A new filter feature selection algorithm for classification task by ensembling pearson correlation coefficient and mutual information

Feature selection is widely used in various fields as a key means of data dimension reduction. The existing feature selection algorithms only use one linear or nonlinear correlation indicator when evaluating variables relationships, which lacks diversity. Considering the complexity of the relationsh...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 131; p. 107865
Main Authors Gong, Huanhuan, Li, Yanying, Zhang, Jiaoni, Zhang, Baoshuang, Wang, Xialin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2024
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/j.engappai.2024.107865

Cover

Abstract Feature selection is widely used in various fields as a key means of data dimension reduction. The existing feature selection algorithms only use one linear or nonlinear correlation indicator when evaluating variables relationships, which lacks diversity. Considering the complexity of the relationship between features, a novel feature selection evaluation function CONMI is constructed, which ensembles Pearson correlation coefficient (liner) and normalized mutual information (non-linear) to comprehensively portrays the dependencies between features and class variables. We further propose the CONMI_FS algorithm based on CONMI, which selects the optimal subset of features that has high correlation with the class variables and low redundancy between the selected features. CONMI_FS is compared with four methods on 20 datasets and evaluated by reduction rate, classification accuracy, precision and recall metrics on KNN, SVM and DT classifiers. The experimental results show that CONMI_FS obtains the highest reduction rate of 80.04%, and achieves the best classification accuracy on KNN and SVM classifiers, which are 88.83% and 88.98%, respectively. These results indicate that CONMI_FS has good competitiveness.
AbstractList Feature selection is widely used in various fields as a key means of data dimension reduction. The existing feature selection algorithms only use one linear or nonlinear correlation indicator when evaluating variables relationships, which lacks diversity. Considering the complexity of the relationship between features, a novel feature selection evaluation function CONMI is constructed, which ensembles Pearson correlation coefficient (liner) and normalized mutual information (non-linear) to comprehensively portrays the dependencies between features and class variables. We further propose the CONMI_FS algorithm based on CONMI, which selects the optimal subset of features that has high correlation with the class variables and low redundancy between the selected features. CONMI_FS is compared with four methods on 20 datasets and evaluated by reduction rate, classification accuracy, precision and recall metrics on KNN, SVM and DT classifiers. The experimental results show that CONMI_FS obtains the highest reduction rate of 80.04%, and achieves the best classification accuracy on KNN and SVM classifiers, which are 88.83% and 88.98%, respectively. These results indicate that CONMI_FS has good competitiveness.
ArticleNumber 107865
Author Wang, Xialin
Zhang, Jiaoni
Gong, Huanhuan
Li, Yanying
Zhang, Baoshuang
Author_xml – sequence: 1
  givenname: Huanhuan
  orcidid: 0000-0003-4492-4240
  surname: Gong
  fullname: Gong, Huanhuan
– sequence: 2
  givenname: Yanying
  orcidid: 0000-0002-0855-4249
  surname: Li
  fullname: Li, Yanying
  email: liyanying2021@163.com
– sequence: 3
  givenname: Jiaoni
  surname: Zhang
  fullname: Zhang, Jiaoni
– sequence: 4
  givenname: Baoshuang
