Fitting scattered data points with ball B-Spline curves using particle swarm optimization
•An efficient and robust scattered data points fitting algorithm of BBSCs based on particle swarm optimization.•We use the BBSCs to represent the 3D tubular shape by one parametric equation, i.e. B-spline form.•We use PSO algorithm three times to finish the surface reconstruction. [Display omitted]...
Saved in:
| Published in | Computers & graphics Vol. 72; pp. 1 - 11 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.05.2018
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0097-8493 1873-7684 |
| DOI | 10.1016/j.cag.2018.01.006 |
Cover
| Abstract | •An efficient and robust scattered data points fitting algorithm of BBSCs based on particle swarm optimization.•We use the BBSCs to represent the 3D tubular shape by one parametric equation, i.e. B-spline form.•We use PSO algorithm three times to finish the surface reconstruction.
[Display omitted]
Scattered data fitting has always been a challenging problem in the fields of geometric modeling and computer-aided design. As the skeleton-based three-dimensional solid model representation, the ball B-Spline curve is suitable to fit scattered data points on the surface of a tubular shape. We study the problem of fitting scattered data points with ball B-spline curves (BBSCs) and propose a corresponding fitting algorithm based on the particle swarm optimization (PSO) algorithm. In this process, we encounter three critical and difficult sub-problems: (1) parameterizing data points, (2) determining the knot vector, and (3) calculating the control radii. All of these problems are multidimensional and nonlinear. The parallelism of the PSO algorithm provides high optimization, which is suitable for solving nonlinear, non-differentiable, and multi-modal optimization problems. Therefore, we use it to solve the scattered data fitting problem. The PSO is applied in three steps to solve this problem. First, we determine the parametric values of the data points using PSO. Then, we compute the knot vector based on the parametric values of the data points. Finally, we obtain the radius function. The experiments on the shell surface, crescent surface, and real vessel models verify the accuracy and flexibility of the method. The research can be widely used in computer-aided design, animation, and model analysis. |
|---|---|
| AbstractList | •An efficient and robust scattered data points fitting algorithm of BBSCs based on particle swarm optimization.•We use the BBSCs to represent the 3D tubular shape by one parametric equation, i.e. B-spline form.•We use PSO algorithm three times to finish the surface reconstruction.
[Display omitted]
Scattered data fitting has always been a challenging problem in the fields of geometric modeling and computer-aided design. As the skeleton-based three-dimensional solid model representation, the ball B-Spline curve is suitable to fit scattered data points on the surface of a tubular shape. We study the problem of fitting scattered data points with ball B-spline curves (BBSCs) and propose a corresponding fitting algorithm based on the particle swarm optimization (PSO) algorithm. In this process, we encounter three critical and difficult sub-problems: (1) parameterizing data points, (2) determining the knot vector, and (3) calculating the control radii. All of these problems are multidimensional and nonlinear. The parallelism of the PSO algorithm provides high optimization, which is suitable for solving nonlinear, non-differentiable, and multi-modal optimization problems. Therefore, we use it to solve the scattered data fitting problem. The PSO is applied in three steps to solve this problem. First, we determine the parametric values of the data points using PSO. Then, we compute the knot vector based on the parametric values of the data points. Finally, we obtain the radius function. The experiments on the shell surface, crescent surface, and real vessel models verify the accuracy and flexibility of the method. The research can be widely used in computer-aided design, animation, and model analysis. Scattered data fitting has always been a challenging problem in the fields of geometric modeling and computer-aided design. As the skeleton-based three-dimensional solid model representation, the ball B-Spline curve is suitable to fit scattered data points on the surface of a tubular shape. We study the problem of fitting scattered data points with ball B-spline curves (BBSCs) and propose a corresponding fitting algorithm based on the particle swarm optimization (PSO) algorithm. In this process, we encounter three critical and difficult sub-problems: (1) parameterizing data points, (2) determining the knot vector, and (3) calculating the control radii. All of these problems are multidimensional and nonlinear. The parallelism of the PSO algorithm provides high optimization, which is suitable for solving nonlinear, non-differentiable, and multi-modal optimization problems. Therefore, we use it to solve the scattered data fitting problem. The PSO is applied in three steps to solve this problem. First, we determine the parametric values of the data points using PSO. Then, we compute the knot vector based on the parametric values of the data points. Finally, we obtain the radius function. The experiments on the shell surface, crescent surface, and real vessel models verify the accuracy and flexibility of the method. The research can be widely used in computer-aided design, animation, and model analysis. |
| Author | Fu, Yan Zhou, Mingquan Shen, Junchen Wu, Zhongke Zhu, Yuanshuai Wang, Xingce Jiang, Qianqian |
| Author_xml | – sequence: 1 givenname: Zhongke surname: Wu fullname: Wu, Zhongke – sequence: 2 givenname: Xingce orcidid: 0000-0002-3177-8902 surname: Wang fullname: Wang, Xingce – sequence: 3 givenname: Yan surname: Fu fullname: Fu, Yan email: fuyan@bnu.edu.cn – sequence: 4 givenname: Junchen surname: Shen fullname: Shen, Junchen – sequence: 5 givenname: Qianqian surname: Jiang fullname: Jiang, Qianqian – sequence: 6 givenname: Yuanshuai surname: Zhu fullname: Zhu, Yuanshuai – sequence: 7 givenname: Mingquan surname: Zhou fullname: Zhou, Mingquan |
| BookMark | eNp9kLFOwzAURS1UJNrCB7BZYk54z0ntRExQUUCqxAAMTJZrO8VVmgTbbQVfT0qZGDq95Z77dM-IDJq2sYRcIqQIyK9XqVbLlAEWKWAKwE_IEAuRJYIX-YAMAUqRFHmZnZFRCCsAYIznQ_I-czG6ZkmDVjFabw01Kirata6Jge5c_KALVdf0LnnpatdYqjd-awPdhD3VKR-dri0NO-XXtO2iW7tvFV3bnJPTStXBXvzdMXmb3b9OH5P588PT9HaeaJZDTAyKbCJUpSsUeqKYKUtTcrSZWKhKTCoLinHBkSOAzgujjYCCqWKBpWaw4NmYXB16O99-bmyIctVufNO_lAwEzwRCgX0KDynt2xC8rWTn3Vr5L4kg9wblSvYG5d6gBJS9wZ4R_xjt4u-26JWrj5I3B9L2w7fOehm0s422xnmrozStO0L_AFb7jYc |
| CitedBy_id | crossref_primary_10_1016_j_cag_2018_02_006 crossref_primary_10_1016_j_aei_2024_102354 crossref_primary_10_3390_en15186571 crossref_primary_10_1016_j_media_2021_102249 crossref_primary_10_1155_2022_7669483 crossref_primary_10_1002_mma_9791 crossref_primary_10_1109_JIOT_2019_2960827 crossref_primary_10_1186_s13640_018_0368_5 crossref_primary_10_1007_s40314_021_01460_3 crossref_primary_10_1016_j_advengsoft_2022_103334 crossref_primary_10_3934_math_2025249 |
| Cites_doi | 10.1016/j.asoc.2012.05.030 10.1016/j.cad.2006.12.006 10.1109/38.156017 10.1007/s00138-007-0097-8 10.1016/j.cad.2011.07.010 10.1016/j.tcs.2010.03.001 10.1080/00036817408839073 10.1007/s003660200005 10.1016/S0167-9473(02)00343-2 10.1016/S0010-4485(03)00140-4 10.1016/j.neucom.2014.07.006 10.1016/S0010-4485(03)00006-X 10.1137/0715022 10.1016/j.tcs.2005.05.020 10.1016/j.ins.2010.11.007 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright Elsevier Science Ltd. May 2018 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. May 2018 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cag.2018.01.006 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7684 |
| EndPage | 11 |
| ExternalDocumentID | 10_1016_j_cag_2018_01_006 S0097849318300062 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABMAC ABTAH ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEKER AFFNX AFKWA AFTJW AGHFR AGSOS AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W K-O KOM LG9 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSV SSW SSZ T5K TN5 UHS VH1 VOH WH7 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c240t-d17357afcf17c5a2d99d961e37baf75fe0a267616100c48dcd7082a8b19c20b63 |
| IEDL.DBID | .~1 |
| ISSN | 0097-8493 |
| IngestDate | Fri Jul 25 06:22:28 EDT 2025 Wed Oct 01 04:05:28 EDT 2025 Thu Apr 24 23:10:09 EDT 2025 Fri Feb 23 02:27:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Skeleton Ball B-spline curves (BBSCs) Scattered data fitting Particle swarm optimization (PSO) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c240t-d17357afcf17c5a2d99d961e37baf75fe0a267616100c48dcd7082a8b19c20b63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3177-8902 |
| PQID | 2076371081 |
| PQPubID | 2047474 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2076371081 crossref_primary_10_1016_j_cag_2018_01_006 crossref_citationtrail_10_1016_j_cag_2018_01_006 elsevier_sciencedirect_doi_10_1016_j_cag_2018_01_006 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2018 2018-05-00 20180501 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computers & graphics |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Leng, Wu, Zhou (bib0014) 2011 Wu, Zhou, Wang, Ao, Song (bib0028) 2006 Yoshimoto, Moriyama, Harada (bib0031) 1999 Park, Lee (bib0016) 2007; 39 Yang, Wang, Sun (bib0029) 2004; 36 Wang, Wu, Shen, Jiang, Zhu, Zhou (bib0025) 2017 Dorigo, Blum (bib0005) 2005; 344 Shi, Eberhart (bib0022) 1998 Bonabeau, Dorigo, Theraulaz (bib0002) 1999 Iglesias, Galvez, Avila (bib0011) 2017 Jing, Sun (bib0012) 2005; 2 Burchard (bib0003) 1974; 3 Zhao, Lu, Guo, Wen, Wu (bib0032) 2011; 2 Yoshimoto, Harada, Yoshimoto (bib0030) 2003; 35 Gálvez, Iglesias (bib0009) 2012; 192 Tagliasacchi, Alhashim, Olson, Zhang (bib0024) 2012; 31 Bonabeau, Corne, Knowles, Poli (bib0001) 2010; 411 Jupp (bib0013) 1978; 15 Rice (bib0019) 1969; 2 Eigen, Eigen, 2014 Gálvez, Iglesias (bib0008) 2011; 43 Zhu, Tian, Zhou, Seah, Yan (bib0033) 2008; 7 Piegl, Tiller (bib0017) 2002; 18 Wen, Wang, Wu, Zhou, Jin (bib0026) 2015; 148 . Pottmann H, Peternell M. Envelopes—computational theory and applications. In: Falcidieno B (editor), Spring conference on computer graphics 2000. Comenius University; 2000. p. 323. Proceedings of the conference in Budmerice. 2000. Wu, Seah, Zhou (bib0027) 2007 Siddiqi, Zhang, Macrini, Shokoufandeh, Bouix, Dickinson (bib0023) 2008; 19 Seah, Wu (bib0021) 2005 de Boor, Rice (bib0004) 1968; 20 Molinari, Durand, Sabatier (bib0015) 2004; 45 GáLvez, Iglesias (bib0010) 2013; 13 Sarfraz, Raza (bib0020) 2001 Farin (bib0007) 1992; 12 Jupp (10.1016/j.cag.2018.01.006_bib0013) 1978; 15 Iglesias (10.1016/j.cag.2018.01.006_bib0011) 2017 Zhao (10.1016/j.cag.2018.01.006_bib0032) 2011; 2 Sarfraz (10.1016/j.cag.2018.01.006_bib0020) 2001 Siddiqi (10.1016/j.cag.2018.01.006_bib0023) 2008; 19 Bonabeau (10.1016/j.cag.2018.01.006_bib0001) 2010; 411 Burchard (10.1016/j.cag.2018.01.006_bib0003) 1974; 3 Shi (10.1016/j.cag.2018.01.006_bib0022) 1998 Zhu (10.1016/j.cag.2018.01.006_bib0033) 2008; 7 Dorigo (10.1016/j.cag.2018.01.006_bib0005) 2005; 344 10.1016/j.cag.2018.01.006_bib0006 Leng (10.1016/j.cag.2018.01.006_bib0014) 2011 Farin (10.1016/j.cag.2018.01.006_bib0007) 1992; 12 Wang (10.1016/j.cag.2018.01.006_bib0025) 2017 Molinari (10.1016/j.cag.2018.01.006_bib0015) 2004; 45 Seah (10.1016/j.cag.2018.01.006_bib0021) 2005 Tagliasacchi (10.1016/j.cag.2018.01.006_bib0024) 2012; 31 Wu (10.1016/j.cag.2018.01.006_bib0028) 2006 10.1016/j.cag.2018.01.006_bib0018 de Boor (10.1016/j.cag.2018.01.006_bib0004) 1968; 20 Gálvez (10.1016/j.cag.2018.01.006_bib0008) 2011; 43 Yoshimoto (10.1016/j.cag.2018.01.006_bib0031) 1999 Piegl (10.1016/j.cag.2018.01.006_bib0017) 2002; 18 Yang (10.1016/j.cag.2018.01.006_bib0029) 2004; 36 Rice (10.1016/j.cag.2018.01.006_bib0019) 1969; 2 GáLvez (10.1016/j.cag.2018.01.006_bib0010) 2013; 13 Jing (10.1016/j.cag.2018.01.006_bib0012) 2005; 2 Yoshimoto (10.1016/j.cag.2018.01.006_bib0030) 2003; 35 Gálvez (10.1016/j.cag.2018.01.006_bib0009) 2012; 192 Wen (10.1016/j.cag.2018.01.006_bib0026) 2015; 148 Bonabeau (10.1016/j.cag.2018.01.006_bib0002) 1999 Park (10.1016/j.cag.2018.01.006_bib0016) 2007; 39 Wu (10.1016/j.cag.2018.01.006_bib0027) 2007 |
| References_xml | – year: 2017 ident: bib0011 article-title: Immunological approach for full NURBS reconstruction of outline curves from noisy data points in medical imaging[J] publication-title: IEEE/ACM transactions on computational biology and bioinformatics – volume: 13 start-page: 1491 year: 2013 end-page: 1504 ident: bib0010 article-title: A new iterative mutually coupled hybrid GA–PSO approach for curve fitting in manufacturing publication-title: Appl Soft Comput – year: 2011 ident: bib0014 article-title: Reconstruction of tubular object with ball b-spline curve publication-title: Proceedings of computer graphics international – volume: 39 start-page: 439 year: 2007 end-page: 451 ident: bib0016 article-title: B-spline curve fitting based on adaptive curve refinement using dominant points publication-title: Comput-Aid Des – start-page: 162 year: 1999 end-page: 169 ident: bib0031 article-title: Automatic knot placement by a genetic algorithm for data fitting with a spline publication-title: Proceedings of international conference on shape modeling and applications international’99 – volume: 411 start-page: 2081 year: 2010 end-page: 2083 ident: bib0001 article-title: Swarm intelligence theory: a snapshot of the state of the art publication-title: Theor Comput Sci – reference: ). – volume: 2 year: 1969 ident: bib0019 publication-title: The approximation of functions – volume: 3 start-page: 309 year: 1974 end-page: 319 ident: bib0003 article-title: Splines (with optimal knots) are better publication-title: Appl Anal – volume: 20 year: 1968 ident: bib0004 publication-title: Least squares cubic spline approximation, ifixed knots, iivariable knots, Purdue University Reports CSD TR Purdue University – volume: 45 start-page: 159 year: 2004 end-page: 178 ident: bib0015 article-title: Bounded optimal knots for regression splines publication-title: Comput Stat Data Anal – start-page: 126 year: 2017 end-page: 135 ident: bib0025 article-title: Scattered data points fitting using ball b-spline curves based on particle swarm optimization publication-title: Proceedings of international conference on cyberworlds – volume: 18 start-page: 59 year: 2002 end-page: 65 ident: bib0017 article-title: Data approximation using biarcs publication-title: Eng Comput – volume: 31 start-page: 1735 year: 2012 end-page: 1744 ident: bib0024 article-title: Mean curvature skeletons publication-title: Computer graphics Forum – volume: 36 start-page: 639 year: 2004 end-page: 652 ident: bib0029 article-title: Control point adjustment for b-spline curve approximation publication-title: Comput-Aid Des – reference: Eigen, Eigen, 2014, ( – year: 1999 ident: bib0002 publication-title: Swarm intelligence: from natural to artificial systems – volume: 19 start-page: 261 year: 2008 end-page: 275 ident: bib0023 article-title: Retrieving articulated 3-D models using medial surfaces publication-title: Mach Vis Appl – start-page: 1 year: 2005 end-page: 8 ident: bib0021 article-title: Ball b-spline based geometric models in distributed virtual environments publication-title: Proceedings of workshop towards semantic virtual environments – volume: 43 start-page: 1683 year: 2011 end-page: 1692 ident: bib0008 article-title: Efficient particle swarm optimization approach for data fitting with free knot b-splines publication-title: Comput-Aid Des – volume: 344 start-page: 243 year: 2005 end-page: 278 ident: bib0005 article-title: Ant colony optimization theory: a survey publication-title: Theor Comput Sci – volume: 192 start-page: 174 year: 2012 end-page: 192 ident: bib0009 article-title: Particle swarm optimization for non-uniform rational b-spline surface reconstruction from clouds of 3D data points publication-title: Inf Sci – reference: Pottmann H, Peternell M. Envelopes—computational theory and applications. In: Falcidieno B (editor), Spring conference on computer graphics 2000. Comenius University; 2000. p. 323. Proceedings of the conference in Budmerice. 2000. – volume: 7 start-page: 81 year: 2008 end-page: 88 ident: bib0033 article-title: Plant modeling based on 3D reconstruction and its application in digital museum publication-title: Int J Virtual Real – volume: 2 start-page: 905 year: 2005 end-page: 909 ident: bib0012 article-title: Fitting b-spline curves by least squares support vector machines publication-title: Proceedings of international conference on neural networks and brain, 2005. ICNN&B’05 – volume: 148 start-page: 569 year: 2015 end-page: 577 ident: bib0026 article-title: A novel statistical cerebrovascular segmentation algorithm with particle swarm optimization publication-title: Neurocomputing – start-page: 421 year: 2007 end-page: 424 ident: bib0027 article-title: Skeleton based parametric solid models: ball b-spline curves publication-title: Proceedings of the 10th IEEE international conference on computer-aided design and computer graphics – start-page: 738 year: 2001 end-page: 743 ident: bib0020 article-title: Capturing outline of fonts using genetic algorithm and splines publication-title: Proceedings of the fifth international conference on information visualisation – volume: 35 start-page: 751 year: 2003 end-page: 760 ident: bib0030 article-title: Data fitting with a spline using a real-coded genetic algorithm publication-title: Comput-Aid Des – start-page: 69 year: 1998 end-page: 73 ident: bib0022 article-title: A modified particle swarm optimizer publication-title: Proceedings of IEEE international conference on world congress on computational intelligence evolutionary computation proceedings of 1998 – volume: 2 start-page: 331 year: 2011 end-page: 335 ident: bib0032 article-title: 3D shape reconstruction and realistic rendering of flowering rape ( publication-title: Proceedings of 2011 international conference on multimedia and signal processing (CMSP) – volume: 15 start-page: 328 year: 1978 end-page: 343 ident: bib0013 article-title: Approximation to data by splines with free knots publication-title: SIAM J Numer Anal – start-page: 259 year: 2006 end-page: 265 ident: bib0028 article-title: An interactive system of modeling 3D trees with ball b-spline curves publication-title: Proceedings of second international symposium on plant growth modeling and applications, 2006. PMA’06 – volume: 12 start-page: 78 year: 1992 end-page: 86 ident: bib0007 article-title: From conics to nurbs: a tutorial and survey publication-title: IEEE Comput Graph Appl – volume: 13 start-page: 1491 issue: 3 year: 2013 ident: 10.1016/j.cag.2018.01.006_bib0010 article-title: A new iterative mutually coupled hybrid GA–PSO approach for curve fitting in manufacturing publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.05.030 – volume: 39 start-page: 439 issue: 6 year: 2007 ident: 10.1016/j.cag.2018.01.006_bib0016 article-title: B-spline curve fitting based on adaptive curve refinement using dominant points publication-title: Comput-Aid Des doi: 10.1016/j.cad.2006.12.006 – volume: 31 start-page: 1735 year: 2012 ident: 10.1016/j.cag.2018.01.006_bib0024 article-title: Mean curvature skeletons – volume: 12 start-page: 78 issue: 5 year: 1992 ident: 10.1016/j.cag.2018.01.006_bib0007 article-title: From conics to nurbs: a tutorial and survey publication-title: IEEE Comput Graph Appl doi: 10.1109/38.156017 – year: 2017 ident: 10.1016/j.cag.2018.01.006_bib0011 article-title: Immunological approach for full NURBS reconstruction of outline curves from noisy data points in medical imaging[J] publication-title: IEEE/ACM transactions on computational biology and bioinformatics – start-page: 69 year: 1998 ident: 10.1016/j.cag.2018.01.006_bib0022 article-title: A modified particle swarm optimizer – year: 2011 ident: 10.1016/j.cag.2018.01.006_bib0014 article-title: Reconstruction of tubular object with ball b-spline curve – volume: 19 start-page: 261 issue: 4 year: 2008 ident: 10.1016/j.cag.2018.01.006_bib0023 article-title: Retrieving articulated 3-D models using medial surfaces publication-title: Mach Vis Appl doi: 10.1007/s00138-007-0097-8 – volume: 43 start-page: 1683 issue: 12 year: 2011 ident: 10.1016/j.cag.2018.01.006_bib0008 article-title: Efficient particle swarm optimization approach for data fitting with free knot b-splines publication-title: Comput-Aid Des doi: 10.1016/j.cad.2011.07.010 – volume: 411 start-page: 2081 issue: 21 year: 2010 ident: 10.1016/j.cag.2018.01.006_bib0001 article-title: Swarm intelligence theory: a snapshot of the state of the art publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2010.03.001 – volume: 3 start-page: 309 issue: 4 year: 1974 ident: 10.1016/j.cag.2018.01.006_bib0003 article-title: Splines (with optimal knots) are better publication-title: Appl Anal doi: 10.1080/00036817408839073 – volume: 20 year: 1968 ident: 10.1016/j.cag.2018.01.006_bib0004 publication-title: Least squares cubic spline approximation, ifixed knots, iivariable knots, Purdue University Reports CSD TR Purdue University – ident: 10.1016/j.cag.2018.01.006_bib0006 – volume: 18 start-page: 59 issue: 1 year: 2002 ident: 10.1016/j.cag.2018.01.006_bib0017 article-title: Data approximation using biarcs publication-title: Eng Comput doi: 10.1007/s003660200005 – start-page: 259 year: 2006 ident: 10.1016/j.cag.2018.01.006_bib0028 article-title: An interactive system of modeling 3D trees with ball b-spline curves – start-page: 126 year: 2017 ident: 10.1016/j.cag.2018.01.006_bib0025 article-title: Scattered data points fitting using ball b-spline curves based on particle swarm optimization – start-page: 421 year: 2007 ident: 10.1016/j.cag.2018.01.006_bib0027 article-title: Skeleton based parametric solid models: ball b-spline curves – ident: 10.1016/j.cag.2018.01.006_bib0018 – volume: 2 start-page: 331 year: 2011 ident: 10.1016/j.cag.2018.01.006_bib0032 article-title: 3D shape reconstruction and realistic rendering of flowering rape (brassica napus l.) – volume: 45 start-page: 159 issue: 2 year: 2004 ident: 10.1016/j.cag.2018.01.006_bib0015 article-title: Bounded optimal knots for regression splines publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(02)00343-2 – volume: 2 start-page: 905 year: 2005 ident: 10.1016/j.cag.2018.01.006_bib0012 article-title: Fitting b-spline curves by least squares support vector machines – volume: 36 start-page: 639 issue: 7 year: 2004 ident: 10.1016/j.cag.2018.01.006_bib0029 article-title: Control point adjustment for b-spline curve approximation publication-title: Comput-Aid Des doi: 10.1016/S0010-4485(03)00140-4 – start-page: 162 year: 1999 ident: 10.1016/j.cag.2018.01.006_bib0031 article-title: Automatic knot placement by a genetic algorithm for data fitting with a spline – volume: 7 start-page: 81 issue: 1 year: 2008 ident: 10.1016/j.cag.2018.01.006_bib0033 article-title: Plant modeling based on 3D reconstruction and its application in digital museum publication-title: Int J Virtual Real – volume: 148 start-page: 569 year: 2015 ident: 10.1016/j.cag.2018.01.006_bib0026 article-title: A novel statistical cerebrovascular segmentation algorithm with particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.07.006 – start-page: 1 year: 2005 ident: 10.1016/j.cag.2018.01.006_bib0021 article-title: Ball b-spline based geometric models in distributed virtual environments – start-page: 738 year: 2001 ident: 10.1016/j.cag.2018.01.006_bib0020 article-title: Capturing outline of fonts using genetic algorithm and splines – volume: 35 start-page: 751 issue: 8 year: 2003 ident: 10.1016/j.cag.2018.01.006_bib0030 article-title: Data fitting with a spline using a real-coded genetic algorithm publication-title: Comput-Aid Des doi: 10.1016/S0010-4485(03)00006-X – volume: 2 year: 1969 ident: 10.1016/j.cag.2018.01.006_bib0019 – year: 1999 ident: 10.1016/j.cag.2018.01.006_bib0002 – volume: 15 start-page: 328 issue: 2 year: 1978 ident: 10.1016/j.cag.2018.01.006_bib0013 article-title: Approximation to data by splines with free knots publication-title: SIAM J Numer Anal doi: 10.1137/0715022 – volume: 344 start-page: 243 issue: 2 year: 2005 ident: 10.1016/j.cag.2018.01.006_bib0005 article-title: Ant colony optimization theory: a survey publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2005.05.020 – volume: 192 start-page: 174 year: 2012 ident: 10.1016/j.cag.2018.01.006_bib0009 article-title: Particle swarm optimization for non-uniform rational b-spline surface reconstruction from clouds of 3D data points publication-title: Inf Sci doi: 10.1016/j.ins.2010.11.007 |
| SSID | ssj0002264 |
| Score | 2.1815805 |
| Snippet | •An efficient and robust scattered data points fitting algorithm of BBSCs based on particle swarm optimization.•We use the BBSCs to represent the 3D tubular... Scattered data fitting has always been a challenging problem in the fields of geometric modeling and computer-aided design. As the skeleton-based... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Animation Ball B-spline curves (BBSCs) CAD Computer aided design Computer animation Data points Model accuracy Optimization Parameter estimation Particle swarm optimization Particle swarm optimization (PSO) Scattered data fitting Scattered data points Skeleton Three dimensional models |
| Title | Fitting scattered data points with ball B-Spline curves using particle swarm optimization |
| URI | https://dx.doi.org/10.1016/j.cag.2018.01.006 https://www.proquest.com/docview/2076371081 |
| Volume | 72 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002264 issn: 0097-8493 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] customDbUrl: eissn: 1873-7684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002264 issn: 0097-8493 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-7684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002264 issn: 0097-8493 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-7684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002264 issn: 0097-8493 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnuJRkAcmpECSOnYyQkVVQLAAEkyWn6ioLzUFNn47d4nDS4iB0YkdJefzd2fnuztCDhjXDPl-UcJ9GrGsDWsOdh0RwKD31rhEaYxGvrrmvTt2cZ_dz5FOEwuDtMqA_TWmV2gdrhwHaR5P-n2M8YUdECtQKRF0EYcZE1jF4Ojtk-aBgaJ1JkpAY-jd_NmsOF5GPSK7K68yd2LRo99t0w-UrkxPd4UsB5-RntSvtUrm3GiNLH3JJLhOHrr9isBMS1MlzHSWIveTTsb90aykeNpKtRoM6Gl0gzG4jprn6YsrKfLeH-kkfDItX9V0SMeAI8MQoLlB7rpnt51eFKomRAas8yyyiWhnQnnjE2EyldqisAVPXFto5UXmXaxSLjh4enFsWG6NFeAGqFwnhUljzdubZH40HrktQn3Oeeq1LfI8YyZ30LQZF96yTHue2m0SN_KSJqQUx8oWA9lwx54kiFiiiGWcSBDxNjn8GDKp82n81Zk1kyC_KYUEvP9rWKuZMBlWZAn3AUnBncqTnf89dZcsYqsmO7bI_Gz67PbAIZnp_Urj9snCyfll7_odMNnexA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4hOLQ9IApU5VX20BOSi-3swz4CIgrlcSGR0tNqnygoJFEc4MZvZ8Zet6VCOfRo765lz85-O7P-ZoaQ70wYhny_JBMhTxjvwJoDryMBGAzBWZ9pg9HI1zeiN2A_h3y4Qs7aWBikVUbsbzC9Rut45zhK83g2GmGML3hArESlRNAFHF5jPJfogf14-cPzwEjRJhUlwDF0b39t1iQvq--Q3lXUqTux6tH7m9M_MF3vPd0Nsh6NRnrSvNdnsuInm-TTX6kEt8iv7qhmMNPK1hkzvaNI_qSz6WiyqCget1Kjx2N6mtxiEK6n9nH-5CuKxPc7OovfTKtnPX-gUwCShxihuU0G3fP-WS-JZRMSC9vzInGZ7HCpgw2ZtFznrixdKTLfkUYHyYNPdS6kAFMvTS0rnHUS7ABdmKy0eWpE5wtZnUwn_iuhoRAiD8aVRcGZLTxcOi5kcIybIHK3Q9JWXsrGnOJY2mKsWvLYvQIRKxSxSjMFIt4hR7-HzJqEGss6s3YS1ButUAD4y4bttxOm4pKsoB2gFOypItv9v6cekg-9_vWVurq4udwjH7GlYT7uk9XF_NEfgHWyMN9q7XsFdKngWQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fitting+scattered+data+points+with+ball+B-Spline+curves+using+particle+swarm+optimization&rft.jtitle=Computers+%26+graphics&rft.au=Wu%2C+Zhongke&rft.au=Wang%2C+Xingce&rft.au=Fu%2C+Yan&rft.au=Shen%2C+Junchen&rft.date=2018-05-01&rft.issn=0097-8493&rft.volume=72&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1016%2Fj.cag.2018.01.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cag_2018_01_006 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8493&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8493&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8493&client=summon |