Inference for logistic regression with covariates subject to limit of detection and measurement error
In clinical studies, often values of a covariate or biomarker are left-censored due to the limit of detection (LOD). An ordinary regression approach that fits a model by simply replacing the left-censored values of the covariate by the LOD or ( 1 / 2 ) LOD generally produces a biased estimator of th...
Saved in:
Published in | Metron (Rome) Vol. 82; no. 2; pp. 161 - 182 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Milan
Springer Milan
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0026-1424 2281-695X |
DOI | 10.1007/s40300-023-00263-2 |
Cover
Abstract | In clinical studies, often values of a covariate or biomarker are left-censored due to the limit of detection (LOD). An ordinary regression approach that fits a model by simply replacing the left-censored values of the covariate by the LOD or
(
1
/
2
)
LOD
generally produces a biased estimator of the covariate effect. In addition, if a covariate is subject to the measurement error, then a naive approach that does not correct for the measurement error can produce an asymptotically biased estimator. In this paper, we propose and explore an innovative method for fitting a logistic regression model to binary data by correcting for both limits of detection and measurement errors in covariates. The finite-sample properties of the proposed estimators are investigated using Monte Carlo simulations. The empirical results are very encouraging, as the proposed method appears to provide unbiased and efficient estimators in the presence of covariates that are subject to the LOD and measurement error. An application is also provided using some actual cardiovascular fitness data obtained from a health survey with measurements on biomarkers and demographic variables. |
---|---|
AbstractList | In clinical studies, often values of a covariate or biomarker are left-censored due to the limit of detection (LOD). An ordinary regression approach that fits a model by simply replacing the left-censored values of the covariate by the LOD or
(
1
/
2
)
LOD
generally produces a biased estimator of the covariate effect. In addition, if a covariate is subject to the measurement error, then a naive approach that does not correct for the measurement error can produce an asymptotically biased estimator. In this paper, we propose and explore an innovative method for fitting a logistic regression model to binary data by correcting for both limits of detection and measurement errors in covariates. The finite-sample properties of the proposed estimators are investigated using Monte Carlo simulations. The empirical results are very encouraging, as the proposed method appears to provide unbiased and efficient estimators in the presence of covariates that are subject to the LOD and measurement error. An application is also provided using some actual cardiovascular fitness data obtained from a health survey with measurements on biomarkers and demographic variables. |
Author | Teimouri, Mahdi Sinha, Sanjoy K. |
Author_xml | – sequence: 1 givenname: Mahdi surname: Teimouri fullname: Teimouri, Mahdi organization: Department of Statistics, Gonbad Kavous University – sequence: 2 givenname: Sanjoy K. orcidid: 0000-0003-3535-3765 surname: Sinha fullname: Sinha, Sanjoy K. email: sinha@math.carleton.ca organization: School of Mathematics and Statistics, Carleton University |
BookMark | eNp9kM1KAzEUhYNUsNa-gKu8QDR_k5lZSvGnUHCj4C6k6U1N6SRykyq-vVPr2rs5cDjncvguySTlBIRcC34jOG9vi-aKc8alYpxLo5g8I1MpO8FM37xNyPToMqGlviDzUnZ8vE42vTZTAssUACF5oCEj3edtLDV6irBFKCXmRL9ifac-fzqMrkKh5bDega-0ZrqPQ6w0B7qBOlrHtEsbOoArB4QBUqWAmPGKnAe3LzD_0xl5fbh_WTyx1fPjcnG3Yl5qWVnT-saAcUqMw8Hobg0SXBtkAOAquIaHTrVchNYb5blWIDa66_u1MMb12qsZkae_HnMpCMF-YBwcflvB7ZGVPbGyIyv7y8rKsaROpTKG0xbQ7vIB07jzv9YPfixv-w |
Cites_doi | 10.1002/sim.6466 10.1002/sim.4280 10.1093/biomet/71.1.19 10.1111/j.2517-6161.1977.tb01600.x 10.1201/9781420010138 10.1159/000210450 10.1097/EDE.0b013e3181cf0058 10.1002/sim.7942 10.4310/SII.2011.v4.n3.a7 10.1016/j.chemosphere.2006.04.051 10.2307/2532318 10.1093/ije/dyp269 10.1002/sim.5803 10.1002/9780470316665 10.1080/01621459.1990.10474925 10.2307/2532882 10.1080/01621459.2000.10474347 10.1007/s12561-013-9099-4 10.1016/j.jmva.2004.09.007 10.1093/biomet/74.2.385 |
ContentType | Journal Article |
Copyright | Sapienza Università di Roma 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: Sapienza Università di Roma 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s40300-023-00263-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 2281-695X |
EndPage | 182 |
ExternalDocumentID | 10_1007_s40300_023_00263_2 |
GroupedDBID | -EM 06D 0R~ 199 203 2KM 30V 4.4 406 96X AAAVM AABCJ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AXYYD AYJHY BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM LPU M4Y NPVJJ NQJWS NU0 O9- O93 O9G O9J PT4 RIG RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c242t-57c56e6a31695e648be2ea7f2fee03fa50f83701f7c63c043e1d4899b166a94c3 |
IEDL.DBID | AGYKE |
ISSN | 0026-1424 |
IngestDate | Tue Jul 01 03:43:26 EDT 2025 Fri Feb 21 02:39:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Limit of detection Secondary 62F10 Logistic regression Factor analysis Primary 62J12 Maximum likelihood EM algorithm Measurement error |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c242t-57c56e6a31695e648be2ea7f2fee03fa50f83701f7c63c043e1d4899b166a94c3 |
ORCID | 0000-0003-3535-3765 |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1007_s40300_023_00263_2 springer_journals_10_1007_s40300_023_00263_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240800 2024-08-00 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
PublicationDecade | 2020 |
PublicationPlace | Milan |
PublicationPlace_xml | – name: Milan |
PublicationTitle | Metron (Rome) |
PublicationTitleAbbrev | METRON |
PublicationYear | 2024 |
Publisher | Springer Milan |
Publisher_xml | – name: Springer Milan |
References | Carroll, Ruppert, Stefanski, Crainiceanu (CR13) 2006 Divers, Redden, Carroll, Allison (CR18) 2011; 4 Schafer (CR9) 1987; 74 Cole, Chu, Nie, Schisterman (CR2) 2009; 38 McCulloch, Searle, Neuhaus (CR20) 2004 Wang, Carroll, Liang (CR17) 1996; 52 Stefanski (CR21) 2000; 95 Fuller (CR14) 1987 Tarkkonen, Vehkalahti (CR19) 2005; 96 May, Ibrahim, Chu (CR4) 2011; 30 Sattar, Sinha, Wang, Li (CR6) 2015; 34 Dempster, Laird, Rubin (CR22) 1977; 39 Keogh, White, Rodwellb (CR12) 2013; 32 Liu, Liang (CR16) 1992; 48 Gleser, Brown, Fuller (CR15) 1990 Helsel (CR1) 2006; 65 Carroll, Stefanski (CR10) 1990; 85 Carroll, Spiegelman, Lan, Bailey, Abbott (CR8) 1984; 71 Herring (CR3) 2010; 21 Bernhardt, Wang, Zhang (CR5) 2015; 7 Padilla, Divers, Vaughan, Allison, Tiwari (CR11) 2009; 68 Lee, Sinha, Arbuckle, Fisher (CR7) 2018; 27 RJ Carroll (263_CR8) 1984; 71 LJ Gleser (263_CR15) 1990 AH Herring (263_CR3) 2010; 21 DW Schafer (263_CR9) 1987; 74 CE McCulloch (263_CR20) 2004 LA Stefanski (263_CR21) 2000; 95 N Wang (263_CR17) 1996; 52 WC Lee (263_CR7) 2018; 27 SR Cole (263_CR2) 2009; 38 MA Padilla (263_CR11) 2009; 68 AP Dempster (263_CR22) 1977; 39 RH Keogh (263_CR12) 2013; 32 L Tarkkonen (263_CR19) 2005; 96 RC May (263_CR4) 2011; 30 RJ Carroll (263_CR10) 1990; 85 RJ Carroll (263_CR13) 2006 PW Bernhardt (263_CR5) 2015; 7 X Liu (263_CR16) 1992; 48 J Divers (263_CR18) 2011; 4 DR Helsel (263_CR1) 2006; 65 WA Fuller (263_CR14) 1987 A Sattar (263_CR6) 2015; 34 |
References_xml | – volume: 34 start-page: 2266 year: 2015 end-page: 2280 ident: CR6 article-title: Frailty models for pneumonia to death with a left-censored covariate publication-title: Stat. Med. doi: 10.1002/sim.6466 – volume: 30 start-page: 2551 year: 2011 end-page: 561 ident: CR4 article-title: Maximum likelihood estimation in generalized linear models with multiple covariates subject to detection limits publication-title: Stat. Med. doi: 10.1002/sim.4280 – volume: 71 start-page: 19 year: 1984 end-page: 25 ident: CR8 article-title: On errors-in-variables for binary regression models publication-title: Biometrika doi: 10.1093/biomet/71.1.19 – year: 1990 ident: CR15 article-title: Improvements of the Naive approach to estimation in nonlinear errors-in-variables regression models publication-title: Statistical Analysis of Measurement Error Models and Application – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: CR22 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1977.tb01600.x – year: 2006 ident: CR13 publication-title: Measurement Error in Nonlinear Models: A Modern Perspective doi: 10.1201/9781420010138 – volume: 68 start-page: 65 year: 2009 end-page: 72 ident: CR11 article-title: Multiple imputation to correct for measurement error in admixture estimates in genetic structured association testing publication-title: Hum. Hered. doi: 10.1159/000210450 – volume: 21 start-page: S71 year: 2010 end-page: S76 ident: CR3 article-title: Nonparametric Bayes shrinkage for assessing exposures to mixtures subject to limits of detection publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181cf0058 – volume: 27 start-page: 4539 year: 2018 end-page: 4556 ident: CR7 article-title: Estimation in generalized linear models under censored covariates with an application to MIREC data publication-title: Stat. Med. doi: 10.1002/sim.7942 – volume: 4 start-page: 327 issue: 3 year: 2011 end-page: 337 ident: CR18 article-title: How to estimate the measurement error variance associated with ancestry proportion estimates publication-title: Stat Interface doi: 10.4310/SII.2011.v4.n3.a7 – volume: 65 start-page: 2434 year: 2006 end-page: 2439 ident: CR1 article-title: Fabricating data: how substituting values for nondetects can ruin results, and what can be done about it publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.04.051 – volume: 48 start-page: 645 year: 1992 end-page: 654 ident: CR16 article-title: Efficacy of repeated measures in regression models with measurement error publication-title: Biometrics doi: 10.2307/2532318 – volume: 38 start-page: 1674 year: 2009 end-page: 1680 ident: CR2 article-title: Estimating the odds ratio when exposure has a limit of detection publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyp269 – volume: 32 start-page: 3838 year: 2013 end-page: 3861 ident: CR12 article-title: Using surrogate biomarkers to improve measurement error models in nutritional epidemiology publication-title: Stat. Med. doi: 10.1002/sim.5803 – year: 1987 ident: CR14 publication-title: Measurement Error Models doi: 10.1002/9780470316665 – year: 2004 ident: CR20 publication-title: Generalized, Linear, and Mixed Models – volume: 85 start-page: 652 year: 1990 end-page: 663 ident: CR10 article-title: Approximate quasi-likelihood estimation in models with surrogate predictors publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1990.10474925 – volume: 52 start-page: 401 year: 1996 end-page: 411 ident: CR17 article-title: Quasilikelihood estimation in measurement error models with correlated replicates publication-title: Biometrics doi: 10.2307/2532882 – volume: 95 start-page: 1353 year: 2000 end-page: 1358 ident: CR21 article-title: Measurement error models publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2000.10474347 – volume: 7 start-page: 68 year: 2015 end-page: 89 ident: CR5 article-title: Statistical models for generalized linear models with covariates subject to detection limits publication-title: Stat. Biosci. doi: 10.1007/s12561-013-9099-4 – volume: 96 start-page: 172 year: 2005 end-page: 189 ident: CR19 article-title: Measurement errors in multivariate measurement scales publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2004.09.007 – volume: 74 start-page: 385 year: 1987 end-page: 391 ident: CR9 article-title: Covariate measurement error in generalized linear models publication-title: Biometrika doi: 10.1093/biomet/74.2.385 – volume-title: Measurement Error Models year: 1987 ident: 263_CR14 doi: 10.1002/9780470316665 – volume: 48 start-page: 645 year: 1992 ident: 263_CR16 publication-title: Biometrics doi: 10.2307/2532318 – volume: 52 start-page: 401 year: 1996 ident: 263_CR17 publication-title: Biometrics doi: 10.2307/2532882 – volume-title: Generalized, Linear, and Mixed Models year: 2004 ident: 263_CR20 – volume: 32 start-page: 3838 year: 2013 ident: 263_CR12 publication-title: Stat. Med. doi: 10.1002/sim.5803 – volume: 27 start-page: 4539 year: 2018 ident: 263_CR7 publication-title: Stat. Med. doi: 10.1002/sim.7942 – volume: 96 start-page: 172 year: 2005 ident: 263_CR19 publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2004.09.007 – volume: 34 start-page: 2266 year: 2015 ident: 263_CR6 publication-title: Stat. Med. doi: 10.1002/sim.6466 – volume: 74 start-page: 385 year: 1987 ident: 263_CR9 publication-title: Biometrika doi: 10.1093/biomet/74.2.385 – volume: 71 start-page: 19 year: 1984 ident: 263_CR8 publication-title: Biometrika doi: 10.1093/biomet/71.1.19 – volume: 65 start-page: 2434 year: 2006 ident: 263_CR1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.04.051 – volume: 38 start-page: 1674 year: 2009 ident: 263_CR2 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyp269 – volume: 21 start-page: S71 year: 2010 ident: 263_CR3 publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181cf0058 – volume-title: Statistical Analysis of Measurement Error Models and Application year: 1990 ident: 263_CR15 – volume: 39 start-page: 1 year: 1977 ident: 263_CR22 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 30 start-page: 2551 year: 2011 ident: 263_CR4 publication-title: Stat. Med. doi: 10.1002/sim.4280 – volume: 68 start-page: 65 year: 2009 ident: 263_CR11 publication-title: Hum. Hered. doi: 10.1159/000210450 – volume: 85 start-page: 652 year: 1990 ident: 263_CR10 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1990.10474925 – volume: 7 start-page: 68 year: 2015 ident: 263_CR5 publication-title: Stat. Biosci. doi: 10.1007/s12561-013-9099-4 – volume-title: Measurement Error in Nonlinear Models: A Modern Perspective year: 2006 ident: 263_CR13 doi: 10.1201/9781420010138 – volume: 4 start-page: 327 issue: 3 year: 2011 ident: 263_CR18 publication-title: Stat Interface doi: 10.4310/SII.2011.v4.n3.a7 – volume: 95 start-page: 1353 year: 2000 ident: 263_CR21 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2000.10474347 |
SSID | ssj0000825946 |
Score | 2.3020248 |
Snippet | In clinical studies, often values of a covariate or biomarker are left-censored due to the limit of detection (LOD). An ordinary regression approach that fits... |
SourceID | crossref springer |
SourceType | Index Database Publisher |
StartPage | 161 |
SubjectTerms | Mathematics and Statistics Statistical Theory and Methods Statistics |
Title | Inference for logistic regression with covariates subject to limit of detection and measurement error |
URI | https://link.springer.com/article/10.1007/s40300-023-00263-2 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu3ThjSiPygMbuEriR5uxRZQCohOVyhTZjo0QkKA0ZeDXc86jVRFC6n6y4svZ993jOyN0wcALGRoKIrkWhAnfkL5glmjpCy_seVxqV9F9nIjxlN3P-Kwihc3rbve6JFnc1EuyGwN79Aj4GOICB0rg4m1yCFDgODYHt88Pq9yKC3vCkqMDksSRuSq-zN8Lrfuk9YJo4WdGO2haf2HZXvLWXeSqq79_DW_cdAu7aLsCnnhQWsoe2jLJPmo5rFmOaj5A5q4m_2FAsrjkBr1qnJmXslk2wS5ri3X6BQG2w6h4vlAuj4PzFL87phROLY5NXrR3JVgmMf5Y5SCxybI0O0TT0c3T9ZhUrzAQDe47J7ynuTBCUl-E3AjWVyYwsmcDa4xHreSedQN0fNvTgmqPUePHDKI45QshQ6bpEWokaWKOEbaBcE-wBFpTCYGSg0bcj5VSsChlQdxGl_V_iD7LYRvRcqxyobsIdBcVuouCNrqqtRxVB2_-j_jJZuKnqBUAfil7_c5QI88W5hzwR646YG6j4XDSqczuB2YX0c0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQe6AXdkRZfeAGruJ4SXKsEKWly6mVyimyHQchIEFpyoGvx87SqgghcR9ZznjiebO8MQDX1HghTQKOBFMcUY418jmNkRKYO4HnMKFsRXc84f0ZfZyzeUUKW9Td7nVJsripV2Q3auzRQcbHIBs4EGQu3ibFvs8aoNl9eBqucys27AlKjo6RRJbMVfFlfl9o0ydtFkQLP9PbBbN6h2V7yWtnmcuO-voxvPG_n7AHdirgCbulpeyDLZ0cgJbFmuWo5kOgBzX5DxokC0tu0IuCmX4um2UTaLO2UKWfJsC2GBUultLmcWCewjfLlIJpDCOdF-1dCRRJBN_XOUiosyzNjsCsdz-966PqFQakjPvOEfMU45oLgnnANKe-1K4WXuzGWjskFsyJ7QAdHHuKE-VQonFETRQnMecioIocg0aSJvoEwNjl9gkWVykiTKBkoRHDkZTSLEqoG7XBTX0O4Uc5bCNcjVUudBca3YWF7kK3DW5rLYfVj7f4Q_z0f-JXYLs_HY_C0WAyPAMt12CZsu_vHDTybKkvDBbJ5WVlet_UZ9NC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8MJIaL30b87MGbFra1K-xIVARR4kESPC1t1xqjbmQMD_71tusGYoyJ8f7SbG-ve7_38XsPgFOivZDEAUXMFxQR6krUpkQhwVzqBC3HZ8JUdO-GtDciN2N__IXFn3e7lyVJy2kwU5rirDmJVHNOfCPaNh2k_Q0yQQRG-idcJWaHRAVUO9ePg0WexYRAgeXraElkiF0Fd-bng5b903JxNPc53XXAyqe1rSYvjVnGG-Lj2yDH_7zOBlgrACnsWAvaBCsy3gI1g0HtCOdtIPslKRBqhAstZ-hZwFQ-2SbaGJpsLhTJuw68DXaF0xk3-R2YJfDVMKhgomAks7ztK4YsjuDbIjcJZZom6Q4Yda8eLnqo2M6AhHbrGfJbwqeSMuzSwJeUtLn0JGspT0npYMV8R5nBOq5qCYqFQ7B0I6KjO-5SygIi8C6oxEks9wBUHjWrWTwhMNMBlIFMvhtxzvWhmHhRHZyV3ySc2CEc4Xzccq67UOsuzHUXenVwXmo8LC7k9Bfx_b-Jn4DV-8tueNsfDg5AzdMQx7YDHoJKls7kkYYoGT8urPATmjvcHQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inference+for+logistic+regression+with+covariates+subject+to+limit+of+detection+and+measurement+error&rft.jtitle=Metron+%28Rome%29&rft.au=Teimouri%2C+Mahdi&rft.au=Sinha%2C+Sanjoy+K.&rft.date=2024-08-01&rft.pub=Springer+Milan&rft.issn=0026-1424&rft.eissn=2281-695X&rft.volume=82&rft.issue=2&rft.spage=161&rft.epage=182&rft_id=info:doi/10.1007%2Fs40300-023-00263-2&rft.externalDocID=10_1007_s40300_023_00263_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1424&client=summon |