  orcidid: 0000-0002-4166-6568
  surname: Zhang
  fullname: Zhang, Baoshuang
– sequence: 5
  givenname: Xialin
  orcidid: 0000-0002-8112-7446
  surname: Wang
  fullname: Wang, Xialin
BookMark eNqFkEtOwzAQhi1UJMrjCsgXSLGdxEkkFqCKl1SJDaytiTMuLo5T2S6IA3Bv0hY2bLoaaWa-XzPfKZn4wSMhl5zNOOPyajVDv4T1GuxMMFGMzaqW5RGZ8rrKM1nJZkKmrClFxptKnpDTGFeMsbwu5JR831KPn9RYlzBQg5A2AWlEhzrZwVNwyyHY9NZTMwSqHcRojdWwGyaI77T9ougj9q2zfknXCCGOIz2EgG6_pgc0I2PRJwq-o_0mbcBR68fIfrdyTo4NuIgXv_WMvN7fvcwfs8Xzw9P8dpFpUYiUCd5JU4iiyXXTClHJtqg1GFN0VauBa5GXhueiK6tydKBFZUSjodWyBgaS5fkZud7n6jDEGNAobdPughTAOsWZ2ipVK_WnVG2Vqr3SEZf_8HWwPYSvw-DNHsTxuQ-LQcWtDo2dDaNo1Q32UMQPaf6bWQ
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124588
crossref_primary_10_1007_s10586_024_04664_4
crossref_primary_10_1002_qre_3651
crossref_primary_10_2166_wst_2024_371
crossref_primary_10_1038_s41598_024_74122_z
crossref_primary_10_3390_info15090553
crossref_primary_10_1016_j_asoc_2025_112895
crossref_primary_10_1016_j_engappai_2025_110022
crossref_primary_10_1016_j_swevo_2024_101715
crossref_primary_10_1109_TGRS_2025_3547940
crossref_primary_10_1016_j_engfailanal_2024_108371
crossref_primary_10_1016_j_autcon_2025_106104
crossref_primary_10_1016_j_future_2025_107779
crossref_primary_10_1016_j_compag_2025_109905
crossref_primary_10_1016_j_compbiomed_2024_109168
crossref_primary_10_3390_rs16234497
crossref_primary_10_3390_app15042209
crossref_primary_10_3390_biomimetics10010041
crossref_primary_10_1016_j_engappai_2025_110553
crossref_primary_10_3390_s24155047
crossref_primary_10_1016_j_engappai_2025_110075
crossref_primary_10_1016_j_foodres_2024_115417
crossref_primary_10_1088_1402_4896_ad88ba
crossref_primary_10_1016_j_aquaculture_2024_741697
crossref_primary_10_1016_j_apenergy_2024_124954
crossref_primary_10_1016_j_jenvman_2024_123310
crossref_primary_10_1016_j_eswa_2024_126152
crossref_primary_10_1016_j_knosys_2025_113286
crossref_primary_10_1016_j_triboint_2024_110008
crossref_primary_10_1016_j_eswa_2024_124764
crossref_primary_10_1002_cpe_8334
crossref_primary_10_1016_j_engappai_2025_110370
crossref_primary_10_1016_j_jclepro_2024_144342
crossref_primary_10_1016_j_applthermaleng_2024_125224
crossref_primary_10_3389_fnhum_2024_1400077
crossref_primary_10_1016_j_scs_2024_105685
crossref_primary_10_1016_j_jprocont_2024_103300
crossref_primary_10_1145_3712199
crossref_primary_10_1007_s11280_024_01322_y
crossref_primary_10_1109_ACCESS_2024_3454516
crossref_primary_10_1016_j_ibmed_2025_100208
crossref_primary_10_1016_j_tws_2025_113040
crossref_primary_10_1109_ACCESS_2025_3525726
crossref_primary_10_3390_agronomy14112606
crossref_primary_10_1177_13694332241281534
crossref_primary_10_1016_j_engappai_2024_109529
crossref_primary_10_1016_j_seppur_2024_130877
crossref_primary_10_1016_j_energy_2025_134648
crossref_primary_10_1016_j_jfca_2024_106629
crossref_primary_10_1016_j_engappai_2024_108836
crossref_primary_10_1016_j_swevo_2025_101908
crossref_primary_10_1016_j_est_2024_113079
crossref_primary_10_1016_j_phycom_2024_102508
crossref_primary_10_3390_math13060996
Cites_doi 10.1016/j.physd.2004.11.001
10.1016/j.asoc.2021.107625
10.1214/aoms/1177731944
10.3233/IDA-1997-1302
10.1016/j.cma.2022.114570
10.1016/j.asoc.2021.107787
10.1016/j.knosys.2021.107418
10.1016/j.artmed.2021.102049
10.1016/j.eswa.2021.115290
10.1016/j.eswa.2021.115130
10.1016/j.cie.2021.107250
10.1109/ACCESS.2022.3147821
10.1109/34.824819
10.1109/TPAMI.2005.159
10.1109/TAFFC.2018.2890597
10.1016/S0004-3702(03)00079-1
10.1145/584091.584093
10.1007/s00521-013-1368-0
10.1016/j.knosys.2020.106097
10.1016/j.neucom.2017.11.077
10.1016/j.compeleceng.2013.11.024
10.1111/j.1467-9868.2007.00627.x
10.1080/21642583.2019.1620658
10.1109/72.298224
10.1109/JSEN.2021.3114266
10.1016/j.eswa.2021.116158
10.1109/TKDE.2012.35
10.1016/j.ijar.2018.10.004
10.1111/j.1467-9868.2005.00503.x
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2024.107865
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2024_107865
S095219762400023X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c242t-21d6f42493c9b2276b48caff4d7bca1c235f132d575078c27f29cabc68a0a6033
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Sat Oct 25 05:24:55 EDT 2025
Thu Apr 24 22:59:26 EDT 2025
Sat Apr 13 16:38:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
Filter model
Mutual information
Classification
Pearson correlation coefficient
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-21d6f42493c9b2276b48caff4d7bca1c235f132d575078c27f29cabc68a0a6033
ORCID 0000-0002-4166-6568
0000-0003-4492-4240
0000-0002-8112-7446
0000-0002-0855-4249
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2024_107865
crossref_primary_10_1016_j_engappai_2024_107865
elsevier_sciencedirect_doi_10_1016_j_engappai_2024_107865
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yu, Liu (b35) 2004; 5
Dash, Liu (b10) 2003; 151
Vergara, Estévez (b31) 2014; 24
Wang, Xu, Zhao, Peng, Wang (b34) 2019; 7
Abualigah, Abd Elaziz, Sumari, Geem, Gandomi (b1) 2022; 191
Friedman (b11) 1940; 11
Oyelade, Ezugwu, Mohamed, Abualigah (b24) 2022; 10
Wang, Khoshgoftaar, Napolitano (b32) 2010
Li, Zhou, Hu, Chang, Zhang, Yu (b20) 2019; 104
Rokach, Chizi, Maimon (b27) 2006
Agushaka, Ezugwu, Abualigah (b4) 2022; 391
Omuya, Okeyo, Kimwele (b22) 2021; 174
Peng, Long, Ding (b25) 2005; 27
Cai, Luo, Wang, Yang (b7) 2018; 300
Abualigah, Yousri, Abd Elaziz, Ewees, Al-Qaness, Gandomi (b3) 2021; 157
Tang, Alelyani, Liu (b29) 2014
Abualigah, Diabat, Sumari, Gandomi (b2) 2021; 21
Hall (b13) 2000
Bania, Halder (b5) 2021; 114
Korkmaz, Şahman, Cinar, Kaya (b18) 2021; 112
Jiang, Zhang, Wang (b17) 2021; 110
Hijazi, Faris, Aljarah (b15) 2021; 182
Dash, Liu (b9) 1997; 1
Tsai, Sung (b30) 2020; 203
Wang, Shen, Zhang (b33) 2005; 200
Garcia, Luengo, Sáez, Lopez, Herrera (b12) 2012; 25
Hashemi, Dowlatshahi, Nezamabadi-pour (b14) 2021; 180
Zheng, Eilam-Stock, Wu, Spagna, Chen, Hu, Fan (b36) 2019; 12
Battiti (b6) 1994; 5
Chandrashekar, Sahin (b8) 2014; 40
Jain, Duin, Mao (b16) 2000; 22
Shannon (b28) 2001; 5
Lee (b19) 2002
Meier, Van De Geer, Bühlmann (b21) 2008; 70
Opitz (b23) 1999; 379
Qiu, Niu (b26) 2021; 231
Zou, Hastie (b37) 2005; 67
Hashemi (10.1016/j.engappai.2024.107865_b14) 2021; 180
Hijazi (10.1016/j.engappai.2024.107865_b15) 2021; 182
Jain (10.1016/j.engappai.2024.107865_b16) 2000; 22
Jiang (10.1016/j.engappai.2024.107865_b17) 2021; 110
Garcia (10.1016/j.engappai.2024.107865_b12) 2012; 25
Wang (10.1016/j.engappai.2024.107865_b34) 2019; 7
Battiti (10.1016/j.engappai.2024.107865_b6) 1994; 5
Dash (10.1016/j.engappai.2024.107865_b9) 1997; 1
Li (10.1016/j.engappai.2024.107865_b20) 2019; 104
Chandrashekar (10.1016/j.engappai.2024.107865_b8) 2014; 40
Abualigah (10.1016/j.engappai.2024.107865_b2) 2021; 21
Vergara (10.1016/j.engappai.2024.107865_b31) 2014; 24
Oyelade (10.1016/j.engappai.2024.107865_b24) 2022; 10
Bania (10.1016/j.engappai.2024.107865_b5) 2021; 114
Zheng (10.1016/j.engappai.2024.107865_b36) 2019; 12
Korkmaz (10.1016/j.engappai.2024.107865_b18) 2021; 112
Abualigah (10.1016/j.engappai.2024.107865_b3) 2021; 157
Lee (10.1016/j.engappai.2024.107865_b19) 2002
Agushaka (10.1016/j.engappai.2024.107865_b4) 2022; 391
Dash (10.1016/j.engappai.2024.107865_b10) 2003; 151
Peng (10.1016/j.engappai.2024.107865_b25) 2005; 27
Yu (10.1016/j.engappai.2024.107865_b35) 2004; 5
Shannon (10.1016/j.engappai.2024.107865_b28) 2001; 5
Meier (10.1016/j.engappai.2024.107865_b21) 2008; 70
Omuya (10.1016/j.engappai.2024.107865_b22) 2021; 174
Tang (10.1016/j.engappai.2024.107865_b29) 2014
Abualigah (10.1016/j.engappai.2024.107865_b1) 2022; 191
Rokach (10.1016/j.engappai.2024.107865_b27) 2006
Hall (10.1016/j.engappai.2024.107865_b13) 2000
Cai (10.1016/j.engappai.2024.107865_b7) 2018; 300
Wang (10.1016/j.engappai.2024.107865_b33) 2005; 200
Wang (10.1016/j.engappai.2024.107865_b32) 2010
Qiu (10.1016/j.engappai.2024.107865_b26) 2021; 231
Friedman (10.1016/j.engappai.2024.107865_b11) 1940; 11
Zou (10.1016/j.engappai.2024.107865_b37) 2005; 67
Tsai (10.1016/j.engappai.2024.107865_b30) 2020; 203
Opitz (10.1016/j.engappai.2024.107865_b23) 1999; 379
References_xml – volume: 174
  year: 2021
  ident: b22
  article-title: Feature selection for classification using principal component analysis and information gain
  publication-title: Expert Syst. Appl.
– volume: 391
  year: 2022
  ident: b4
  article-title: Dwarf mongoose optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 70
  start-page: 53
  year: 2008
  end-page: 71
  ident: b21
  article-title: The group lasso for logistic regression
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– start-page: 37
  year: 2014
  ident: b29
  article-title: Feature selection for classification: A review
  publication-title: Data Classification: Algorithms and Applications
– volume: 12
  start-page: 732
  year: 2019
  end-page: 742
  ident: b36
  article-title: Multi-feature based network revealing the structural abnormalities in autism spectrum disorder
  publication-title: IEEE Trans. Affect. Comput.
– volume: 180
  year: 2021
  ident: b14
  article-title: A pareto-based ensemble of feature selection algorithms
  publication-title: Expert Syst. Appl.
– volume: 203
  year: 2020
  ident: b30
  article-title: Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches
  publication-title: Knowl.-Based Syst.
– volume: 200
  start-page: 287
  year: 2005
  end-page: 295
  ident: b33
  article-title: A nonlinear correlation measure for multivariable data set
  publication-title: Phys. D
– volume: 112
  year: 2021
  ident: b18
  article-title: Boosting the oversampling methods based on differential evolution strategies for imbalanced learning
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 25532
  year: 2021
  end-page: 25546
  ident: b2
  article-title: Applications, deployments, and integration of internet of drones (iod): a review
  publication-title: IEEE Sens. J.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: b37
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– start-page: 135
  year: 2010
  end-page: 140
  ident: b32
  article-title: A comparative study of ensemble feature selection techniques for software defect prediction
  publication-title: 2010 Ninth International Conference on Machine Learning and Applications
– volume: 5
  start-page: 537
  year: 1994
  end-page: 550
  ident: b6
  article-title: Using mutual information for selecting features in supervised neural net learning
  publication-title: IEEE Trans. Neural Netw.
– year: 2000
  ident: b13
  article-title: Correlation-based feature selection of discrete and numeric class machine learning
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: b8
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
– volume: 151
  start-page: 155
  year: 2003
  end-page: 176
  ident: b10
  article-title: Consistency-based search in feature selection
  publication-title: Artif. Intell.
– volume: 182
  year: 2021
  ident: b15
  article-title: A parallel metaheuristic approach for ensemble feature selection based on multi-core architectures
  publication-title: Expert Syst. Appl.
– volume: 114
  year: 2021
  ident: b5
  article-title: R-HEFS: Rough set based heterogeneous ensemble feature selection method for medical data classification
  publication-title: Artif. Intell. Med.
– year: 2002
  ident: b19
  article-title: Combining multiple feature selection methods
  publication-title: Mid-Atlantic Student Workshop on Programming Languages and Systems (MASPLAS’02)
– start-page: 295
  year: 2006
  end-page: 304
  ident: b27
  article-title: Feature selection by combining multiple methods
  publication-title: Advances in Web Intelligence and Data Mining
– volume: 5
  start-page: 1205
  year: 2004
  end-page: 1224
  ident: b35
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
– volume: 379
  start-page: 3
  year: 1999
  ident: b23
  article-title: Feature selection for ensembles
  publication-title: AAAI/IAAI
– volume: 300
  start-page: 70
  year: 2018
  end-page: 79
  ident: b7
  article-title: Feature selection in machine learning: A new perspective
  publication-title: Neurocomputing
– volume: 5
  start-page: 3
  year: 2001
  end-page: 55
  ident: b28
  article-title: A mathematical theory of communication
  publication-title: ACM SIGMOBILE Mobile Comput. Commu. Rev.
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: b11
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
– volume: 24
  start-page: 175
  year: 2014
  end-page: 186
  ident: b31
  article-title: A review of feature selection methods based on mutual information
  publication-title: Neural Comput. Appl.
– volume: 7
  start-page: 32
  year: 2019
  end-page: 39
  ident: b34
  article-title: An ensemble feature selection method for high-dimensional data based on sort aggregation
  publication-title: Syst. Sci. Control Eng.
– volume: 191
  year: 2022
  ident: b1
  article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
– volume: 157
  year: 2021
  ident: b3
  article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm
  publication-title: Comput. Ind. Eng.
– volume: 104
  start-page: 38
  year: 2019
  end-page: 56
  ident: b20
  article-title: An optimal safety assessment model for complex systems considering correlation and redundancy
  publication-title: Int. J. Approx. Reason.
– volume: 1
  start-page: 131
  year: 1997
  end-page: 156
  ident: b9
  article-title: Feature selection for classification
  publication-title: Intell. Data Anal.
– volume: 22
  start-page: 4
  year: 2000
  end-page: 37
  ident: b16
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 110
  year: 2021
  ident: b17
  article-title: A multi-surrogate-assisted dual-layer ensemble feature selection algorithm
  publication-title: Appl. Soft Comput.
– volume: 25
  start-page: 734
  year: 2012
  end-page: 750
  ident: b12
  article-title: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: b25
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 10
  start-page: 16150
  year: 2022
  end-page: 16177
  ident: b24
  article-title: Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm
  publication-title: IEEE Access
– volume: 231
  year: 2021
  ident: b26
  article-title: TCIC_FS: Total correlation information coefficient-based feature selection method for high-dimensional data
  publication-title: Knowl.-Based Syst.
– volume: 200
  start-page: 287
  issue: 3–4
  year: 2005
  ident: 10.1016/j.engappai.2024.107865_b33
  article-title: A nonlinear correlation measure for multivariable data set
  publication-title: Phys. D
  doi: 10.1016/j.physd.2004.11.001
– volume: 110
  year: 2021
  ident: 10.1016/j.engappai.2024.107865_b17
  article-title: A multi-surrogate-assisted dual-layer ensemble feature selection algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107625
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 10.1016/j.engappai.2024.107865_b11
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– start-page: 135
  year: 2010
  ident: 10.1016/j.engappai.2024.107865_b32
  article-title: A comparative study of ensemble feature selection techniques for software defect prediction
– volume: 1
  start-page: 131
  issue: 1–4
  year: 1997
  ident: 10.1016/j.engappai.2024.107865_b9
  article-title: Feature selection for classification
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-1997-1302
– volume: 391
  year: 2022
  ident: 10.1016/j.engappai.2024.107865_b4
  article-title: Dwarf mongoose optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.114570
– volume: 112
  year: 2021
  ident: 10.1016/j.engappai.2024.107865_b18
  article-title: Boosting the oversampling methods based on differential evolution strategies for imbalanced learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107787
– volume: 231
  year: 2021
  ident: 10.1016/j.engappai.2024.107865_b26
  article-title: TCIC_FS: Total correlation information coefficient-based feature selection method for high-dimensional data
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107418
– volume: 114
  year: 2021
  ident: 10.1016/j.engappai.2024.107865_b5
  article-title: R-HEFS: Rough set based heterogeneous ensemble feature selection method for medical data classification
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2021.102049
– volume: 182
  year: 2021
  ident: 10.1016/j.engappai.2024.107865_b15
  article-title: A parallel metaheuristic approach for ensemble feature selection based on multi-core architectures
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115290
– volume: 180
  year: 2021
  ident: 10.1016/j.engappai.2024.107865_b14
  article-title: A pareto-based ensemble of feature selection algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115130
– volume: 157
  year: 2021
  ident: 10.1016/j.engappai.2024.107865_b3
  article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– volume: 10
  start-page: 16150
  year: 2022
  ident: 10.1016/j.engappai.2024.107865_b24
  article-title: Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3147821
– volume: 22
  start-page: 4
  issue: 1
  year: 2000
  ident: 10.1016/j.engappai.2024.107865_b16
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.824819
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 10.1016/j.engappai.2024.107865_b25
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– start-page: 37
  year: 2014
  ident: 10.1016/j.engappai.2024.107865_b29
  article-title: Feature selection for classification: A review
– volume: 12
  start-page: 732
  issue: 3
  year: 2019
  ident: 10.1016/j.engappai.2024.107865_b36
  article-title: Multi-feature based network revealing the structural abnormalities in autism spectrum disorder
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2890597
– year: 2000
  ident: 10.1016/j.engappai.2024.107865_b13
– volume: 151
  start-page: 155
  issue: 1–2
  year: 2003
  ident: 10.1016/j.engappai.2024.107865_b10
  article-title: Consistency-based search in feature selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(03)00079-1
– volume: 5
  start-page: 3
  issue: 1
  year: 2001
  ident: 10.1016/j.engappai.2024.107865_b28
  article-title: A mathematical theory of communication
  publication-title: ACM SIGMOBILE Mobile Comput. Commu. Rev.
  doi: 10.1145/584091.584093
– volume: 24
  start-page: 175
  issue: 1
  year: 2014
  ident: 10.1016/j.engappai.2024.107865_b31
  article-title: A review of feature selection methods based on mutual information
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1368-0
– year: 2002
  ident: 10.1016/j.engappai.2024.107865_b19
  article-title: Combining multiple feature selection methods
– volume: 203
  year: 2020
  ident: 10.1016/j.engappai.2024.107865_b30
  article-title: Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106097
– volume: 5
  start-page: 1205
  year: 2004
  ident: 10.1016/j.engappai.2024.107865_b35
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
– volume: 300
  start-page: 70
  year: 2018
  ident: 10.1016/j.engappai.2024.107865_b7
  article-title: Feature selection in machine learning: A new perspective
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.077
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  ident: 10.1016/j.engappai.2024.107865_b8
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 70
  start-page: 53
  issue: 1
  year: 2008
  ident: 10.1016/j.engappai.2024.107865_b21
  article-title: The group lasso for logistic regression
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2007.00627.x
– volume: 7
  start-page: 32
  issue: 2
  year: 2019
  ident: 10.1016/j.engappai.2024.107865_b34
  article-title: An ensemble feature selection method for high-dimensional data based on sort aggregation
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1620658
– volume: 5
  start-page: 537
  issue: 4
  year: 1994
  ident: 10.1016/j.engappai.2024.107865_b6
  article-title: Using mutual information for selecting features in supervised neural net learning
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.298224
– volume: 21
  start-page: 25532
  issue: 22
  year: 2021
  ident: 10.1016/j.engappai.2024.107865_b2
  article-title: Applications, deployments, and integration of internet of drones (iod): a review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3114266
– volume: 191
  year: 2022
  ident: 10.1016/j.engappai.2024.107865_b1
  article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– volume: 379
  start-page: 3
  issue: 384
  year: 1999
  ident: 10.1016/j.engappai.2024.107865_b23
  article-title: Feature selection for ensembles
  publication-title: AAAI/IAAI
– volume: 25
  start-page: 734
  issue: 4
  year: 2012
  ident: 10.1016/j.engappai.2024.107865_b12
  article-title: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2012.35
– volume: 104
  start-page: 38
  year: 2019
  ident: 10.1016/j.engappai.2024.107865_b20
  article-title: An optimal safety assessment model for complex systems considering correlation and redundancy
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2018.10.004
– volume: 174
  year: 2021
  ident: 10.1016/j.engappai.2024.107865_b22
  article-title: Feature selection for classification using principal component analysis and information gain
  publication-title: Expert Syst. Appl.
– start-page: 295
  year: 2006
  ident: 10.1016/j.engappai.2024.107865_b27
  article-title: Feature selection by combining multiple methods
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 10.1016/j.engappai.2024.107865_b37
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2005.00503.x
SSID ssj0003846
Score 2.656372
Snippet Feature selection is widely used in various fields as a key means of data dimension reduction. The existing feature selection algorithms only use one linear or...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107865
SubjectTerms Classification
Feature selection
Filter model
Mutual information
Pearson correlation coefficient
Title A new filter feature selection algorithm for classification task by ensembling pearson correlation coefficient and mutual information
URI https://dx.doi.org/10.1016/j.engappai.2024.107865
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWFh4I966gTW0TdwkHisEKlTqwEN0ixzHLgGaRjQMLGz8b-4cB4qExMCU5GRLkc_n77vkHoydCG54hkjtIfQoj2vT8WQPvZTYcB1ESkshbbTFKBzc8atxb9xiZ00uDIVVurO_PtPtae0kbbea7TLP2zdIDtDc0Ji5rdoypgx2HlEXg9P37zCPIK6TdXCwR6MXsoQfT3UxkWUpc_QTfY7CKCaQ-Q2gFkDnYp2tOrYI_fqFNlhLF5tszTFHcHY5R1HTnKGRbbGPPiBjBpPT73Aw2hbwhLlte4O6APk8mb3k1cMUkLaCIhJNUUNWUVDJ-ROkb4A-rp6mlLEOJZoEcnNQ1M6jDqDDe20rUCBwgSwymL5SNgq4Yqw0ZJvdXZzfng0813PBUwjWled3s9Bw9MkCJVLfj8KUx0oaVGiUKtlVftAz6MBmyPJwtZQfGV8omaowlh0ZdoJghy0Vs0LvMoiRO3SFDuwnEy5ioYXRfjelZhShENke6zULnShXkJz6YjwnTeTZY9IoKCEFJbWC9lj7a15Zl-T4c4Zo9Jj82FwJ4sYfc_f_MfeArdBTHR95yJaql1d9hBymSo_tJj1my_3L4WBE1-H1_fATfZv1zw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DLDwRpTnDayhreM8PCIEKlC6AFK3yHFsCNA0atOBhY3_zdlxeEhIDGzRxSdFvpy_75J7EHLMmWYZIrWH0CM9pnTHEwFGKbFmyo-kElzYbItB2LtnV8NgOEfOmloYk1bpzv76TLentZO03W62yzxv3yI5QHdDZ2a2a8twniyygEYmAjt5-8rz8OO6WgdXe2b5tzLhpxNVPIiyFDkGipShMIoNyvyGUN9Q52KNrDi6CKf1E62TOVVskFVHHcE55hRFzXSGRrZJ3k8BKTPo3PwPB61sB0-Y2rk3aAwQLw_jSV49jgB5K0jDok3akLUUVGL6DOkrYJCrRqkpWYcSfQLJOUgzz6POoMNrZVtQIHKBKDIYzUw5CrhurGbJFrm_OL8763lu6IInEa0rj3azUDMMynzJU0qjMGWxFBotGqVSdCX1A40RbIY0D3dL0khTLkUqw1h0RNjx_W2yUIwLtUMgRvLQ5cq330wYj7niWtFuaqZRhJxnLRI0G51I15HcDMZ4SZrUs6ekMVBiDJTUBmqR9qdeWffk-FODN3ZMfrxdCQLHH7q7_9A9Iku9u5t-0r8cXO-RZXOnTpbcJwvVZKYOkNBU6aF9YT8Ae831wQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+filter+feature+selection+algorithm+for+classification+task+by+ensembling+pearson+correlation+coefficient+and+mutual+information&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Gong%2C+Huanhuan&rft.au=Li%2C+Yanying&rft.au=Zhang%2C+Jiaoni&rft.au=Zhang%2C+Baoshuang&rft.date=2024-05-01&rft.issn=0952-1976&rft.volume=131&rft.spage=107865&rft_id=info:doi/10.1016%2Fj.engappai.2024.107865&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_107865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon