Structure and property study for heterobimetallic Au Ag and Au Cu thiolate interlocked [2]catenane and comparison with homometallic Au Au gold() thiolate interlocked [2]catenanes - a theoretical study
A series of heterobimetallic (Au Ag interlocking and Au Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship between their structures and properties. In order to fully investigate the influence of metal type in these [2]catenanes and compare the similar...
Saved in:
Published in | New journal of chemistry Vol. 48; no. 44; pp. 18757 - 18767 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
11.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1144-0546 1369-9261 |
DOI | 10.1039/d4nj03520h |
Cover
Abstract | A series of heterobimetallic (Au Ag interlocking and Au Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship between their structures and properties. In order to fully investigate the influence of metal type in these [2]catenanes and compare the similarities and differences between these heterobimetallic and homometallic catenanes, the results were also compared with our previously studied homometallic Au Au interlocking [2]catenane molecules. The results display that the steric hindrance increases with the increase of the number of monomers, and thus the distances between the center and the edge of the rings become longer, demonstrating a trend of outward expansion. As the size of the ring becomes larger, the total weak interaction increases and shows increasingly dispersed distribution. The value of the dispersion interaction energy increases with the overgrowth of the size of molecular systems and correspondingly the energy level of the frontier orbital decreases and the energy gap becomes bigger when two hexamers interlock. Compared with the Au Ag interlocking [2]catenanes, the Au Cu interlocking [2]catenanes present red-shifted absorption spectra, which is consistent with their smaller energy gap. The hole-electron analysis results indicate that the S
0
→ S
1
excitations are almost unidirectional charge transfer excitations due to the significant separation of holes and electrons, while for the high-energy excited states, local excitations occupy a dominant position. Through the study of the specific proportion of charge transfer on each fragment in the main transition process, we found that for heterometallic [2]catenanes, the Cu atom in the Au Cu interlocking [2]catenanes has a greater influence on the electronic structure. As for homometallic [2]catenanes, the effects of Au atoms in the two rings are equivalent on the electronic structure.
To explore the difference of Au Ag/Cu and Au Au interlocking thiolate [2]catenanes, we carried the comparison of the geometric and electronic structures, ultraviolet-visible spectra and composition of intermolecular interaction forces theoretically. |
---|---|
AbstractList | A series of heterobimetallic (Au⋯Ag interlocking and Au⋯Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship between their structures and properties. In order to fully investigate the influence of metal type in these [2]catenanes and compare the similarities and differences between these heterobimetallic and homometallic catenanes, the results were also compared with our previously studied homometallic Au⋯Au interlocking [2]catenane molecules. The results display that the steric hindrance increases with the increase of the number of monomers, and thus the distances between the center and the edge of the rings become longer, demonstrating a trend of outward expansion. As the size of the ring becomes larger, the total weak interaction increases and shows increasingly dispersed distribution. The value of the dispersion interaction energy increases with the overgrowth of the size of molecular systems and correspondingly the energy level of the frontier orbital decreases and the energy gap becomes bigger when two hexamers interlock. Compared with the Au⋯Ag interlocking [2]catenanes, the Au⋯Cu interlocking [2]catenanes present red-shifted absorption spectra, which is consistent with their smaller energy gap. The hole–electron analysis results indicate that the S
0
→ S
1
excitations are almost unidirectional charge transfer excitations due to the significant separation of holes and electrons, while for the high-energy excited states, local excitations occupy a dominant position. Through the study of the specific proportion of charge transfer on each fragment in the main transition process, we found that for heterometallic [2]catenanes, the Cu atom in the Au⋯Cu interlocking [2]catenanes has a greater influence on the electronic structure. As for homometallic [2]catenanes, the effects of Au atoms in the two rings are equivalent on the electronic structure. A series of heterobimetallic (Au Ag interlocking and Au Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship between their structures and properties. In order to fully investigate the influence of metal type in these [2]catenanes and compare the similarities and differences between these heterobimetallic and homometallic catenanes, the results were also compared with our previously studied homometallic Au Au interlocking [2]catenane molecules. The results display that the steric hindrance increases with the increase of the number of monomers, and thus the distances between the center and the edge of the rings become longer, demonstrating a trend of outward expansion. As the size of the ring becomes larger, the total weak interaction increases and shows increasingly dispersed distribution. The value of the dispersion interaction energy increases with the overgrowth of the size of molecular systems and correspondingly the energy level of the frontier orbital decreases and the energy gap becomes bigger when two hexamers interlock. Compared with the Au Ag interlocking [2]catenanes, the Au Cu interlocking [2]catenanes present red-shifted absorption spectra, which is consistent with their smaller energy gap. The hole-electron analysis results indicate that the S 0 → S 1 excitations are almost unidirectional charge transfer excitations due to the significant separation of holes and electrons, while for the high-energy excited states, local excitations occupy a dominant position. Through the study of the specific proportion of charge transfer on each fragment in the main transition process, we found that for heterometallic [2]catenanes, the Cu atom in the Au Cu interlocking [2]catenanes has a greater influence on the electronic structure. As for homometallic [2]catenanes, the effects of Au atoms in the two rings are equivalent on the electronic structure. To explore the difference of Au Ag/Cu and Au Au interlocking thiolate [2]catenanes, we carried the comparison of the geometric and electronic structures, ultraviolet-visible spectra and composition of intermolecular interaction forces theoretically. A series of heterobimetallic (Au⋯Ag interlocking and Au⋯Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship between their structures and properties. In order to fully investigate the influence of metal type in these [2]catenanes and compare the similarities and differences between these heterobimetallic and homometallic catenanes, the results were also compared with our previously studied homometallic Au⋯Au interlocking [2]catenane molecules. The results display that the steric hindrance increases with the increase of the number of monomers, and thus the distances between the center and the edge of the rings become longer, demonstrating a trend of outward expansion. As the size of the ring becomes larger, the total weak interaction increases and shows increasingly dispersed distribution. The value of the dispersion interaction energy increases with the overgrowth of the size of molecular systems and correspondingly the energy level of the frontier orbital decreases and the energy gap becomes bigger when two hexamers interlock. Compared with the Au⋯Ag interlocking [2]catenanes, the Au⋯Cu interlocking [2]catenanes present red-shifted absorption spectra, which is consistent with their smaller energy gap. The hole–electron analysis results indicate that the S0 → S1 excitations are almost unidirectional charge transfer excitations due to the significant separation of holes and electrons, while for the high-energy excited states, local excitations occupy a dominant position. Through the study of the specific proportion of charge transfer on each fragment in the main transition process, we found that for heterometallic [2]catenanes, the Cu atom in the Au⋯Cu interlocking [2]catenanes has a greater influence on the electronic structure. As for homometallic [2]catenanes, the effects of Au atoms in the two rings are equivalent on the electronic structure. |
Author | Pan, Qing-qing Gao, Feng-wei Su, Zhong-min Liu, Yang Wu, Shui-xing Duan, Ying-chen Kan, Yu-he |
AuthorAffiliation | Jilin University School of Chemistry and Environmental Engineering Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province State Key Laboratory of Supramolecular Structure and Materials Changchun University of Science and Technology Huaiyin Normal University Hainan Normal University College of Chemistry Institute of Theoretical Chemistry Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry School of Chemistry & Chemical Engineering Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – sequence: 0 name: Changchun University of Science and Technology – sequence: 0 name: Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province – sequence: 0 name: School of Chemistry & Chemical Engineering – sequence: 0 name: Hainan Normal University – sequence: 0 name: Huaiyin Normal University – sequence: 0 name: Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry – sequence: 0 name: Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry – sequence: 0 name: State Key Laboratory of Supramolecular Structure and Materials – sequence: 0 name: Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials – sequence: 0 name: School of Chemistry and Chemical Engineering – sequence: 0 name: College of Chemistry – sequence: 0 name: Jilin University – sequence: 0 name: Institute of Theoretical Chemistry – sequence: 0 name: School of Chemistry and Environmental Engineering |
Author_xml | – sequence: 1 givenname: Yang surname: Liu fullname: Liu, Yang – sequence: 2 givenname: Shui-xing surname: Wu fullname: Wu, Shui-xing – sequence: 3 givenname: Qing-qing surname: Pan fullname: Pan, Qing-qing – sequence: 4 givenname: Feng-wei surname: Gao fullname: Gao, Feng-wei – sequence: 5 givenname: Ying-chen surname: Duan fullname: Duan, Ying-chen – sequence: 6 givenname: Yu-he surname: Kan fullname: Kan, Yu-he – sequence: 7 givenname: Zhong-min surname: Su fullname: Su, Zhong-min |
BookMark | eNqFkU1LxDAQhoMo-HnxLgS8qFDNJN12e1zWb0QPehMpaTK1XbvJmqTI_kN_ltGK4snTDMPDM8O8m2TVWIOE7AI7BiaKE52aGRMjzpoVsgEiK5KCZ7Aae0jThI3SbJ1sej9jDCDPYIO83wfXq9A7pNJounB2gS4sqQ-9XtLaOtpgQGerdo5Bdl2r6KSnk-cvOnbTnoamtZ0MSFsTyc6qF9T0kT-pODPSDGJl5wvpWm8NfWtDQxs7t3-MPX22nT44_FfnaUJlpNA6DK2S3XDrNlmrZedx57tukYfzs4fpZXJzd3E1ndwkiqcsJAok8FrndSV4LrUSMC60VhXPucowKwAV6FSkugIYQ1HVFdac8xGCGuVCii2yP2jjp1579KGc2d6ZuLEUwLMcMjYuInU0UMpZ7x3W5cK1c-mWJbDyM6jyNL29_grqMsJ7A-y8-uF-gxQfm_SWAg |
Cites_doi | 10.1063/1.1740589 10.1021/ic50197a006 10.1021/la1045628 10.1039/D2NJ04788H 10.1039/c3cp52837e 10.1080/00268977900102941 10.1021/ar100048c 10.1016/j.carbon.2020.05.023 10.1063/1.3382344 10.1063/1.466059 10.1021/acs.accounts.8b00065 10.1063/1.444267 10.1088/0256-307X/34/4/047801 10.1002/jcc.22885 10.1007/BF02401406 10.1021/ar300213z 10.1126/sciadv.1500045 10.1039/c39810000201 10.1063/1.478813 10.1002/jcc.10255 10.1021/ja00033a073 10.1002/jcc.1056 10.31635/ccschem.021.202101188 10.1007/BF00533485 10.1080/00268979300103121 10.1016/j.jmgm.2010.01.011 10.1063/1.1741876 10.1063/1.459993 10.1021/ic50196a034 10.1080/08927022.2017.1332413 10.1016/0301-0104(88)80018-1 10.1039/c2nr11749e 10.1063/1.1740588 10.1021/acs.accounts.8b00380 10.1021/ar200331z 10.1002/9780470132586.ch41 10.1063/1.472460 10.1039/C9CP03053K 10.1039/c4nr00827h 10.1021/ja5075689 10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U 10.1039/c2nr30504f 10.1021/acs.chemrev.5b00703 10.1021/j100345a036 10.1002/jcc.26812 10.1021/acsami.1c20722 10.1063/1.467943 10.1007/s10876-017-1287-9 10.1039/D0CP01005G |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SR 8BQ 8FD H9R JG9 KA0 |
DOI | 10.1039/d4nj03520h |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Illustrata: Natural Sciences Materials Research Database ProQuest Illustrata: Technology Collection |
DatabaseTitle | CrossRef Materials Research Database ProQuest Illustrata: Natural Sciences Engineered Materials Abstracts ProQuest Illustrata: Technology Collection Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1369-9261 |
EndPage | 18767 |
ExternalDocumentID | 10_1039_D4NJ03520H d4nj03520h |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29N 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABCQX ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I L7B M4U N9A O9- OK1 P2P R7B R7C R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SKH SLH TN5 TWZ VH6 YNT YQT AAYXX AFRZK AKMSF ALUYA CITATION R56 7SR 8BQ 8FD H9R JG9 KA0 |
ID | FETCH-LOGICAL-c240t-c1a12fd7fb327adc3189ddcb272c6e691ec1d434db11819bfbef2225e1c573a3 |
ISSN | 1144-0546 |
IngestDate | Mon Jun 30 09:42:27 EDT 2025 Tue Jul 01 01:40:41 EDT 2025 Tue Dec 17 20:57:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c240t-c1a12fd7fb327adc3189ddcb272c6e691ec1d434db11819bfbef2225e1c573a3 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d4nj03520h ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3342-1966 0000-0002-1385-0237 0000-0002-2082-6796 |
PQID | 3126716089 |
PQPubID | 2048886 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1039_D4NJ03520H proquest_journals_3126716089 rsc_primary_d4nj03520h |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-11 |
PublicationDateYYYYMMDD | 2024-11-11 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | New journal of chemistry |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Teo (D4NJ03520H/cit19/1) 1992; 114 McKenzie (D4NJ03520H/cit17/1) 2014; 136 Janjua (D4NJ03520H/cit47/1) 2017; 43 Yao (D4NJ03520H/cit12/1) 2018; 51 Fonseca Guerra (D4NJ03520H/cit31/1) 1998; 99 Baerends (D4NJ03520H/cit32/1) 2017 Lenthe (D4NJ03520H/cit36/1) 1996; 105 Tang (D4NJ03520H/cit16/1) 2018; 51 Liu (D4NJ03520H/cit43/1) 2020; 165 Frisch (D4NJ03520H/cit21/1) 2009 Tang (D4NJ03520H/cit13/1) 2011; 27 Li (D4NJ03520H/cit2/1) 2013; 46 Kaupp (D4NJ03520H/cit25/1) 1991; 94 Ziegler (D4NJ03520H/cit27/1) 1977; 46 Janjua (D4NJ03520H/cit48/1) 2010; 28 Zeng (D4NJ03520H/cit9/1) 2015; 1 Negishi (D4NJ03520H/cit3/1) 2013; 15 Tang (D4NJ03520H/cit14/1) 2012; 4 Bergner (D4NJ03520H/cit26/1) 1993; 80 Lenthe (D4NJ03520H/cit34/1) 1994; 101 Yang (D4NJ03520H/cit10/1) 2022; 4 Grimme (D4NJ03520H/cit22/1) 2010; 132 Wang (D4NJ03520H/cit11/1) 2020; 22 Te Velde (D4NJ03520H/cit30/1) 2001; 22 Hariharan (D4NJ03520H/cit23/1) 1973; 28 Schmid (D4NJ03520H/cit1/1) 1990; 27 Snijders (D4NJ03520H/cit38/1) 1979; 38 Van Lenthe (D4NJ03520H/cit41/1) 2003; 24 Liu (D4NJ03520H/cit20/1) 2023; 47 Mulliken (D4NJ03520H/cit51/1) 1955; 23 Mulliken (D4NJ03520H/cit52/1) 1955; 23 Mulliken (D4NJ03520H/cit53/1) 1955; 23 Ziegler (D4NJ03520H/cit40/1) 1989; 93 van Lenthe (D4NJ03520H/cit37/1) 1996; 57 Zhou (D4NJ03520H/cit49/1) 2022; 14 Dass (D4NJ03520H/cit4/1) 2012; 4 Lenthe (D4NJ03520H/cit33/1) 1993; 99 Conroy (D4NJ03520H/cit15/1) 2014; 6 Boerrigter (D4NJ03520H/cit39/1) 1988; 122 Ziegler (D4NJ03520H/cit28/1) 1979; 18 Ziegler (D4NJ03520H/cit29/1) 1979; 18 Francl (D4NJ03520H/cit24/1) 1982; 77 Mahmood (D4NJ03520H/cit46/1) 2017; 28 Jin (D4NJ03520H/cit8/1) 2016; 116 Qian (D4NJ03520H/cit5/1) 2012; 45 Parker (D4NJ03520H/cit6/1) 2010; 43 Romero-Muñiz (D4NJ03520H/cit7/1) 2019; 21 Zhong (D4NJ03520H/cit50/1) 2017; 34 Briant (D4NJ03520H/cit18/1) 1981 Lenthe (D4NJ03520H/cit35/1) 1999; 110 Tian Lu (D4NJ03520H/cit42/1) 2022; 43 Lu (D4NJ03520H/cit45/1) 2012; 33 |
References_xml | – issn: 2009 doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Mennucci Petersson Nakatsuji Caricato Li Hratchian Izmaylov Bloino Zheng Sonnenberg Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Montgomery Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Rega Millam Klene Knox Cross Bakken Adamo Jaramillo Gomperts Stratmann Yazyev Austin Cammi Pomelli Ochterski Martin Morokuma Zakrzewski Voth Salvador Dannenberg Dapprich Daniels Farkas Foresman Ortiz Cioslowski Fox – issn: 2017 publication-title: ADF2017, SCM, Theoretical Chemistry doi: Baerends Atkins Autschbach Baseggio Bashford Bérces Bickelhaupt Bo Boerrigter Cavallo Daul Chong Chulhai Deng Dickson Dieterich Ellis van Faassen Fan Fischer Fonseca Guerra Franchini Ghysels Giammona van Gisbergen Goez Götz Groeneveld Gritsenko Grüning Gusarov Harris van den Hoek Hu Jacob Jacobsen Jensen Joubert Kaminski van Kessel König Kootstra Kovalenko Krykunov van Lenthe McCormack Michalak Mitoraj Morton Neugebauer Nicu Noodleman Osinga Patchkovskii Pavanello Peeples Philipsen Post Pye Ramanantoanina Ramos Ravenek Rodríguez Ros Rüger Schipper Schlüns van Schoot Schreckenbach Seldenthuis Seth Snijders Solà Stener Swart Swerhone Tognetti te V elde Vernooijs Versluis Visscher Visser Wang Wesolowski van Wezenbeek Wiesenekker Wolff Woo Yakovlev – publication-title: Multiwfn Manual, version 3.8(dev), Section 3.21.28 doi: Lu – volume: 23 start-page: 1841 year: 1955 ident: D4NJ03520H/cit51/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1740589 – volume: 18 start-page: 1755 year: 1979 ident: D4NJ03520H/cit28/1 publication-title: Inorg. Chem. doi: 10.1021/ic50197a006 – volume: 27 start-page: 2989 year: 2011 ident: D4NJ03520H/cit13/1 publication-title: Langmuir doi: 10.1021/la1045628 – volume: 47 start-page: 3321 year: 2023 ident: D4NJ03520H/cit20/1 publication-title: New J. Chem. doi: 10.1039/D2NJ04788H – volume: 15 start-page: 18736 year: 2013 ident: D4NJ03520H/cit3/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp52837e – volume: 38 start-page: 1909 year: 1979 ident: D4NJ03520H/cit38/1 publication-title: Mol. Phys. doi: 10.1080/00268977900102941 – volume: 43 start-page: 1289 year: 2010 ident: D4NJ03520H/cit6/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar100048c – volume: 165 start-page: 461 year: 2020 ident: D4NJ03520H/cit43/1 publication-title: Carbon doi: 10.1016/j.carbon.2020.05.023 – volume: 132 start-page: 154104 year: 2010 ident: D4NJ03520H/cit22/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 99 start-page: 4597 year: 1993 ident: D4NJ03520H/cit33/1 publication-title: J. Chem. Phys. doi: 10.1063/1.466059 – volume: 51 start-page: 1338 year: 2018 ident: D4NJ03520H/cit12/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00065 – volume: 77 start-page: 3654 year: 1982 ident: D4NJ03520H/cit24/1 publication-title: J. Chem. Phys. doi: 10.1063/1.444267 – volume: 34 start-page: 047801 year: 2017 ident: D4NJ03520H/cit50/1 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/34/4/047801 – volume: 33 start-page: 580 year: 2012 ident: D4NJ03520H/cit45/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 46 start-page: 1 year: 1977 ident: D4NJ03520H/cit27/1 publication-title: Theor. Chim. Acta doi: 10.1007/BF02401406 – volume: 46 start-page: 1749 year: 2013 ident: D4NJ03520H/cit2/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar300213z – volume: 1 start-page: e1500045 year: 2015 ident: D4NJ03520H/cit9/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500045 – start-page: 201 year: 1981 ident: D4NJ03520H/cit18/1 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39810000201 – volume: 110 start-page: 8943 year: 1999 ident: D4NJ03520H/cit35/1 publication-title: J. Chem. Phys. doi: 10.1063/1.478813 – volume: 24 start-page: 1142 year: 2003 ident: D4NJ03520H/cit41/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10255 – volume: 114 start-page: 2743 year: 1992 ident: D4NJ03520H/cit19/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00033a073 – volume: 22 start-page: 931 year: 2001 ident: D4NJ03520H/cit30/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.1056 – volume: 4 start-page: 66 year: 2022 ident: D4NJ03520H/cit10/1 publication-title: CCS Chem. doi: 10.31635/ccschem.021.202101188 – volume: 28 start-page: 213 year: 1973 ident: D4NJ03520H/cit23/1 publication-title: Theor. Chim. Acta doi: 10.1007/BF00533485 – volume: 80 start-page: 1431 year: 1993 ident: D4NJ03520H/cit26/1 publication-title: Mol. Phys. doi: 10.1080/00268979300103121 – volume: 28 start-page: 735 year: 2010 ident: D4NJ03520H/cit48/1 publication-title: J. Mol. Graphics Modell. doi: 10.1016/j.jmgm.2010.01.011 – volume: 23 start-page: 2338 year: 1955 ident: D4NJ03520H/cit53/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1741876 – volume: 94 start-page: 1360 year: 1991 ident: D4NJ03520H/cit25/1 publication-title: J. Chem. Phys. doi: 10.1063/1.459993 – volume: 18 start-page: 1558 year: 1979 ident: D4NJ03520H/cit29/1 publication-title: Inorg. Chem. doi: 10.1021/ic50196a034 – volume: 43 start-page: 1539 year: 2017 ident: D4NJ03520H/cit47/1 publication-title: Mol. Simul. doi: 10.1080/08927022.2017.1332413 – volume: 122 start-page: 357 year: 1988 ident: D4NJ03520H/cit39/1 publication-title: Chem. Phys. doi: 10.1016/0301-0104(88)80018-1 – volume: 4 start-page: 2260 year: 2012 ident: D4NJ03520H/cit4/1 publication-title: Nanoscale doi: 10.1039/c2nr11749e – volume-title: ADF2017, SCM, Theoretical Chemistry year: 2017 ident: D4NJ03520H/cit32/1 – volume: 23 start-page: 1833 year: 1955 ident: D4NJ03520H/cit52/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1740588 – volume: 51 start-page: 2793 year: 2018 ident: D4NJ03520H/cit16/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00380 – volume: 45 start-page: 1470 year: 2012 ident: D4NJ03520H/cit5/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar200331z – volume: 27 start-page: 214 year: 1990 ident: D4NJ03520H/cit1/1 publication-title: Inorg. Synth. doi: 10.1002/9780470132586.ch41 – volume: 99 start-page: 391 year: 1998 ident: D4NJ03520H/cit31/1 publication-title: Theor. Chem. Acc. – volume: 105 start-page: 6505 year: 1996 ident: D4NJ03520H/cit36/1 publication-title: J. Chem. Phys. doi: 10.1063/1.472460 – volume: 21 start-page: 19538 year: 2019 ident: D4NJ03520H/cit7/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP03053K – volume: 6 start-page: 7416 year: 2014 ident: D4NJ03520H/cit15/1 publication-title: Nanoscale doi: 10.1039/c4nr00827h – volume: 136 start-page: 13426 year: 2014 ident: D4NJ03520H/cit17/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5075689 – volume: 57 start-page: 281 year: 1996 ident: D4NJ03520H/cit37/1 publication-title: Int. J. Quantum Chem. doi: 10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U – volume: 4 start-page: 4119 year: 2012 ident: D4NJ03520H/cit14/1 publication-title: Nanoscale doi: 10.1039/c2nr30504f – volume: 116 start-page: 10346 year: 2016 ident: D4NJ03520H/cit8/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00703 – volume: 93 start-page: 3050 year: 1989 ident: D4NJ03520H/cit40/1 publication-title: J. Phys. Chem. doi: 10.1021/j100345a036 – volume: 43 start-page: 539 year: 2022 ident: D4NJ03520H/cit42/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.26812 – volume: 14 start-page: 8705 year: 2022 ident: D4NJ03520H/cit49/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c20722 – volume: 101 start-page: 9783 year: 1994 ident: D4NJ03520H/cit34/1 publication-title: J. Chem. Phys. doi: 10.1063/1.467943 – year: 2009 ident: D4NJ03520H/cit21/1 – volume: 28 start-page: 3175 year: 2017 ident: D4NJ03520H/cit46/1 publication-title: J. Cluster Sci. doi: 10.1007/s10876-017-1287-9 – volume: 22 start-page: 9053 year: 2020 ident: D4NJ03520H/cit11/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP01005G |
SSID | ssj0011761 |
Score | 2.4352803 |
Snippet | A series of heterobimetallic (Au Ag interlocking and Au Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship... A series of heterobimetallic (Au⋯Ag interlocking and Au⋯Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 18757 |
SubjectTerms | Absorption spectra Atomic structure Charge transfer Copper Density functional theory Electronic structure Electrons Energy distribution Energy gap Energy levels Excitation Gold Locking Silver Steric hindrance |
Title | Structure and property study for heterobimetallic Au Ag and Au Cu thiolate interlocked [2]catenane and comparison with homometallic Au Au gold() thiolate interlocked [2]catenanes - a theoretical study |
URI | https://www.proquest.com/docview/3126716089 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer customDbUrl: https://pubs.rsc.org eissn: 1369-9261 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011761 issn: 1144-0546 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW67gFeEF8THQNZgkmgypDYbhI_hm5QJphAK9IkhKrYcdsMLR1tIxC_kJ_Az-HaiZOUDzF4idKbxIp0Tu3rm3vPReihlomOTNA99ZRH-ED5JEpDRrSQPDQ0kbZn5OvjYPSOH50OTjud762spWItn6ivv60r-R9UwQa4mirZf0C2HhQMcA74whEQhuOlMD6x4q_uE8CFiasvwam2krE2f3Bukl0WMjvX4GMbOeu46MdlUSKcDQtwOzPY2661lY1YwsL2ERzQ_cEzuj84MLlSeZJrV_rm-hXa0O18cb7YGLXoz2wD6sjEGS4z7KpP-slGIWUjdXvWaEq1pC2Ua05XZxFlhV1Ckmr5NYuLtZzMi4x8yRrzmzLO-xZM5FPL_iKxoWJAdUY-66wdA6HcFANWc3Q5bcO2kIDzWYlqlzYWCCJoKfXu5noetTjNeWvm9o2yf8sNgN9ln5Bf1hiPGYnWlOdnRkvWmzcraZ3f2FzcQts0DALaRdvx4fjlq_oLlx-WWr7uzZ10LhNPm6c3naVmB7S1dO1prBs0vo6uVfsXHJdkvIE6Or-JrgwdMrfQt5qUGHiDHSmxBRcDKfHPpMRxgeOZvRvOhgV27MEt9uD39INjjr21ISQ2hMRtQtoRC2wI-ejxX4dbYYIT3CJi-a630fj54Xg4IlW7EKLALV0T5Sc-nabhVDIaJqmC1UqkqZI0pCrQgfC18lPOeCpNsbWQU6mnJtqhfTUIWcJ2UDdf5PoOwpGCiUuwIIio5kKDC89NPTa4uqkOPKV66IGDZXJRisJMbDIHE5MDfnxkwRv10J5DbFL9V1YT5tMg9AMvEj20AyjWzzeg7_7pwl10tSH_HuoCnPoeuMRreb9i1w893r5q |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+property+study+for+heterobimetallic+Au+Ag+and+Au+Cu+thiolate+interlocked+%5B2%5Dcatenane+and+comparison+with+homometallic+Au+Au+gold%28%29+thiolate+interlocked+%5B2%5Dcatenanes+-+a+theoretical+study&rft.jtitle=New+journal+of+chemistry&rft.au=Liu%2C+Yang&rft.au=Wu%2C+Shui-xing&rft.au=Pan%2C+Qing-qing&rft.au=Gao%2C+Feng-wei&rft.date=2024-11-11&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=48&rft.issue=44&rft.spage=18757&rft.epage=18767&rft_id=info:doi/10.1039%2Fd4nj03520h&rft.externalDocID=d4nj03520h |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon |