Structure and property study for heterobimetallic Au Ag and Au Cu thiolate interlocked [2]catenane and comparison with homometallic Au Au gold() thiolate interlocked [2]catenanes - a theoretical study

A series of heterobimetallic (Au Ag interlocking and Au Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship between their structures and properties. In order to fully investigate the influence of metal type in these [2]catenanes and compare the similar...

Full description

Saved in:
Bibliographic Details
Published inNew journal of chemistry Vol. 48; no. 44; pp. 18757 - 18767
Main Authors Liu, Yang, Wu, Shui-xing, Pan, Qing-qing, Gao, Feng-wei, Duan, Ying-chen, Kan, Yu-he, Su, Zhong-min
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 11.11.2024
Subjects
Online AccessGet full text
ISSN1144-0546
1369-9261
DOI10.1039/d4nj03520h

Cover

Abstract A series of heterobimetallic (Au Ag interlocking and Au Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship between their structures and properties. In order to fully investigate the influence of metal type in these [2]catenanes and compare the similarities and differences between these heterobimetallic and homometallic catenanes, the results were also compared with our previously studied homometallic Au Au interlocking [2]catenane molecules. The results display that the steric hindrance increases with the increase of the number of monomers, and thus the distances between the center and the edge of the rings become longer, demonstrating a trend of outward expansion. As the size of the ring becomes larger, the total weak interaction increases and shows increasingly dispersed distribution. The value of the dispersion interaction energy increases with the overgrowth of the size of molecular systems and correspondingly the energy level of the frontier orbital decreases and the energy gap becomes bigger when two hexamers interlock. Compared with the Au Ag interlocking [2]catenanes, the Au Cu interlocking [2]catenanes present red-shifted absorption spectra, which is consistent with their smaller energy gap. The hole-electron analysis results indicate that the S 0 → S 1 excitations are almost unidirectional charge transfer excitations due to the significant separation of holes and electrons, while for the high-energy excited states, local excitations occupy a dominant position. Through the study of the specific proportion of charge transfer on each fragment in the main transition process, we found that for heterometallic [2]catenanes, the Cu atom in the Au Cu interlocking [2]catenanes has a greater influence on the electronic structure. As for homometallic [2]catenanes, the effects of Au atoms in the two rings are equivalent on the electronic structure. To explore the difference of Au Ag/Cu and Au Au interlocking thiolate [2]catenanes, we carried the comparison of the geometric and electronic structures, ultraviolet-visible spectra and composition of intermolecular interaction forces theoretically.
AbstractList A series of heterobimetallic (Au⋯Ag interlocking and Au⋯Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship between their structures and properties. In order to fully investigate the influence of metal type in these [2]catenanes and compare the similarities and differences between these heterobimetallic and homometallic catenanes, the results were also compared with our previously studied homometallic Au⋯Au interlocking [2]catenane molecules. The results display that the steric hindrance increases with the increase of the number of monomers, and thus the distances between the center and the edge of the rings become longer, demonstrating a trend of outward expansion. As the size of the ring becomes larger, the total weak interaction increases and shows increasingly dispersed distribution. The value of the dispersion interaction energy increases with the overgrowth of the size of molecular systems and correspondingly the energy level of the frontier orbital decreases and the energy gap becomes bigger when two hexamers interlock. Compared with the Au⋯Ag interlocking [2]catenanes, the Au⋯Cu interlocking [2]catenanes present red-shifted absorption spectra, which is consistent with their smaller energy gap. The hole–electron analysis results indicate that the S 0 → S 1 excitations are almost unidirectional charge transfer excitations due to the significant separation of holes and electrons, while for the high-energy excited states, local excitations occupy a dominant position. Through the study of the specific proportion of charge transfer on each fragment in the main transition process, we found that for heterometallic [2]catenanes, the Cu atom in the Au⋯Cu interlocking [2]catenanes has a greater influence on the electronic structure. As for homometallic [2]catenanes, the effects of Au atoms in the two rings are equivalent on the electronic structure.
A series of heterobimetallic (Au Ag interlocking and Au Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship between their structures and properties. In order to fully investigate the influence of metal type in these [2]catenanes and compare the similarities and differences between these heterobimetallic and homometallic catenanes, the results were also compared with our previously studied homometallic Au Au interlocking [2]catenane molecules. The results display that the steric hindrance increases with the increase of the number of monomers, and thus the distances between the center and the edge of the rings become longer, demonstrating a trend of outward expansion. As the size of the ring becomes larger, the total weak interaction increases and shows increasingly dispersed distribution. The value of the dispersion interaction energy increases with the overgrowth of the size of molecular systems and correspondingly the energy level of the frontier orbital decreases and the energy gap becomes bigger when two hexamers interlock. Compared with the Au Ag interlocking [2]catenanes, the Au Cu interlocking [2]catenanes present red-shifted absorption spectra, which is consistent with their smaller energy gap. The hole-electron analysis results indicate that the S 0 → S 1 excitations are almost unidirectional charge transfer excitations due to the significant separation of holes and electrons, while for the high-energy excited states, local excitations occupy a dominant position. Through the study of the specific proportion of charge transfer on each fragment in the main transition process, we found that for heterometallic [2]catenanes, the Cu atom in the Au Cu interlocking [2]catenanes has a greater influence on the electronic structure. As for homometallic [2]catenanes, the effects of Au atoms in the two rings are equivalent on the electronic structure. To explore the difference of Au Ag/Cu and Au Au interlocking thiolate [2]catenanes, we carried the comparison of the geometric and electronic structures, ultraviolet-visible spectra and composition of intermolecular interaction forces theoretically.
A series of heterobimetallic (Au⋯Ag interlocking and Au⋯Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship between their structures and properties. In order to fully investigate the influence of metal type in these [2]catenanes and compare the similarities and differences between these heterobimetallic and homometallic catenanes, the results were also compared with our previously studied homometallic Au⋯Au interlocking [2]catenane molecules. The results display that the steric hindrance increases with the increase of the number of monomers, and thus the distances between the center and the edge of the rings become longer, demonstrating a trend of outward expansion. As the size of the ring becomes larger, the total weak interaction increases and shows increasingly dispersed distribution. The value of the dispersion interaction energy increases with the overgrowth of the size of molecular systems and correspondingly the energy level of the frontier orbital decreases and the energy gap becomes bigger when two hexamers interlock. Compared with the Au⋯Ag interlocking [2]catenanes, the Au⋯Cu interlocking [2]catenanes present red-shifted absorption spectra, which is consistent with their smaller energy gap. The hole–electron analysis results indicate that the S0 → S1 excitations are almost unidirectional charge transfer excitations due to the significant separation of holes and electrons, while for the high-energy excited states, local excitations occupy a dominant position. Through the study of the specific proportion of charge transfer on each fragment in the main transition process, we found that for heterometallic [2]catenanes, the Cu atom in the Au⋯Cu interlocking [2]catenanes has a greater influence on the electronic structure. As for homometallic [2]catenanes, the effects of Au atoms in the two rings are equivalent on the electronic structure.
Author Pan, Qing-qing
Gao, Feng-wei
Su, Zhong-min
Liu, Yang
Wu, Shui-xing
Duan, Ying-chen
Kan, Yu-he
AuthorAffiliation Jilin University
School of Chemistry and Environmental Engineering
Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province
State Key Laboratory of Supramolecular Structure and Materials
Changchun University of Science and Technology
Huaiyin Normal University
Hainan Normal University
College of Chemistry
Institute of Theoretical Chemistry
Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry
School of Chemistry & Chemical Engineering
Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry
Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials
School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – sequence: 0
  name: Changchun University of Science and Technology
– sequence: 0
  name: Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province
– sequence: 0
  name: School of Chemistry & Chemical Engineering
– sequence: 0
  name: Hainan Normal University
– sequence: 0
  name: Huaiyin Normal University
– sequence: 0
  name: Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry
– sequence: 0
  name: Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry
– sequence: 0
  name: State Key Laboratory of Supramolecular Structure and Materials
– sequence: 0
  name: Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials
– sequence: 0
  name: School of Chemistry and Chemical Engineering
– sequence: 0
  name: College of Chemistry
– sequence: 0
  name: Jilin University
– sequence: 0
  name: Institute of Theoretical Chemistry
– sequence: 0
  name: School of Chemistry and Environmental Engineering
Author_xml – sequence: 1
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 2
  givenname: Shui-xing
  surname: Wu
  fullname: Wu, Shui-xing
– sequence: 3
  givenname: Qing-qing
  surname: Pan
  fullname: Pan, Qing-qing
– sequence: 4
  givenname: Feng-wei
  surname: Gao
  fullname: Gao, Feng-wei
– sequence: 5
  givenname: Ying-chen
  surname: Duan
  fullname: Duan, Ying-chen
– sequence: 6
  givenname: Yu-he
  surname: Kan
  fullname: Kan, Yu-he
– sequence: 7
  givenname: Zhong-min
  surname: Su
  fullname: Su, Zhong-min
BookMark eNqFkU1LxDAQhoMo-HnxLgS8qFDNJN12e1zWb0QPehMpaTK1XbvJmqTI_kN_ltGK4snTDMPDM8O8m2TVWIOE7AI7BiaKE52aGRMjzpoVsgEiK5KCZ7Aae0jThI3SbJ1sej9jDCDPYIO83wfXq9A7pNJounB2gS4sqQ-9XtLaOtpgQGerdo5Bdl2r6KSnk-cvOnbTnoamtZ0MSFsTyc6qF9T0kT-pODPSDGJl5wvpWm8NfWtDQxs7t3-MPX22nT44_FfnaUJlpNA6DK2S3XDrNlmrZedx57tukYfzs4fpZXJzd3E1ndwkiqcsJAok8FrndSV4LrUSMC60VhXPucowKwAV6FSkugIYQ1HVFdac8xGCGuVCii2yP2jjp1579KGc2d6ZuLEUwLMcMjYuInU0UMpZ7x3W5cK1c-mWJbDyM6jyNL29_grqMsJ7A-y8-uF-gxQfm_SWAg
Cites_doi 10.1063/1.1740589
10.1021/ic50197a006
10.1021/la1045628
10.1039/D2NJ04788H
10.1039/c3cp52837e
10.1080/00268977900102941
10.1021/ar100048c
10.1016/j.carbon.2020.05.023
10.1063/1.3382344
10.1063/1.466059
10.1021/acs.accounts.8b00065
10.1063/1.444267
10.1088/0256-307X/34/4/047801
10.1002/jcc.22885
10.1007/BF02401406
10.1021/ar300213z
10.1126/sciadv.1500045
10.1039/c39810000201
10.1063/1.478813
10.1002/jcc.10255
10.1021/ja00033a073
10.1002/jcc.1056
10.31635/ccschem.021.202101188
10.1007/BF00533485
10.1080/00268979300103121
10.1016/j.jmgm.2010.01.011
10.1063/1.1741876
10.1063/1.459993
10.1021/ic50196a034
10.1080/08927022.2017.1332413
10.1016/0301-0104(88)80018-1
10.1039/c2nr11749e
10.1063/1.1740588
10.1021/acs.accounts.8b00380
10.1021/ar200331z
10.1002/9780470132586.ch41
10.1063/1.472460
10.1039/C9CP03053K
10.1039/c4nr00827h
10.1021/ja5075689
10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U
10.1039/c2nr30504f
10.1021/acs.chemrev.5b00703
10.1021/j100345a036
10.1002/jcc.26812
10.1021/acsami.1c20722
10.1063/1.467943
10.1007/s10876-017-1287-9
10.1039/D0CP01005G
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SR
8BQ
8FD
H9R
JG9
KA0
DOI 10.1039/d4nj03520h
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Illustrata: Natural Sciences
Materials Research Database
ProQuest Illustrata: Technology Collection
DatabaseTitle CrossRef
Materials Research Database
ProQuest Illustrata: Natural Sciences
Engineered Materials Abstracts
ProQuest Illustrata: Technology Collection
Technology Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1369-9261
EndPage 18767
ExternalDocumentID 10_1039_D4NJ03520H
d4nj03520h
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29N
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABCQX
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
L7B
M4U
N9A
O9-
OK1
P2P
R7B
R7C
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SKH
SLH
TN5
TWZ
VH6
YNT
YQT
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
7SR
8BQ
8FD
H9R
JG9
KA0
ID FETCH-LOGICAL-c240t-c1a12fd7fb327adc3189ddcb272c6e691ec1d434db11819bfbef2225e1c573a3
ISSN 1144-0546
IngestDate Mon Jun 30 09:42:27 EDT 2025
Tue Jul 01 01:40:41 EDT 2025
Tue Dec 17 20:57:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c240t-c1a12fd7fb327adc3189ddcb272c6e691ec1d434db11819bfbef2225e1c573a3
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d4nj03520h
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3342-1966
0000-0002-1385-0237
0000-0002-2082-6796
PQID 3126716089
PQPubID 2048886
PageCount 11
ParticipantIDs crossref_primary_10_1039_D4NJ03520H
proquest_journals_3126716089
rsc_primary_d4nj03520h
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-11
PublicationDateYYYYMMDD 2024-11-11
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-11
  day: 11
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle New journal of chemistry
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Teo (D4NJ03520H/cit19/1) 1992; 114
McKenzie (D4NJ03520H/cit17/1) 2014; 136
Janjua (D4NJ03520H/cit47/1) 2017; 43
Yao (D4NJ03520H/cit12/1) 2018; 51
Fonseca Guerra (D4NJ03520H/cit31/1) 1998; 99
Baerends (D4NJ03520H/cit32/1) 2017
Lenthe (D4NJ03520H/cit36/1) 1996; 105
Tang (D4NJ03520H/cit16/1) 2018; 51
Liu (D4NJ03520H/cit43/1) 2020; 165
Frisch (D4NJ03520H/cit21/1) 2009
Tang (D4NJ03520H/cit13/1) 2011; 27
Li (D4NJ03520H/cit2/1) 2013; 46
Kaupp (D4NJ03520H/cit25/1) 1991; 94
Ziegler (D4NJ03520H/cit27/1) 1977; 46
Janjua (D4NJ03520H/cit48/1) 2010; 28
Zeng (D4NJ03520H/cit9/1) 2015; 1
Negishi (D4NJ03520H/cit3/1) 2013; 15
Tang (D4NJ03520H/cit14/1) 2012; 4
Bergner (D4NJ03520H/cit26/1) 1993; 80
Lenthe (D4NJ03520H/cit34/1) 1994; 101
Yang (D4NJ03520H/cit10/1) 2022; 4
Grimme (D4NJ03520H/cit22/1) 2010; 132
Wang (D4NJ03520H/cit11/1) 2020; 22
Te Velde (D4NJ03520H/cit30/1) 2001; 22
Hariharan (D4NJ03520H/cit23/1) 1973; 28
Schmid (D4NJ03520H/cit1/1) 1990; 27
Snijders (D4NJ03520H/cit38/1) 1979; 38
Van Lenthe (D4NJ03520H/cit41/1) 2003; 24
Liu (D4NJ03520H/cit20/1) 2023; 47
Mulliken (D4NJ03520H/cit51/1) 1955; 23
Mulliken (D4NJ03520H/cit52/1) 1955; 23
Mulliken (D4NJ03520H/cit53/1) 1955; 23
Ziegler (D4NJ03520H/cit40/1) 1989; 93
van Lenthe (D4NJ03520H/cit37/1) 1996; 57
Zhou (D4NJ03520H/cit49/1) 2022; 14
Dass (D4NJ03520H/cit4/1) 2012; 4
Lenthe (D4NJ03520H/cit33/1) 1993; 99
Conroy (D4NJ03520H/cit15/1) 2014; 6
Boerrigter (D4NJ03520H/cit39/1) 1988; 122
Ziegler (D4NJ03520H/cit28/1) 1979; 18
Ziegler (D4NJ03520H/cit29/1) 1979; 18
Francl (D4NJ03520H/cit24/1) 1982; 77
Mahmood (D4NJ03520H/cit46/1) 2017; 28
Jin (D4NJ03520H/cit8/1) 2016; 116
Qian (D4NJ03520H/cit5/1) 2012; 45
Parker (D4NJ03520H/cit6/1) 2010; 43
Romero-Muñiz (D4NJ03520H/cit7/1) 2019; 21
Zhong (D4NJ03520H/cit50/1) 2017; 34
Briant (D4NJ03520H/cit18/1) 1981
Lenthe (D4NJ03520H/cit35/1) 1999; 110
Tian Lu (D4NJ03520H/cit42/1) 2022; 43
Lu (D4NJ03520H/cit45/1) 2012; 33
References_xml – issn: 2009
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Mennucci Petersson Nakatsuji Caricato Li Hratchian Izmaylov Bloino Zheng Sonnenberg Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Montgomery Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Rega Millam Klene Knox Cross Bakken Adamo Jaramillo Gomperts Stratmann Yazyev Austin Cammi Pomelli Ochterski Martin Morokuma Zakrzewski Voth Salvador Dannenberg Dapprich Daniels Farkas Foresman Ortiz Cioslowski Fox
– issn: 2017
  publication-title: ADF2017, SCM, Theoretical Chemistry
  doi: Baerends Atkins Autschbach Baseggio Bashford Bérces Bickelhaupt Bo Boerrigter Cavallo Daul Chong Chulhai Deng Dickson Dieterich Ellis van Faassen Fan Fischer Fonseca Guerra Franchini Ghysels Giammona van Gisbergen Goez Götz Groeneveld Gritsenko Grüning Gusarov Harris van den Hoek Hu Jacob Jacobsen Jensen Joubert Kaminski van Kessel König Kootstra Kovalenko Krykunov van Lenthe McCormack Michalak Mitoraj Morton Neugebauer Nicu Noodleman Osinga Patchkovskii Pavanello Peeples Philipsen Post Pye Ramanantoanina Ramos Ravenek Rodríguez Ros Rüger Schipper Schlüns van Schoot Schreckenbach Seldenthuis Seth Snijders Solà Stener Swart Swerhone Tognetti te V elde Vernooijs Versluis Visscher Visser Wang Wesolowski van Wezenbeek Wiesenekker Wolff Woo Yakovlev
– publication-title: Multiwfn Manual, version 3.8(dev), Section 3.21.28
  doi: Lu
– volume: 23
  start-page: 1841
  year: 1955
  ident: D4NJ03520H/cit51/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740589
– volume: 18
  start-page: 1755
  year: 1979
  ident: D4NJ03520H/cit28/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50197a006
– volume: 27
  start-page: 2989
  year: 2011
  ident: D4NJ03520H/cit13/1
  publication-title: Langmuir
  doi: 10.1021/la1045628
– volume: 47
  start-page: 3321
  year: 2023
  ident: D4NJ03520H/cit20/1
  publication-title: New J. Chem.
  doi: 10.1039/D2NJ04788H
– volume: 15
  start-page: 18736
  year: 2013
  ident: D4NJ03520H/cit3/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp52837e
– volume: 38
  start-page: 1909
  year: 1979
  ident: D4NJ03520H/cit38/1
  publication-title: Mol. Phys.
  doi: 10.1080/00268977900102941
– volume: 43
  start-page: 1289
  year: 2010
  ident: D4NJ03520H/cit6/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar100048c
– volume: 165
  start-page: 461
  year: 2020
  ident: D4NJ03520H/cit43/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.05.023
– volume: 132
  start-page: 154104
  year: 2010
  ident: D4NJ03520H/cit22/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 99
  start-page: 4597
  year: 1993
  ident: D4NJ03520H/cit33/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466059
– volume: 51
  start-page: 1338
  year: 2018
  ident: D4NJ03520H/cit12/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00065
– volume: 77
  start-page: 3654
  year: 1982
  ident: D4NJ03520H/cit24/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.444267
– volume: 34
  start-page: 047801
  year: 2017
  ident: D4NJ03520H/cit50/1
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/34/4/047801
– volume: 33
  start-page: 580
  year: 2012
  ident: D4NJ03520H/cit45/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 46
  start-page: 1
  year: 1977
  ident: D4NJ03520H/cit27/1
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF02401406
– volume: 46
  start-page: 1749
  year: 2013
  ident: D4NJ03520H/cit2/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300213z
– volume: 1
  start-page: e1500045
  year: 2015
  ident: D4NJ03520H/cit9/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500045
– start-page: 201
  year: 1981
  ident: D4NJ03520H/cit18/1
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/c39810000201
– volume: 110
  start-page: 8943
  year: 1999
  ident: D4NJ03520H/cit35/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478813
– volume: 24
  start-page: 1142
  year: 2003
  ident: D4NJ03520H/cit41/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10255
– volume: 114
  start-page: 2743
  year: 1992
  ident: D4NJ03520H/cit19/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00033a073
– volume: 22
  start-page: 931
  year: 2001
  ident: D4NJ03520H/cit30/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.1056
– volume: 4
  start-page: 66
  year: 2022
  ident: D4NJ03520H/cit10/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.021.202101188
– volume: 28
  start-page: 213
  year: 1973
  ident: D4NJ03520H/cit23/1
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF00533485
– volume: 80
  start-page: 1431
  year: 1993
  ident: D4NJ03520H/cit26/1
  publication-title: Mol. Phys.
  doi: 10.1080/00268979300103121
– volume: 28
  start-page: 735
  year: 2010
  ident: D4NJ03520H/cit48/1
  publication-title: J. Mol. Graphics Modell.
  doi: 10.1016/j.jmgm.2010.01.011
– volume: 23
  start-page: 2338
  year: 1955
  ident: D4NJ03520H/cit53/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1741876
– volume: 94
  start-page: 1360
  year: 1991
  ident: D4NJ03520H/cit25/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.459993
– volume: 18
  start-page: 1558
  year: 1979
  ident: D4NJ03520H/cit29/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50196a034
– volume: 43
  start-page: 1539
  year: 2017
  ident: D4NJ03520H/cit47/1
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2017.1332413
– volume: 122
  start-page: 357
  year: 1988
  ident: D4NJ03520H/cit39/1
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(88)80018-1
– volume: 4
  start-page: 2260
  year: 2012
  ident: D4NJ03520H/cit4/1
  publication-title: Nanoscale
  doi: 10.1039/c2nr11749e
– volume-title: ADF2017, SCM, Theoretical Chemistry
  year: 2017
  ident: D4NJ03520H/cit32/1
– volume: 23
  start-page: 1833
  year: 1955
  ident: D4NJ03520H/cit52/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740588
– volume: 51
  start-page: 2793
  year: 2018
  ident: D4NJ03520H/cit16/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00380
– volume: 45
  start-page: 1470
  year: 2012
  ident: D4NJ03520H/cit5/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200331z
– volume: 27
  start-page: 214
  year: 1990
  ident: D4NJ03520H/cit1/1
  publication-title: Inorg. Synth.
  doi: 10.1002/9780470132586.ch41
– volume: 99
  start-page: 391
  year: 1998
  ident: D4NJ03520H/cit31/1
  publication-title: Theor. Chem. Acc.
– volume: 105
  start-page: 6505
  year: 1996
  ident: D4NJ03520H/cit36/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472460
– volume: 21
  start-page: 19538
  year: 2019
  ident: D4NJ03520H/cit7/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP03053K
– volume: 6
  start-page: 7416
  year: 2014
  ident: D4NJ03520H/cit15/1
  publication-title: Nanoscale
  doi: 10.1039/c4nr00827h
– volume: 136
  start-page: 13426
  year: 2014
  ident: D4NJ03520H/cit17/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5075689
– volume: 57
  start-page: 281
  year: 1996
  ident: D4NJ03520H/cit37/1
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U
– volume: 4
  start-page: 4119
  year: 2012
  ident: D4NJ03520H/cit14/1
  publication-title: Nanoscale
  doi: 10.1039/c2nr30504f
– volume: 116
  start-page: 10346
  year: 2016
  ident: D4NJ03520H/cit8/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00703
– volume: 93
  start-page: 3050
  year: 1989
  ident: D4NJ03520H/cit40/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100345a036
– volume: 43
  start-page: 539
  year: 2022
  ident: D4NJ03520H/cit42/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.26812
– volume: 14
  start-page: 8705
  year: 2022
  ident: D4NJ03520H/cit49/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c20722
– volume: 101
  start-page: 9783
  year: 1994
  ident: D4NJ03520H/cit34/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467943
– year: 2009
  ident: D4NJ03520H/cit21/1
– volume: 28
  start-page: 3175
  year: 2017
  ident: D4NJ03520H/cit46/1
  publication-title: J. Cluster Sci.
  doi: 10.1007/s10876-017-1287-9
– volume: 22
  start-page: 9053
  year: 2020
  ident: D4NJ03520H/cit11/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP01005G
SSID ssj0011761
Score 2.4352803
Snippet A series of heterobimetallic (Au Ag interlocking and Au Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship...
A series of heterobimetallic (Au⋯Ag interlocking and Au⋯Cu interlocking) [2]catenanes were studied using DFT and TD-DFT methods to explore the relationship...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 18757
SubjectTerms Absorption spectra
Atomic structure
Charge transfer
Copper
Density functional theory
Electronic structure
Electrons
Energy distribution
Energy gap
Energy levels
Excitation
Gold
Locking
Silver
Steric hindrance
Title Structure and property study for heterobimetallic Au Ag and Au Cu thiolate interlocked [2]catenane and comparison with homometallic Au Au gold() thiolate interlocked [2]catenanes - a theoretical study
URI https://www.proquest.com/docview/3126716089
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 1369-9261
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011761
  issn: 1144-0546
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW67gFeEF8THQNZgkmgypDYbhI_hm5QJphAK9IkhKrYcdsMLR1tIxC_kJ_Az-HaiZOUDzF4idKbxIp0Tu3rm3vPReihlomOTNA99ZRH-ED5JEpDRrSQPDQ0kbZn5OvjYPSOH50OTjud762spWItn6ivv60r-R9UwQa4mirZf0C2HhQMcA74whEQhuOlMD6x4q_uE8CFiasvwam2krE2f3Bukl0WMjvX4GMbOeu46MdlUSKcDQtwOzPY2661lY1YwsL2ERzQ_cEzuj84MLlSeZJrV_rm-hXa0O18cb7YGLXoz2wD6sjEGS4z7KpP-slGIWUjdXvWaEq1pC2Ua05XZxFlhV1Ckmr5NYuLtZzMi4x8yRrzmzLO-xZM5FPL_iKxoWJAdUY-66wdA6HcFANWc3Q5bcO2kIDzWYlqlzYWCCJoKfXu5noetTjNeWvm9o2yf8sNgN9ln5Bf1hiPGYnWlOdnRkvWmzcraZ3f2FzcQts0DALaRdvx4fjlq_oLlx-WWr7uzZ10LhNPm6c3naVmB7S1dO1prBs0vo6uVfsXHJdkvIE6Or-JrgwdMrfQt5qUGHiDHSmxBRcDKfHPpMRxgeOZvRvOhgV27MEt9uD39INjjr21ISQ2hMRtQtoRC2wI-ejxX4dbYYIT3CJi-a630fj54Xg4IlW7EKLALV0T5Sc-nabhVDIaJqmC1UqkqZI0pCrQgfC18lPOeCpNsbWQU6mnJtqhfTUIWcJ2UDdf5PoOwpGCiUuwIIio5kKDC89NPTa4uqkOPKV66IGDZXJRisJMbDIHE5MDfnxkwRv10J5DbFL9V1YT5tMg9AMvEj20AyjWzzeg7_7pwl10tSH_HuoCnPoeuMRreb9i1w893r5q
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+property+study+for+heterobimetallic+Au+Ag+and+Au+Cu+thiolate+interlocked+%5B2%5Dcatenane+and+comparison+with+homometallic+Au+Au+gold%28%29+thiolate+interlocked+%5B2%5Dcatenanes+-+a+theoretical+study&rft.jtitle=New+journal+of+chemistry&rft.au=Liu%2C+Yang&rft.au=Wu%2C+Shui-xing&rft.au=Pan%2C+Qing-qing&rft.au=Gao%2C+Feng-wei&rft.date=2024-11-11&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=48&rft.issue=44&rft.spage=18757&rft.epage=18767&rft_id=info:doi/10.1039%2Fd4nj03520h&rft.externalDocID=d4nj03520h
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon