Inference for logistic regression with covariates subject to limit of detection and measurement error

In clinical studies, often values of a covariate or biomarker are left-censored due to the limit of detection (LOD). An ordinary regression approach that fits a model by simply replacing the left-censored values of the covariate by the LOD or ( 1 / 2 ) LOD generally produces a biased estimator of th...

Full description

Saved in:
Bibliographic Details
Published inMetron (Rome) Vol. 82; no. 2; pp. 161 - 182
Main Authors Teimouri, Mahdi, Sinha, Sanjoy K.
Format Journal Article
LanguageEnglish
Published Milan Springer Milan 01.08.2024
Subjects
Online AccessGet full text
ISSN0026-1424
2281-695X
DOI10.1007/s40300-023-00263-2

Cover

Abstract In clinical studies, often values of a covariate or biomarker are left-censored due to the limit of detection (LOD). An ordinary regression approach that fits a model by simply replacing the left-censored values of the covariate by the LOD or ( 1 / 2 ) LOD generally produces a biased estimator of the covariate effect. In addition, if a covariate is subject to the measurement error, then a naive approach that does not correct for the measurement error can produce an asymptotically biased estimator. In this paper, we propose and explore an innovative method for fitting a logistic regression model to binary data by correcting for both limits of detection and measurement errors in covariates. The finite-sample properties of the proposed estimators are investigated using Monte Carlo simulations. The empirical results are very encouraging, as the proposed method appears to provide unbiased and efficient estimators in the presence of covariates that are subject to the LOD and measurement error. An application is also provided using some actual cardiovascular fitness data obtained from a health survey with measurements on biomarkers and demographic variables.
AbstractList In clinical studies, often values of a covariate or biomarker are left-censored due to the limit of detection (LOD). An ordinary regression approach that fits a model by simply replacing the left-censored values of the covariate by the LOD or ( 1 / 2 ) LOD generally produces a biased estimator of the covariate effect. In addition, if a covariate is subject to the measurement error, then a naive approach that does not correct for the measurement error can produce an asymptotically biased estimator. In this paper, we propose and explore an innovative method for fitting a logistic regression model to binary data by correcting for both limits of detection and measurement errors in covariates. The finite-sample properties of the proposed estimators are investigated using Monte Carlo simulations. The empirical results are very encouraging, as the proposed method appears to provide unbiased and efficient estimators in the presence of covariates that are subject to the LOD and measurement error. An application is also provided using some actual cardiovascular fitness data obtained from a health survey with measurements on biomarkers and demographic variables.
Author Teimouri, Mahdi
Sinha, Sanjoy K.
Author_xml – sequence: 1
  givenname: Mahdi
  surname: Teimouri
  fullname: Teimouri, Mahdi
  organization: Department of Statistics, Gonbad Kavous University
– sequence: 2
  givenname: Sanjoy K.
  orcidid: 0000-0003-3535-3765
  surname: Sinha
  fullname: Sinha, Sanjoy K.
  email: sinha@math.carleton.ca
  organization: School of Mathematics and Statistics, Carleton University
BookMark eNp9kM1KAzEUhYNUsNa-gKu8QDR_k5lZSvGnUHCj4C6k6U1N6SRykyq-vVPr2rs5cDjncvguySTlBIRcC34jOG9vi-aKc8alYpxLo5g8I1MpO8FM37xNyPToMqGlviDzUnZ8vE42vTZTAssUACF5oCEj3edtLDV6irBFKCXmRL9ifac-fzqMrkKh5bDega-0ZrqPQ6w0B7qBOlrHtEsbOoArB4QBUqWAmPGKnAe3LzD_0xl5fbh_WTyx1fPjcnG3Yl5qWVnT-saAcUqMw8Hobg0SXBtkAOAquIaHTrVchNYb5blWIDa66_u1MMb12qsZkae_HnMpCMF-YBwcflvB7ZGVPbGyIyv7y8rKsaROpTKG0xbQ7vIB07jzv9YPfixv-w
Cites_doi 10.1002/sim.6466
10.1002/sim.4280
10.1093/biomet/71.1.19
10.1111/j.2517-6161.1977.tb01600.x
10.1201/9781420010138
10.1159/000210450
10.1097/EDE.0b013e3181cf0058
10.1002/sim.7942
10.4310/SII.2011.v4.n3.a7
10.1016/j.chemosphere.2006.04.051
10.2307/2532318
10.1093/ije/dyp269
10.1002/sim.5803
10.1002/9780470316665
10.1080/01621459.1990.10474925
10.2307/2532882
10.1080/01621459.2000.10474347
10.1007/s12561-013-9099-4
10.1016/j.jmva.2004.09.007
10.1093/biomet/74.2.385
ContentType Journal Article
Copyright Sapienza Università di Roma 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Sapienza Università di Roma 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s40300-023-00263-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2281-695X
EndPage 182
ExternalDocumentID 10_1007_s40300_023_00263_2
GroupedDBID -EM
06D
0R~
199
203
2KM
30V
4.4
406
96X
AAAVM
AABCJ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
LPU
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
RIG
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c242t-57c56e6a31695e648be2ea7f2fee03fa50f83701f7c63c043e1d4899b166a94c3
IEDL.DBID AGYKE
ISSN 0026-1424
IngestDate Tue Jul 01 03:43:26 EDT 2025
Fri Feb 21 02:39:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Limit of detection
Secondary 62F10
Logistic regression
Factor analysis
Primary 62J12
Maximum likelihood
EM algorithm
Measurement error
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-57c56e6a31695e648be2ea7f2fee03fa50f83701f7c63c043e1d4899b166a94c3
ORCID 0000-0003-3535-3765
PageCount 22
ParticipantIDs crossref_primary_10_1007_s40300_023_00263_2
springer_journals_10_1007_s40300_023_00263_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240800
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 8
  year: 2024
  text: 20240800
PublicationDecade 2020
PublicationPlace Milan
PublicationPlace_xml – name: Milan
PublicationTitle Metron (Rome)
PublicationTitleAbbrev METRON
PublicationYear 2024
Publisher Springer Milan
Publisher_xml – name: Springer Milan
References Carroll, Ruppert, Stefanski, Crainiceanu (CR13) 2006
Divers, Redden, Carroll, Allison (CR18) 2011; 4
Schafer (CR9) 1987; 74
Cole, Chu, Nie, Schisterman (CR2) 2009; 38
McCulloch, Searle, Neuhaus (CR20) 2004
Wang, Carroll, Liang (CR17) 1996; 52
Stefanski (CR21) 2000; 95
Fuller (CR14) 1987
Tarkkonen, Vehkalahti (CR19) 2005; 96
May, Ibrahim, Chu (CR4) 2011; 30
Sattar, Sinha, Wang, Li (CR6) 2015; 34
Dempster, Laird, Rubin (CR22) 1977; 39
Keogh, White, Rodwellb (CR12) 2013; 32
Liu, Liang (CR16) 1992; 48
Gleser, Brown, Fuller (CR15) 1990
Helsel (CR1) 2006; 65
Carroll, Stefanski (CR10) 1990; 85
Carroll, Spiegelman, Lan, Bailey, Abbott (CR8) 1984; 71
Herring (CR3) 2010; 21
Bernhardt, Wang, Zhang (CR5) 2015; 7
Padilla, Divers, Vaughan, Allison, Tiwari (CR11) 2009; 68
Lee, Sinha, Arbuckle, Fisher (CR7) 2018; 27
RJ Carroll (263_CR8) 1984; 71
LJ Gleser (263_CR15) 1990
AH Herring (263_CR3) 2010; 21
DW Schafer (263_CR9) 1987; 74
CE McCulloch (263_CR20) 2004
LA Stefanski (263_CR21) 2000; 95
N Wang (263_CR17) 1996; 52
WC Lee (263_CR7) 2018; 27
SR Cole (263_CR2) 2009; 38
MA Padilla (263_CR11) 2009; 68
AP Dempster (263_CR22) 1977; 39
RH Keogh (263_CR12) 2013; 32
L Tarkkonen (263_CR19) 2005; 96
RC May (263_CR4) 2011; 30
RJ Carroll (263_CR10) 1990; 85
RJ Carroll (263_CR13) 2006
PW Bernhardt (263_CR5) 2015; 7
X Liu (263_CR16) 1992; 48
J Divers (263_CR18) 2011; 4
DR Helsel (263_CR1) 2006; 65
WA Fuller (263_CR14) 1987
A Sattar (263_CR6) 2015; 34
References_xml – volume: 34
  start-page: 2266
  year: 2015
  end-page: 2280
  ident: CR6
  article-title: Frailty models for pneumonia to death with a left-censored covariate
  publication-title: Stat. Med.
  doi: 10.1002/sim.6466
– volume: 30
  start-page: 2551
  year: 2011
  end-page: 561
  ident: CR4
  article-title: Maximum likelihood estimation in generalized linear models with multiple covariates subject to detection limits
  publication-title: Stat. Med.
  doi: 10.1002/sim.4280
– volume: 71
  start-page: 19
  year: 1984
  end-page: 25
  ident: CR8
  article-title: On errors-in-variables for binary regression models
  publication-title: Biometrika
  doi: 10.1093/biomet/71.1.19
– year: 1990
  ident: CR15
  article-title: Improvements of the Naive approach to estimation in nonlinear errors-in-variables regression models
  publication-title: Statistical Analysis of Measurement Error Models and Application
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: CR22
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– year: 2006
  ident: CR13
  publication-title: Measurement Error in Nonlinear Models: A Modern Perspective
  doi: 10.1201/9781420010138
– volume: 68
  start-page: 65
  year: 2009
  end-page: 72
  ident: CR11
  article-title: Multiple imputation to correct for measurement error in admixture estimates in genetic structured association testing
  publication-title: Hum. Hered.
  doi: 10.1159/000210450
– volume: 21
  start-page: S71
  year: 2010
  end-page: S76
  ident: CR3
  article-title: Nonparametric Bayes shrinkage for assessing exposures to mixtures subject to limits of detection
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181cf0058
– volume: 27
  start-page: 4539
  year: 2018
  end-page: 4556
  ident: CR7
  article-title: Estimation in generalized linear models under censored covariates with an application to MIREC data
  publication-title: Stat. Med.
  doi: 10.1002/sim.7942
– volume: 4
  start-page: 327
  issue: 3
  year: 2011
  end-page: 337
  ident: CR18
  article-title: How to estimate the measurement error variance associated with ancestry proportion estimates
  publication-title: Stat Interface
  doi: 10.4310/SII.2011.v4.n3.a7
– volume: 65
  start-page: 2434
  year: 2006
  end-page: 2439
  ident: CR1
  article-title: Fabricating data: how substituting values for nondetects can ruin results, and what can be done about it
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.04.051
– volume: 48
  start-page: 645
  year: 1992
  end-page: 654
  ident: CR16
  article-title: Efficacy of repeated measures in regression models with measurement error
  publication-title: Biometrics
  doi: 10.2307/2532318
– volume: 38
  start-page: 1674
  year: 2009
  end-page: 1680
  ident: CR2
  article-title: Estimating the odds ratio when exposure has a limit of detection
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyp269
– volume: 32
  start-page: 3838
  year: 2013
  end-page: 3861
  ident: CR12
  article-title: Using surrogate biomarkers to improve measurement error models in nutritional epidemiology
  publication-title: Stat. Med.
  doi: 10.1002/sim.5803
– year: 1987
  ident: CR14
  publication-title: Measurement Error Models
  doi: 10.1002/9780470316665
– year: 2004
  ident: CR20
  publication-title: Generalized, Linear, and Mixed Models
– volume: 85
  start-page: 652
  year: 1990
  end-page: 663
  ident: CR10
  article-title: Approximate quasi-likelihood estimation in models with surrogate predictors
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1990.10474925
– volume: 52
  start-page: 401
  year: 1996
  end-page: 411
  ident: CR17
  article-title: Quasilikelihood estimation in measurement error models with correlated replicates
  publication-title: Biometrics
  doi: 10.2307/2532882
– volume: 95
  start-page: 1353
  year: 2000
  end-page: 1358
  ident: CR21
  article-title: Measurement error models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2000.10474347
– volume: 7
  start-page: 68
  year: 2015
  end-page: 89
  ident: CR5
  article-title: Statistical models for generalized linear models with covariates subject to detection limits
  publication-title: Stat. Biosci.
  doi: 10.1007/s12561-013-9099-4
– volume: 96
  start-page: 172
  year: 2005
  end-page: 189
  ident: CR19
  article-title: Measurement errors in multivariate measurement scales
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2004.09.007
– volume: 74
  start-page: 385
  year: 1987
  end-page: 391
  ident: CR9
  article-title: Covariate measurement error in generalized linear models
  publication-title: Biometrika
  doi: 10.1093/biomet/74.2.385
– volume-title: Measurement Error Models
  year: 1987
  ident: 263_CR14
  doi: 10.1002/9780470316665
– volume: 48
  start-page: 645
  year: 1992
  ident: 263_CR16
  publication-title: Biometrics
  doi: 10.2307/2532318
– volume: 52
  start-page: 401
  year: 1996
  ident: 263_CR17
  publication-title: Biometrics
  doi: 10.2307/2532882
– volume-title: Generalized, Linear, and Mixed Models
  year: 2004
  ident: 263_CR20
– volume: 32
  start-page: 3838
  year: 2013
  ident: 263_CR12
  publication-title: Stat. Med.
  doi: 10.1002/sim.5803
– volume: 27
  start-page: 4539
  year: 2018
  ident: 263_CR7
  publication-title: Stat. Med.
  doi: 10.1002/sim.7942
– volume: 96
  start-page: 172
  year: 2005
  ident: 263_CR19
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2004.09.007
– volume: 34
  start-page: 2266
  year: 2015
  ident: 263_CR6
  publication-title: Stat. Med.
  doi: 10.1002/sim.6466
– volume: 74
  start-page: 385
  year: 1987
  ident: 263_CR9
  publication-title: Biometrika
  doi: 10.1093/biomet/74.2.385
– volume: 71
  start-page: 19
  year: 1984
  ident: 263_CR8
  publication-title: Biometrika
  doi: 10.1093/biomet/71.1.19
– volume: 65
  start-page: 2434
  year: 2006
  ident: 263_CR1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.04.051
– volume: 38
  start-page: 1674
  year: 2009
  ident: 263_CR2
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyp269
– volume: 21
  start-page: S71
  year: 2010
  ident: 263_CR3
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181cf0058
– volume-title: Statistical Analysis of Measurement Error Models and Application
  year: 1990
  ident: 263_CR15
– volume: 39
  start-page: 1
  year: 1977
  ident: 263_CR22
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 30
  start-page: 2551
  year: 2011
  ident: 263_CR4
  publication-title: Stat. Med.
  doi: 10.1002/sim.4280
– volume: 68
  start-page: 65
  year: 2009
  ident: 263_CR11
  publication-title: Hum. Hered.
  doi: 10.1159/000210450
– volume: 85
  start-page: 652
  year: 1990
  ident: 263_CR10
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1990.10474925
– volume: 7
  start-page: 68
  year: 2015
  ident: 263_CR5
  publication-title: Stat. Biosci.
  doi: 10.1007/s12561-013-9099-4
– volume-title: Measurement Error in Nonlinear Models: A Modern Perspective
  year: 2006
  ident: 263_CR13
  doi: 10.1201/9781420010138
– volume: 4
  start-page: 327
  issue: 3
  year: 2011
  ident: 263_CR18
  publication-title: Stat Interface
  doi: 10.4310/SII.2011.v4.n3.a7
– volume: 95
  start-page: 1353
  year: 2000
  ident: 263_CR21
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2000.10474347
SSID ssj0000825946
Score 2.3020248
Snippet In clinical studies, often values of a covariate or biomarker are left-censored due to the limit of detection (LOD). An ordinary regression approach that fits...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 161
SubjectTerms Mathematics and Statistics
Statistical Theory and Methods
Statistics
Title Inference for logistic regression with covariates subject to limit of detection and measurement error
URI https://link.springer.com/article/10.1007/s40300-023-00263-2
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQu3ThjSiPygMbuEriR5uxRZQCohOVyhTZjo0QkKA0ZeDXc86jVRFC6n6y4svZ993jOyN0wcALGRoKIrkWhAnfkL5glmjpCy_seVxqV9F9nIjxlN3P-Kwihc3rbve6JFnc1EuyGwN79Aj4GOICB0rg4m1yCFDgODYHt88Pq9yKC3vCkqMDksSRuSq-zN8Lrfuk9YJo4WdGO2haf2HZXvLWXeSqq79_DW_cdAu7aLsCnnhQWsoe2jLJPmo5rFmOaj5A5q4m_2FAsrjkBr1qnJmXslk2wS5ri3X6BQG2w6h4vlAuj4PzFL87phROLY5NXrR3JVgmMf5Y5SCxybI0O0TT0c3T9ZhUrzAQDe47J7ynuTBCUl-E3AjWVyYwsmcDa4xHreSedQN0fNvTgmqPUePHDKI45QshQ6bpEWokaWKOEbaBcE-wBFpTCYGSg0bcj5VSsChlQdxGl_V_iD7LYRvRcqxyobsIdBcVuouCNrqqtRxVB2_-j_jJZuKnqBUAfil7_c5QI88W5hzwR646YG6j4XDSqczuB2YX0c0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQe6AXdkRZfeAGruJ4SXKsEKWly6mVyimyHQchIEFpyoGvx87SqgghcR9ZznjiebO8MQDX1HghTQKOBFMcUY418jmNkRKYO4HnMKFsRXc84f0ZfZyzeUUKW9Td7nVJsripV2Q3auzRQcbHIBs4EGQu3ibFvs8aoNl9eBqucys27AlKjo6RRJbMVfFlfl9o0ydtFkQLP9PbBbN6h2V7yWtnmcuO-voxvPG_n7AHdirgCbulpeyDLZ0cgJbFmuWo5kOgBzX5DxokC0tu0IuCmX4um2UTaLO2UKWfJsC2GBUultLmcWCewjfLlIJpDCOdF-1dCRRJBN_XOUiosyzNjsCsdz-966PqFQakjPvOEfMU45oLgnnANKe-1K4WXuzGWjskFsyJ7QAdHHuKE-VQonFETRQnMecioIocg0aSJvoEwNjl9gkWVykiTKBkoRHDkZTSLEqoG7XBTX0O4Uc5bCNcjVUudBca3YWF7kK3DW5rLYfVj7f4Q_z0f-JXYLs_HY_C0WAyPAMt12CZsu_vHDTybKkvDBbJ5WVlet_UZ9NC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8MJIaL30b87MGbFra1K-xIVARR4kESPC1t1xqjbmQMD_71tusGYoyJ8f7SbG-ve7_38XsPgFOivZDEAUXMFxQR6krUpkQhwVzqBC3HZ8JUdO-GtDciN2N__IXFn3e7lyVJy2kwU5rirDmJVHNOfCPaNh2k_Q0yQQRG-idcJWaHRAVUO9ePg0WexYRAgeXraElkiF0Fd-bng5b903JxNPc53XXAyqe1rSYvjVnGG-Lj2yDH_7zOBlgrACnsWAvaBCsy3gI1g0HtCOdtIPslKRBqhAstZ-hZwFQ-2SbaGJpsLhTJuw68DXaF0xk3-R2YJfDVMKhgomAks7ztK4YsjuDbIjcJZZom6Q4Yda8eLnqo2M6AhHbrGfJbwqeSMuzSwJeUtLn0JGspT0npYMV8R5nBOq5qCYqFQ7B0I6KjO-5SygIi8C6oxEks9wBUHjWrWTwhMNMBlIFMvhtxzvWhmHhRHZyV3ySc2CEc4Xzccq67UOsuzHUXenVwXmo8LC7k9Bfx_b-Jn4DV-8tueNsfDg5AzdMQx7YDHoJKls7kkYYoGT8urPATmjvcHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inference+for+logistic+regression+with+covariates+subject+to+limit+of+detection+and+measurement+error&rft.jtitle=Metron+%28Rome%29&rft.au=Teimouri%2C+Mahdi&rft.au=Sinha%2C+Sanjoy+K.&rft.date=2024-08-01&rft.pub=Springer+Milan&rft.issn=0026-1424&rft.eissn=2281-695X&rft.volume=82&rft.issue=2&rft.spage=161&rft.epage=182&rft_id=info:doi/10.1007%2Fs40300-023-00263-2&rft.externalDocID=10_1007_s40300_023_00263_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1424&client=summon