A new filter feature selection algorithm for classification task by ensembling pearson correlation coefficient and mutual information
Feature selection is widely used in various fields as a key means of data dimension reduction. The existing feature selection algorithms only use one linear or nonlinear correlation indicator when evaluating variables relationships, which lacks diversity. Considering the complexity of the relationsh...
        Saved in:
      
    
          | Published in | Engineering applications of artificial intelligence Vol. 131; p. 107865 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.05.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0952-1976 1873-6769  | 
| DOI | 10.1016/j.engappai.2024.107865 | 
Cover
| Abstract | Feature selection is widely used in various fields as a key means of data dimension reduction. The existing feature selection algorithms only use one linear or nonlinear correlation indicator when evaluating variables relationships, which lacks diversity. Considering the complexity of the relationship between features, a novel feature selection evaluation function CONMI is constructed, which ensembles Pearson correlation coefficient (liner) and normalized mutual information (non-linear) to comprehensively portrays the dependencies between features and class variables. We further propose the CONMI_FS algorithm based on CONMI, which selects the optimal subset of features that has high correlation with the class variables and low redundancy between the selected features. CONMI_FS is compared with four methods on 20 datasets and evaluated by reduction rate, classification accuracy, precision and recall metrics on KNN, SVM and DT classifiers. The experimental results show that CONMI_FS obtains the highest reduction rate of 80.04%, and achieves the best classification accuracy on KNN and SVM classifiers, which are 88.83% and 88.98%, respectively. These results indicate that CONMI_FS has good competitiveness. | 
    
|---|---|
| AbstractList | Feature selection is widely used in various fields as a key means of data dimension reduction. The existing feature selection algorithms only use one linear or nonlinear correlation indicator when evaluating variables relationships, which lacks diversity. Considering the complexity of the relationship between features, a novel feature selection evaluation function CONMI is constructed, which ensembles Pearson correlation coefficient (liner) and normalized mutual information (non-linear) to comprehensively portrays the dependencies between features and class variables. We further propose the CONMI_FS algorithm based on CONMI, which selects the optimal subset of features that has high correlation with the class variables and low redundancy between the selected features. CONMI_FS is compared with four methods on 20 datasets and evaluated by reduction rate, classification accuracy, precision and recall metrics on KNN, SVM and DT classifiers. The experimental results show that CONMI_FS obtains the highest reduction rate of 80.04%, and achieves the best classification accuracy on KNN and SVM classifiers, which are 88.83% and 88.98%, respectively. These results indicate that CONMI_FS has good competitiveness. | 
    
| ArticleNumber | 107865 | 
    
| Author | Wang, Xialin Zhang, Jiaoni Gong, Huanhuan Li, Yanying Zhang, Baoshuang  | 
    
| Author_xml | – sequence: 1 givenname: Huanhuan orcidid: 0000-0003-4492-4240 surname: Gong fullname: Gong, Huanhuan – sequence: 2 givenname: Yanying orcidid: 0000-0002-0855-4249 surname: Li fullname: Li, Yanying email: liyanying2021@163.com – sequence: 3 givenname: Jiaoni surname: Zhang fullname: Zhang, Jiaoni – sequence: 4 givenname: Baoshuang orcidid: 0000-0002-4166-6568 surname: Zhang fullname: Zhang, Baoshuang – sequence: 5 givenname: Xialin orcidid: 0000-0002-8112-7446 surname: Wang fullname: Wang, Xialin  | 
    
| BookMark | eNqFkEtOwzAQhi1UJMrjCsgXSLGdxEkkFqCKl1SJDaytiTMuLo5T2S6IA3Bv0hY2bLoaaWa-XzPfKZn4wSMhl5zNOOPyajVDv4T1GuxMMFGMzaqW5RGZ8rrKM1nJZkKmrClFxptKnpDTGFeMsbwu5JR831KPn9RYlzBQg5A2AWlEhzrZwVNwyyHY9NZTMwSqHcRojdWwGyaI77T9ougj9q2zfknXCCGOIz2EgG6_pgc0I2PRJwq-o_0mbcBR68fIfrdyTo4NuIgXv_WMvN7fvcwfs8Xzw9P8dpFpUYiUCd5JU4iiyXXTClHJtqg1GFN0VauBa5GXhueiK6tydKBFZUSjodWyBgaS5fkZud7n6jDEGNAobdPughTAOsWZ2ipVK_WnVG2Vqr3SEZf_8HWwPYSvw-DNHsTxuQ-LQcWtDo2dDaNo1Q32UMQPaf6bWQ | 
    
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_124588 crossref_primary_10_1007_s10586_024_04664_4 crossref_primary_10_1002_qre_3651 crossref_primary_10_2166_wst_2024_371 crossref_primary_10_1038_s41598_024_74122_z crossref_primary_10_3390_info15090553 crossref_primary_10_1016_j_asoc_2025_112895 crossref_primary_10_1016_j_engappai_2025_110022 crossref_primary_10_1016_j_swevo_2024_101715 crossref_primary_10_1109_TGRS_2025_3547940 crossref_primary_10_1016_j_engfailanal_2024_108371 crossref_primary_10_1016_j_autcon_2025_106104 crossref_primary_10_1016_j_future_2025_107779 crossref_primary_10_1016_j_compag_2025_109905 crossref_primary_10_1016_j_compbiomed_2024_109168 crossref_primary_10_3390_rs16234497 crossref_primary_10_3390_app15042209 crossref_primary_10_3390_biomimetics10010041 crossref_primary_10_1016_j_engappai_2025_110553 crossref_primary_10_3390_s24155047 crossref_primary_10_1016_j_engappai_2025_110075 crossref_primary_10_1016_j_foodres_2024_115417 crossref_primary_10_1088_1402_4896_ad88ba crossref_primary_10_1016_j_aquaculture_2024_741697 crossref_primary_10_1016_j_apenergy_2024_124954 crossref_primary_10_1016_j_jenvman_2024_123310 crossref_primary_10_1016_j_eswa_2024_126152 crossref_primary_10_1016_j_knosys_2025_113286 crossref_primary_10_1016_j_triboint_2024_110008 crossref_primary_10_1016_j_eswa_2024_124764 crossref_primary_10_1002_cpe_8334 crossref_primary_10_1016_j_engappai_2025_110370 crossref_primary_10_1016_j_jclepro_2024_144342 crossref_primary_10_1016_j_applthermaleng_2024_125224 crossref_primary_10_3389_fnhum_2024_1400077 crossref_primary_10_1016_j_scs_2024_105685 crossref_primary_10_1016_j_jprocont_2024_103300 crossref_primary_10_1145_3712199 crossref_primary_10_1007_s11280_024_01322_y crossref_primary_10_1109_ACCESS_2024_3454516 crossref_primary_10_1016_j_ibmed_2025_100208 crossref_primary_10_1016_j_tws_2025_113040 crossref_primary_10_1109_ACCESS_2025_3525726 crossref_primary_10_3390_agronomy14112606 crossref_primary_10_1177_13694332241281534 crossref_primary_10_1016_j_engappai_2024_109529 crossref_primary_10_1016_j_seppur_2024_130877 crossref_primary_10_1016_j_energy_2025_134648 crossref_primary_10_1016_j_jfca_2024_106629 crossref_primary_10_1016_j_engappai_2024_108836 crossref_primary_10_1016_j_swevo_2025_101908 crossref_primary_10_1016_j_est_2024_113079 crossref_primary_10_1016_j_phycom_2024_102508 crossref_primary_10_3390_math13060996  | 
    
| Cites_doi | 10.1016/j.physd.2004.11.001 10.1016/j.asoc.2021.107625 10.1214/aoms/1177731944 10.3233/IDA-1997-1302 10.1016/j.cma.2022.114570 10.1016/j.asoc.2021.107787 10.1016/j.knosys.2021.107418 10.1016/j.artmed.2021.102049 10.1016/j.eswa.2021.115290 10.1016/j.eswa.2021.115130 10.1016/j.cie.2021.107250 10.1109/ACCESS.2022.3147821 10.1109/34.824819 10.1109/TPAMI.2005.159 10.1109/TAFFC.2018.2890597 10.1016/S0004-3702(03)00079-1 10.1145/584091.584093 10.1007/s00521-013-1368-0 10.1016/j.knosys.2020.106097 10.1016/j.neucom.2017.11.077 10.1016/j.compeleceng.2013.11.024 10.1111/j.1467-9868.2007.00627.x 10.1080/21642583.2019.1620658 10.1109/72.298224 10.1109/JSEN.2021.3114266 10.1016/j.eswa.2021.116158 10.1109/TKDE.2012.35 10.1016/j.ijar.2018.10.004 10.1111/j.1467-9868.2005.00503.x  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2024 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.engappai.2024.107865 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Computer Science  | 
    
| EISSN | 1873-6769 | 
    
| ExternalDocumentID | 10_1016_j_engappai_2024_107865 S095219762400023X  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD  | 
    
| ID | FETCH-LOGICAL-c242t-21d6f42493c9b2276b48caff4d7bca1c235f132d575078c27f29cabc68a0a6033 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0952-1976 | 
    
| IngestDate | Sat Oct 25 05:24:55 EDT 2025 Thu Apr 24 22:59:26 EDT 2025 Sat Apr 13 16:38:39 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Feature selection Filter model Mutual information Classification Pearson correlation coefficient  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c242t-21d6f42493c9b2276b48caff4d7bca1c235f132d575078c27f29cabc68a0a6033 | 
    
| ORCID | 0000-0002-4166-6568 0000-0003-4492-4240 0000-0002-8112-7446 0000-0002-0855-4249  | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_engappai_2024_107865 crossref_primary_10_1016_j_engappai_2024_107865 elsevier_sciencedirect_doi_10_1016_j_engappai_2024_107865  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | May 2024 2024-05-00  | 
    
| PublicationDateYYYYMMDD | 2024-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2024 text: May 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Engineering applications of artificial intelligence | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Yu, Liu (b35) 2004; 5 Dash, Liu (b10) 2003; 151 Vergara, Estévez (b31) 2014; 24 Wang, Xu, Zhao, Peng, Wang (b34) 2019; 7 Abualigah, Abd Elaziz, Sumari, Geem, Gandomi (b1) 2022; 191 Friedman (b11) 1940; 11 Oyelade, Ezugwu, Mohamed, Abualigah (b24) 2022; 10 Wang, Khoshgoftaar, Napolitano (b32) 2010 Li, Zhou, Hu, Chang, Zhang, Yu (b20) 2019; 104 Rokach, Chizi, Maimon (b27) 2006 Agushaka, Ezugwu, Abualigah (b4) 2022; 391 Omuya, Okeyo, Kimwele (b22) 2021; 174 Peng, Long, Ding (b25) 2005; 27 Cai, Luo, Wang, Yang (b7) 2018; 300 Abualigah, Yousri, Abd Elaziz, Ewees, Al-Qaness, Gandomi (b3) 2021; 157 Tang, Alelyani, Liu (b29) 2014 Abualigah, Diabat, Sumari, Gandomi (b2) 2021; 21 Hall (b13) 2000 Bania, Halder (b5) 2021; 114 Korkmaz, Şahman, Cinar, Kaya (b18) 2021; 112 Jiang, Zhang, Wang (b17) 2021; 110 Hijazi, Faris, Aljarah (b15) 2021; 182 Dash, Liu (b9) 1997; 1 Tsai, Sung (b30) 2020; 203 Wang, Shen, Zhang (b33) 2005; 200 Garcia, Luengo, Sáez, Lopez, Herrera (b12) 2012; 25 Hashemi, Dowlatshahi, Nezamabadi-pour (b14) 2021; 180 Zheng, Eilam-Stock, Wu, Spagna, Chen, Hu, Fan (b36) 2019; 12 Battiti (b6) 1994; 5 Chandrashekar, Sahin (b8) 2014; 40 Jain, Duin, Mao (b16) 2000; 22 Shannon (b28) 2001; 5 Lee (b19) 2002 Meier, Van De Geer, Bühlmann (b21) 2008; 70 Opitz (b23) 1999; 379 Qiu, Niu (b26) 2021; 231 Zou, Hastie (b37) 2005; 67 Hashemi (10.1016/j.engappai.2024.107865_b14) 2021; 180 Hijazi (10.1016/j.engappai.2024.107865_b15) 2021; 182 Jain (10.1016/j.engappai.2024.107865_b16) 2000; 22 Jiang (10.1016/j.engappai.2024.107865_b17) 2021; 110 Garcia (10.1016/j.engappai.2024.107865_b12) 2012; 25 Wang (10.1016/j.engappai.2024.107865_b34) 2019; 7 Battiti (10.1016/j.engappai.2024.107865_b6) 1994; 5 Dash (10.1016/j.engappai.2024.107865_b9) 1997; 1 Li (10.1016/j.engappai.2024.107865_b20) 2019; 104 Chandrashekar (10.1016/j.engappai.2024.107865_b8) 2014; 40 Abualigah (10.1016/j.engappai.2024.107865_b2) 2021; 21 Vergara (10.1016/j.engappai.2024.107865_b31) 2014; 24 Oyelade (10.1016/j.engappai.2024.107865_b24) 2022; 10 Bania (10.1016/j.engappai.2024.107865_b5) 2021; 114 Zheng (10.1016/j.engappai.2024.107865_b36) 2019; 12 Korkmaz (10.1016/j.engappai.2024.107865_b18) 2021; 112 Abualigah (10.1016/j.engappai.2024.107865_b3) 2021; 157 Lee (10.1016/j.engappai.2024.107865_b19) 2002 Agushaka (10.1016/j.engappai.2024.107865_b4) 2022; 391 Dash (10.1016/j.engappai.2024.107865_b10) 2003; 151 Peng (10.1016/j.engappai.2024.107865_b25) 2005; 27 Yu (10.1016/j.engappai.2024.107865_b35) 2004; 5 Shannon (10.1016/j.engappai.2024.107865_b28) 2001; 5 Meier (10.1016/j.engappai.2024.107865_b21) 2008; 70 Omuya (10.1016/j.engappai.2024.107865_b22) 2021; 174 Tang (10.1016/j.engappai.2024.107865_b29) 2014 Abualigah (10.1016/j.engappai.2024.107865_b1) 2022; 191 Rokach (10.1016/j.engappai.2024.107865_b27) 2006 Hall (10.1016/j.engappai.2024.107865_b13) 2000 Cai (10.1016/j.engappai.2024.107865_b7) 2018; 300 Wang (10.1016/j.engappai.2024.107865_b33) 2005; 200 Wang (10.1016/j.engappai.2024.107865_b32) 2010 Qiu (10.1016/j.engappai.2024.107865_b26) 2021; 231 Friedman (10.1016/j.engappai.2024.107865_b11) 1940; 11 Zou (10.1016/j.engappai.2024.107865_b37) 2005; 67 Tsai (10.1016/j.engappai.2024.107865_b30) 2020; 203 Opitz (10.1016/j.engappai.2024.107865_b23) 1999; 379  | 
    
| References_xml | – volume: 174 year: 2021 ident: b22 article-title: Feature selection for classification using principal component analysis and information gain publication-title: Expert Syst. Appl. – volume: 391 year: 2022 ident: b4 article-title: Dwarf mongoose optimization algorithm publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 70 start-page: 53 year: 2008 end-page: 71 ident: b21 article-title: The group lasso for logistic regression publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – start-page: 37 year: 2014 ident: b29 article-title: Feature selection for classification: A review publication-title: Data Classification: Algorithms and Applications – volume: 12 start-page: 732 year: 2019 end-page: 742 ident: b36 article-title: Multi-feature based network revealing the structural abnormalities in autism spectrum disorder publication-title: IEEE Trans. Affect. Comput. – volume: 180 year: 2021 ident: b14 article-title: A pareto-based ensemble of feature selection algorithms publication-title: Expert Syst. Appl. – volume: 203 year: 2020 ident: b30 article-title: Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches publication-title: Knowl.-Based Syst. – volume: 200 start-page: 287 year: 2005 end-page: 295 ident: b33 article-title: A nonlinear correlation measure for multivariable data set publication-title: Phys. D – volume: 112 year: 2021 ident: b18 article-title: Boosting the oversampling methods based on differential evolution strategies for imbalanced learning publication-title: Appl. Soft Comput. – volume: 21 start-page: 25532 year: 2021 end-page: 25546 ident: b2 article-title: Applications, deployments, and integration of internet of drones (iod): a review publication-title: IEEE Sens. J. – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: b37 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – start-page: 135 year: 2010 end-page: 140 ident: b32 article-title: A comparative study of ensemble feature selection techniques for software defect prediction publication-title: 2010 Ninth International Conference on Machine Learning and Applications – volume: 5 start-page: 537 year: 1994 end-page: 550 ident: b6 article-title: Using mutual information for selecting features in supervised neural net learning publication-title: IEEE Trans. Neural Netw. – year: 2000 ident: b13 article-title: Correlation-based feature selection of discrete and numeric class machine learning – volume: 40 start-page: 16 year: 2014 end-page: 28 ident: b8 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. – volume: 151 start-page: 155 year: 2003 end-page: 176 ident: b10 article-title: Consistency-based search in feature selection publication-title: Artif. Intell. – volume: 182 year: 2021 ident: b15 article-title: A parallel metaheuristic approach for ensemble feature selection based on multi-core architectures publication-title: Expert Syst. Appl. – volume: 114 year: 2021 ident: b5 article-title: R-HEFS: Rough set based heterogeneous ensemble feature selection method for medical data classification publication-title: Artif. Intell. Med. – year: 2002 ident: b19 article-title: Combining multiple feature selection methods publication-title: Mid-Atlantic Student Workshop on Programming Languages and Systems (MASPLAS’02) – start-page: 295 year: 2006 end-page: 304 ident: b27 article-title: Feature selection by combining multiple methods publication-title: Advances in Web Intelligence and Data Mining – volume: 5 start-page: 1205 year: 2004 end-page: 1224 ident: b35 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J. Mach. Learn. Res. – volume: 379 start-page: 3 year: 1999 ident: b23 article-title: Feature selection for ensembles publication-title: AAAI/IAAI – volume: 300 start-page: 70 year: 2018 end-page: 79 ident: b7 article-title: Feature selection in machine learning: A new perspective publication-title: Neurocomputing – volume: 5 start-page: 3 year: 2001 end-page: 55 ident: b28 article-title: A mathematical theory of communication publication-title: ACM SIGMOBILE Mobile Comput. Commu. Rev. – volume: 11 start-page: 86 year: 1940 end-page: 92 ident: b11 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. – volume: 24 start-page: 175 year: 2014 end-page: 186 ident: b31 article-title: A review of feature selection methods based on mutual information publication-title: Neural Comput. Appl. – volume: 7 start-page: 32 year: 2019 end-page: 39 ident: b34 article-title: An ensemble feature selection method for high-dimensional data based on sort aggregation publication-title: Syst. Sci. Control Eng. – volume: 191 year: 2022 ident: b1 article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. – volume: 157 year: 2021 ident: b3 article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm publication-title: Comput. Ind. Eng. – volume: 104 start-page: 38 year: 2019 end-page: 56 ident: b20 article-title: An optimal safety assessment model for complex systems considering correlation and redundancy publication-title: Int. J. Approx. Reason. – volume: 1 start-page: 131 year: 1997 end-page: 156 ident: b9 article-title: Feature selection for classification publication-title: Intell. Data Anal. – volume: 22 start-page: 4 year: 2000 end-page: 37 ident: b16 article-title: Statistical pattern recognition: A review publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 110 year: 2021 ident: b17 article-title: A multi-surrogate-assisted dual-layer ensemble feature selection algorithm publication-title: Appl. Soft Comput. – volume: 25 start-page: 734 year: 2012 end-page: 750 ident: b12 article-title: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: b25 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 10 start-page: 16150 year: 2022 end-page: 16177 ident: b24 article-title: Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm publication-title: IEEE Access – volume: 231 year: 2021 ident: b26 article-title: TCIC_FS: Total correlation information coefficient-based feature selection method for high-dimensional data publication-title: Knowl.-Based Syst. – volume: 200 start-page: 287 issue: 3–4 year: 2005 ident: 10.1016/j.engappai.2024.107865_b33 article-title: A nonlinear correlation measure for multivariable data set publication-title: Phys. D doi: 10.1016/j.physd.2004.11.001 – volume: 110 year: 2021 ident: 10.1016/j.engappai.2024.107865_b17 article-title: A multi-surrogate-assisted dual-layer ensemble feature selection algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107625 – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 10.1016/j.engappai.2024.107865_b11 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – start-page: 135 year: 2010 ident: 10.1016/j.engappai.2024.107865_b32 article-title: A comparative study of ensemble feature selection techniques for software defect prediction – volume: 1 start-page: 131 issue: 1–4 year: 1997 ident: 10.1016/j.engappai.2024.107865_b9 article-title: Feature selection for classification publication-title: Intell. Data Anal. doi: 10.3233/IDA-1997-1302 – volume: 391 year: 2022 ident: 10.1016/j.engappai.2024.107865_b4 article-title: Dwarf mongoose optimization algorithm publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.114570 – volume: 112 year: 2021 ident: 10.1016/j.engappai.2024.107865_b18 article-title: Boosting the oversampling methods based on differential evolution strategies for imbalanced learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107787 – volume: 231 year: 2021 ident: 10.1016/j.engappai.2024.107865_b26 article-title: TCIC_FS: Total correlation information coefficient-based feature selection method for high-dimensional data publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107418 – volume: 114 year: 2021 ident: 10.1016/j.engappai.2024.107865_b5 article-title: R-HEFS: Rough set based heterogeneous ensemble feature selection method for medical data classification publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2021.102049 – volume: 182 year: 2021 ident: 10.1016/j.engappai.2024.107865_b15 article-title: A parallel metaheuristic approach for ensemble feature selection based on multi-core architectures publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115290 – volume: 180 year: 2021 ident: 10.1016/j.engappai.2024.107865_b14 article-title: A pareto-based ensemble of feature selection algorithms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115130 – volume: 157 year: 2021 ident: 10.1016/j.engappai.2024.107865_b3 article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 10 start-page: 16150 year: 2022 ident: 10.1016/j.engappai.2024.107865_b24 article-title: Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3147821 – volume: 22 start-page: 4 issue: 1 year: 2000 ident: 10.1016/j.engappai.2024.107865_b16 article-title: Statistical pattern recognition: A review publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.824819 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.engappai.2024.107865_b25 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – start-page: 37 year: 2014 ident: 10.1016/j.engappai.2024.107865_b29 article-title: Feature selection for classification: A review – volume: 12 start-page: 732 issue: 3 year: 2019 ident: 10.1016/j.engappai.2024.107865_b36 article-title: Multi-feature based network revealing the structural abnormalities in autism spectrum disorder publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2890597 – year: 2000 ident: 10.1016/j.engappai.2024.107865_b13 – volume: 151 start-page: 155 issue: 1–2 year: 2003 ident: 10.1016/j.engappai.2024.107865_b10 article-title: Consistency-based search in feature selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(03)00079-1 – volume: 5 start-page: 3 issue: 1 year: 2001 ident: 10.1016/j.engappai.2024.107865_b28 article-title: A mathematical theory of communication publication-title: ACM SIGMOBILE Mobile Comput. Commu. Rev. doi: 10.1145/584091.584093 – volume: 24 start-page: 175 issue: 1 year: 2014 ident: 10.1016/j.engappai.2024.107865_b31 article-title: A review of feature selection methods based on mutual information publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1368-0 – year: 2002 ident: 10.1016/j.engappai.2024.107865_b19 article-title: Combining multiple feature selection methods – volume: 203 year: 2020 ident: 10.1016/j.engappai.2024.107865_b30 article-title: Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106097 – volume: 5 start-page: 1205 year: 2004 ident: 10.1016/j.engappai.2024.107865_b35 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J. Mach. Learn. Res. – volume: 300 start-page: 70 year: 2018 ident: 10.1016/j.engappai.2024.107865_b7 article-title: Feature selection in machine learning: A new perspective publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.077 – volume: 40 start-page: 16 issue: 1 year: 2014 ident: 10.1016/j.engappai.2024.107865_b8 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2013.11.024 – volume: 70 start-page: 53 issue: 1 year: 2008 ident: 10.1016/j.engappai.2024.107865_b21 article-title: The group lasso for logistic regression publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2007.00627.x – volume: 7 start-page: 32 issue: 2 year: 2019 ident: 10.1016/j.engappai.2024.107865_b34 article-title: An ensemble feature selection method for high-dimensional data based on sort aggregation publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2019.1620658 – volume: 5 start-page: 537 issue: 4 year: 1994 ident: 10.1016/j.engappai.2024.107865_b6 article-title: Using mutual information for selecting features in supervised neural net learning publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.298224 – volume: 21 start-page: 25532 issue: 22 year: 2021 ident: 10.1016/j.engappai.2024.107865_b2 article-title: Applications, deployments, and integration of internet of drones (iod): a review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3114266 – volume: 191 year: 2022 ident: 10.1016/j.engappai.2024.107865_b1 article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: 379 start-page: 3 issue: 384 year: 1999 ident: 10.1016/j.engappai.2024.107865_b23 article-title: Feature selection for ensembles publication-title: AAAI/IAAI – volume: 25 start-page: 734 issue: 4 year: 2012 ident: 10.1016/j.engappai.2024.107865_b12 article-title: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2012.35 – volume: 104 start-page: 38 year: 2019 ident: 10.1016/j.engappai.2024.107865_b20 article-title: An optimal safety assessment model for complex systems considering correlation and redundancy publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2018.10.004 – volume: 174 year: 2021 ident: 10.1016/j.engappai.2024.107865_b22 article-title: Feature selection for classification using principal component analysis and information gain publication-title: Expert Syst. Appl. – start-page: 295 year: 2006 ident: 10.1016/j.engappai.2024.107865_b27 article-title: Feature selection by combining multiple methods – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 10.1016/j.engappai.2024.107865_b37 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2005.00503.x  | 
    
| SSID | ssj0003846 | 
    
| Score | 2.656372 | 
    
| Snippet | Feature selection is widely used in various fields as a key means of data dimension reduction. The existing feature selection algorithms only use one linear or... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 107865 | 
    
| SubjectTerms | Classification Feature selection Filter model Mutual information Pearson correlation coefficient  | 
    
| Title | A new filter feature selection algorithm for classification task by ensembling pearson correlation coefficient and mutual information | 
    
| URI | https://dx.doi.org/10.1016/j.engappai.2024.107865 | 
    
| Volume | 131 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWFh4I966gTW0TdwkHisEKlTqwEN0ixzHLgGaRjQMLGz8b-4cB4qExMCU5GRLkc_n77vkHoydCG54hkjtIfQoj2vT8WQPvZTYcB1ESkshbbTFKBzc8atxb9xiZ00uDIVVurO_PtPtae0kbbea7TLP2zdIDtDc0Ji5rdoypgx2HlEXg9P37zCPIK6TdXCwR6MXsoQfT3UxkWUpc_QTfY7CKCaQ-Q2gFkDnYp2tOrYI_fqFNlhLF5tszTFHcHY5R1HTnKGRbbGPPiBjBpPT73Aw2hbwhLlte4O6APk8mb3k1cMUkLaCIhJNUUNWUVDJ-ROkb4A-rp6mlLEOJZoEcnNQ1M6jDqDDe20rUCBwgSwymL5SNgq4Yqw0ZJvdXZzfng0813PBUwjWled3s9Bw9MkCJVLfj8KUx0oaVGiUKtlVftAz6MBmyPJwtZQfGV8omaowlh0ZdoJghy0Vs0LvMoiRO3SFDuwnEy5ioYXRfjelZhShENke6zULnShXkJz6YjwnTeTZY9IoKCEFJbWC9lj7a15Zl-T4c4Zo9Jj82FwJ4sYfc_f_MfeArdBTHR95yJaql1d9hBymSo_tJj1my_3L4WBE1-H1_fATfZv1zw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DLDwRpTnDayhreM8PCIEKlC6AFK3yHFsCNA0atOBhY3_zdlxeEhIDGzRxSdFvpy_75J7EHLMmWYZIrWH0CM9pnTHEwFGKbFmyo-kElzYbItB2LtnV8NgOEfOmloYk1bpzv76TLentZO03W62yzxv3yI5QHdDZ2a2a8twniyygEYmAjt5-8rz8OO6WgdXe2b5tzLhpxNVPIiyFDkGipShMIoNyvyGUN9Q52KNrDi6CKf1E62TOVVskFVHHcE55hRFzXSGRrZJ3k8BKTPo3PwPB61sB0-Y2rk3aAwQLw_jSV49jgB5K0jDok3akLUUVGL6DOkrYJCrRqkpWYcSfQLJOUgzz6POoMNrZVtQIHKBKDIYzUw5CrhurGbJFrm_OL8763lu6IInEa0rj3azUDMMynzJU0qjMGWxFBotGqVSdCX1A40RbIY0D3dL0khTLkUqw1h0RNjx_W2yUIwLtUMgRvLQ5cq330wYj7niWtFuaqZRhJxnLRI0G51I15HcDMZ4SZrUs6ekMVBiDJTUBmqR9qdeWffk-FODN3ZMfrxdCQLHH7q7_9A9Iku9u5t-0r8cXO-RZXOnTpbcJwvVZKYOkNBU6aF9YT8Ae831wQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+filter+feature+selection+algorithm+for+classification+task+by+ensembling+pearson+correlation+coefficient+and+mutual+information&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Gong%2C+Huanhuan&rft.au=Li%2C+Yanying&rft.au=Zhang%2C+Jiaoni&rft.au=Zhang%2C+Baoshuang&rft.date=2024-05-01&rft.issn=0952-1976&rft.volume=131&rft.spage=107865&rft_id=info:doi/10.1016%2Fj.engappai.2024.107865&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_107865 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |