-16354-3_94 – ident: 2719_CR23 – ident: 2719_CR55 – ident: 2719_CR59 doi: 10.1145/1390156.1390255 – ident: 2719_CR12 doi: 10.1145/2858036.2858498 – ident: 2719_CR45 doi: 10.1145/2009916.2009967 – ident: 2719_CR61 doi: 10.1177/0165551507086989 – ident: 2719_CR4 doi: 10.1145/1060745.1060831 – volume: 154 start-page: 113441 year: 2020 ident: 2719_CR10 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113441 – ident: 2719_CR74 doi: 10.1145/1553374.1553527 – ident: 2719_CR51 – volume-title: Bandit algorithms year: 2020 ident: 2719_CR46 doi: 10.1017/9781108571401 – ident: 2719_CR48 doi: 10.1145/2851613.2851692 – ident: 2719_CR54 doi: 10.1109/HICSS.2016.543 – ident: 2719_CR72 doi: 10.1145/3331184.3331353 – volume: 151 start-page: 215104 issue: 21 year: 2019 ident: 2719_CR67 publication-title: J Chem Phys doi: 10.1063/1.5129551 – volume: 48 start-page: 1979 year: 2018 ident: 2719_CR60 publication-title: Appl Intell doi: 10.1007/s10489-017-0977-1 – ident: 2719_CR62 doi: 10.1145/2911451.2911492 – volume: 34 start-page: 770 issue: 5 year: 2017 ident: 2719_CR66 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx638 – ident: 2719_CR30 doi: 10.2200/S00368ED1V01Y201105ICR019 – ident: 2719_CR76 doi: 10.1145/3295750.3298952 – ident: 2719_CR63 doi: 10.1145/634067.634236 – ident: 2719_CR24 – ident: 2719_CR52 doi: 10.1145/1390156.1390241 – ident: 2719_CR75 doi: 10.1080/01621459.1969.10500959 – ident: 2719_CR56 – ident: 2719_CR64 doi: 10.1214/14-SS106 – ident: 2719_CR44 doi: 10.1108/EUM0000000007076 – volume: 17 start-page: 1 issue: 1 year: 2016 ident: 2719_CR39 publication-title: J Mach Learn Res |
| SSID | ssj0003301 |
| Score | 2.3191648 |
| Snippet | Two major barriers to conducting user studies are the costs involved in recruiting participants and researcher time in performing studies. Typical solutions... |
| SourceID | crossref springer |
| SourceType | Index Database Publisher |
| StartPage | 5617 |
| SubjectTerms | Artificial Intelligence Computer Science Machines Manufacturing Mechanical Engineering Processes |
| Subtitle | Using best arm identification algorithms to reduce the cost of information retrieval user studies |
| Title | A day at the races |
| URI | https://link.springer.com/article/10.1007/s10489-021-02719-2 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7497 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdmEBykOUR-WBDSzZieM4Y1q1VCA6UalM0cVxxoJKOvDvObspqAghscRRbEXyXeLvPt0L4MZYgZqmuMrihCubWG5qkfBSoSSNo3ChEtPTTE_n6mGRLNoyOT4X5of_3qe4KR_UE0nvbZQZp-O2SyClg2NWj75OXeLloTse8QmudbZoE2R-f8cuCO16QAOwTI7goLUIWb5RYQ_23PIYDrfdFlj7851AL2cVfjBsGNlsbOVDqU5hPhk_j6a87WjALUFhw41NEhdJJ1xco7BZifSEjJBKGVsiOl_b3Uhdx7KWzmhCjjpOUaEhFpMSjY3PoLN8XbpzYFklsURVpRVxCisEZtbRHcbGqbISaR9ut1ss3jaFK4rvEsVeIAUJpAgCKaI-3G2lULQf8fsfyy_-t_wS9iOfNRBCt66g06zW7pqwvCkH0M0nw-HMj_cvj-NBUCpd51H-CYP6lRc |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQOMAFGA8xnjlwg0hJm7bpcUJMA7adNmm3yE3T40Bbd-Df42QtMAkhcavaKFLtxJ8t258B7rQVmNInrvI44comlutKJLxQKEnjKFxgYhpP0uFMvcyTedMUtmqr3duUZLDUP5rdlC_viaTPO8qck-Hd9QRWnjF_FvW_7C9F6GFOHkUWPE3zedMq8_se23C0nQsNEDM4goPGN2T9jTK7sOMWx3DYzl1gzTU8gW6flfjBsGbkvbGlL6o6hdngafo45M1sA24JFGuubZK4SDrh4gqFzQukN-SOlErbAtF5lnct0yqWlXQ6JQyp4gwVaopnMgpo4zPoLN4W7hxYXkosUJVZSdGFFQJz6-gJY-1UUYqsB_ftL5r3DYWF-SYr9gIxJBATBGKiHjy0UjDNcV79sfzif8tvYW84HY_M6Hnyegn7ke8lCAVdV9Cpl2t3TQhfFzdBoZ-yaZgu |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQkRALUB6iPD2wgVU7cRJnrApVeVUMVOpmXWxnDFUJA_-es5tAKyEktiixIuXO8Xef7r47Qq6U4ZDiIybzOGHSJIapkieskCDQ48Bd6MT0PEnHU_kwS2YrKv5Q7d6mJJeaBt-lqar7c1v2V4Rv0pf6RMLnIEXO8BDelIhufobBMB1-n8XI1sPMPGQZLE3zWSOb-f0d69C0nhcNcDPaIztNnEgHS8d2yYar9sluO4OBNr_kAekOqIVPCjXFSI4ufIHVIZmO7l6HY9bMOWAGAbJmyiSJi4TjLi6Bm7wAvIOhiZXKFADOd3xXIi1jUQqnUsSTMs5AgkJukyG5jY9Ip3qr3DGhuRVQgLSZRaZhOIfcOLyCWDlZWJ71yHX7iXq-bGehfxoXe4NoNIgOBtFRj9y0VtDN1n7_Y_nJ_5Zfkq2X25F-up88npLtyMsKQm3XGenUiw93jmBfFxfBn188CZxU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+day+at+the+races&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Losada%2C+David+E.&rft.au=Elsweiler%2C+David&rft.au=Harvey%2C+Morgan&rft.au=Trattner%2C+Christoph&rft.date=2022-03-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=5&rft.spage=5617&rft.epage=5632&rft_id=info:doi/10.1007%2Fs10489-021-02719-2&rft.externalDocID=10_1007_s10489_021_02719_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |