Effect of Preparation Methods on Activation of Catalysts BaNi0.2Mn0.8Al11O19-δ for Dimethyl Ether Combustion
Catalytic combustion of dimethyl ether (DME) over hexaaluminate catalyst BaNi0.2Mn0.8Al11O19-δ has been investigated. The catalysts were prepared with the sol-gel method and reverse microemulsion method respectively and characterized by thermogravimetry-differential thermal analysis, X-ray diffracti...
Saved in:
Published in | Chinese journal of chemical engineering Vol. 16; no. 3; pp. 389 - 393 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 1004-9541 2210-321X |
DOI | 10.1016/S1004-9541(08)60094-4 |
Cover
Summary: | Catalytic combustion of dimethyl ether (DME) over hexaaluminate catalyst BaNi0.2Mn0.8Al11O19-δ has been investigated. The catalysts were prepared with the sol-gel method and reverse microemulsion method respectively and characterized by thermogravimetry-differential thermal analysis, X-ray diffraction and transimission electron microscope. It was found that the formation of Mn, Ni modified hexaaluminate was a relatively slow process via two solid state reactions and spinel structure was a transition phase. At the same calcined temperature and time, the catalyst prepared with the reverse microemulsion method could form the hexaaluminate phase more easily than that prepared with the sol-gel method. The catalyst BaNi0.2Mn0.8Al11O19-δ prepared with the reverse micro-emulsion method appeared a plate-like morphology, while it appeared a needle-like morphology when using the sol-gel method. The catalytic activities of catalysts BaNi0.2Mn0.8Al11O19-δ prepared with two different methods for DME combustion were tested. It showed that catalyst prepared with the reverse microemulsion method had better catalytic activity, i.e. T10% of DME had decreased by 45℃, about 90% conversion of diemthyl ether at 380℃. |
---|---|
Bibliography: | diinethyl ether, hexaaluminate catalyst, reverse microemulsion, catalytic combustion 11-3270/TQ O6 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1004-9541 2210-321X |
DOI: | 10.1016/S1004-9541(08)60094-4 |