ON O-MINIMALITY FOR EXPANSIONS OF A DENSE MEET-TREE

This paper aims to define the notion of o-minimality for partially ordered sets. Originally, the notion of o-minimality was introduced for linearly ordered sets in the following way: A linearly ordered structure is said to be o-minimal if any definable subset is a finite union of intervals and point...

Full description

Saved in:
Bibliographic Details
Published inVestnik KazNU. Serii͡a︡ matematika, mekhanika, informatika Vol. 126; no. 2
Main Author Dauletiyrova, Aigerim
Format Journal Article
LanguageEnglish
Published 22.06.2025
Online AccessGet full text
ISSN1563-0277
2617-4871
2617-4871
DOI10.26577/JMMCS2025126205

Cover

Abstract This paper aims to define the notion of o-minimality for partially ordered sets. Originally, the notion of o-minimality was introduced for linearly ordered sets in the following way: A linearly ordered structure is said to be o-minimal if any definable subset is a finite union of intervals and points. For partially ordered sets, this definition does not work. One of the main reasons for this is that the complement of an interval need not be a finite union of intervals, as happens in linearly ordered sets. Here we suggest a notion of a generalized interval which makes possible defining o-minimality for such a partial case of partially ordered sets as a dense meet-tree in a classical way: an expansion of a dense meet-tree is said to be o-minimal if any definable subset is a finite union of generalized interval and points. We think that this approach allows us to transferthe machinery for investigating o-minimality for linearly ordered structures to partially ordered structures.
AbstractList This paper aims to define the notion of o-minimality for partially ordered sets. Originally, the notion of o-minimality was introduced for linearly ordered sets in the following way: A linearly ordered structure is said to be o-minimal if any definable subset is a finite union of intervals and points. For partially ordered sets, this definition does not work. One of the main reasons for this is that the complement of an interval need not be a finite union of intervals, as happens in linearly ordered sets. Here we suggest a notion of a generalized interval which makes possible defining o-minimality for such a partial case of partially ordered sets as a dense meet-tree in a classical way: an expansion of a dense meet-tree is said to be o-minimal if any definable subset is a finite union of generalized interval and points. We think that this approach allows us to transferthe machinery for investigating o-minimality for linearly ordered structures to partially ordered structures.
Author Dauletiyrova, Aigerim
Author_xml – sequence: 1
  givenname: Aigerim
  orcidid: 0000-0003-0051-870X
  surname: Dauletiyrova
  fullname: Dauletiyrova, Aigerim
BookMark eNplkFFLhEAUhYfYINv2vcf5A1N3rjqjj2JjGavGalBP4o4z0KLuokXsv0_aIKin8_DxHTjnkiyG_WAIueZwg8KX8vYxy-ISAX2OAsE_Iw4KLpkXSL4gDveFywClvCCradoBAIYQYuA5xC1yWrAszdMsWqfVK02KDVUvT1FepkVe0iKhEb1TealoplTFqo1SV-TcNt1kVj-5JM-JquIHti7u0zhaM40evLNm2wKCNta30Apu_AZ1GLitNLjVhret5aEIwxZnKALtcZQcjYaZahl41l0Sfur9GA7N8bPpuvowvvXNeKw51N_D613f6-l3-OzAydHjfppGY_8rf75yvwDacVcr
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.26577/JMMCS2025126205
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2617-4871
ExternalDocumentID 10.26577/jmmcs2025126205
10_26577_JMMCS2025126205
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c240t-abd020cef5f0d61e5a2c983d7e2bce1ddf19699d2d6168c412712ec02bcc784f3
IEDL.DBID UNPAY
ISSN 1563-0277
2617-4871
IngestDate Tue Aug 19 23:38:13 EDT 2025
Wed Oct 01 05:54:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c240t-abd020cef5f0d61e5a2c983d7e2bce1ddf19699d2d6168c412712ec02bcc784f3
ORCID 0000-0003-0051-870X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bm.kaznu.kz/index.php/kaznu/article/download/1607/842
ParticipantIDs unpaywall_primary_10_26577_jmmcs2025126205
crossref_primary_10_26577_JMMCS2025126205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-22
PublicationDateYYYYMMDD 2025-06-22
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-22
  day: 22
PublicationDecade 2020
PublicationTitle Vestnik KazNU. Serii͡a︡ matematika, mekhanika, informatika
PublicationYear 2025
SSID ssj0002909284
ssib050739816
ssib036266250
ssib048817391
Score 2.2976098
Snippet This paper aims to define the notion of o-minimality for partially ordered sets. Originally, the notion of o-minimality was introduced for linearly ordered...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Title ON O-MINIMALITY FOR EXPANSIONS OF A DENSE MEET-TREE
URI https://bm.kaznu.kz/index.php/kaznu/article/download/1607/842
UnpaywallVersion publishedVersion
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 2617-4871
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib048817391
  issn: 1563-0277
  databaseCode: AMVHM
  dateStart: 20210401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2617-4871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050739816
  issn: 1563-0277
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMctKAMw8EaUlzywgOQmcfxIxwhcUURSRFupTFXsOAOloaKtEB347NhpeE8w2r4lvujub_n8OwBOuElRbj3TiBAuEWEZQ4HiGKmEE6Kkz9zioXAUs8suuerRXlmbY9_CyGFtkMzyaW0wcwpeoIVEOMWUU-6lk1qM_GOSOhaO5gTEROAlRo0Ur4ClbnwT3hWM1PJ-0jaXM1kaGWHuza8pMaOcO_fDoRpjq7Atkp1-S0vL03yUvDwnDw9fck1jfd5QdVwgCm2JyaA2nciamv0AOP77MzbAWqlCYTi32QQLOt8Cq9EHwnW8DfxWDFsoasbNKLxudu6gOS5C0bsJYxt-27DVgCG8EHFbwEiIDurcCrEDug3ROb9EZYcFpEwmn6BEpkYuKp3RzE2Zp2mCVT3wU66xVNpL08zSc-opNossUMTD3MNauWZV8YBk_i6o5I-53gOQ-9ooLRlkGTVxwCiLQFvyKaWUEdeXQRWcvm9wfzQHafTNAaRwRv8qis7bn86ogrMPD_w2_uG5_b8YH4AVO7C1XhgfgsrkaaqPjKqYyGOwGL2K4_IPegMpZMVd
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMct1A7AwBvxlgcWkNwkjh_pGJVUtCIpoqlUpip2nIHSgGgqRD89dhrKa4LR9i3xRXd_y-ffAXDOdYqym5lChHCBCMsY8iTHSCacEClcZpcPhcOIXQ9Id0iHVW2OeQsjJo1xMs9njfHcKnmBBhJhlVNWtZdWajDyT0lqGTia5REdgeuMaileA_VBdOvfl4zU6n7SNJfTWRppYe4srikxo5xbD5OJnGKjsA2SnX5LS6uz_Dl5e00eH7_kmvbmoqHqtEQUmhKTcWNWiIac_wA4_vsztsBGpUKhv7DZBisq3wHr4RLhOt0Fbi-CPRR2ok7o33Tie6iPizAY3vqRCb992GtDH14FUT-AYRDEKL4Lgj0waAdx6xpVHRaQ1Jm8QIlItVyUKqOZnTJH0QTLpuemXGEhlZOmmaHnNFOsF5kniYO5g5W09arkHsncfVDLn3J1ACB3lVZawssyquOAVhaeMuRTSikjtiu8Q3DxscGj5wVIY6QPIKUzRt0wbPU_nXEILpce-G38w3NHfzE-BmtmYGq9MD4BteJlpk61qijEWfXvvAONwcQs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ON+O-MINIMALITY+FOR+EXPANSIONS+OF+A+DENSE+MEET-TREE&rft.jtitle=Vestnik+KazNU.+Serii%CD%A1a%EF%B8%A1+matematika%2C+mekhanika%2C+informatika&rft.au=Dauletiyrova%2C+Aigerim&rft.date=2025-06-22&rft.issn=1563-0277&rft.eissn=2617-4871&rft.volume=126&rft.issue=2&rft_id=info:doi/10.26577%2FJMMCS2025126205&rft.externalDBID=n%2Fa&rft.externalDocID=10_26577_JMMCS2025126205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1563-0277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1563-0277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1563-0277&client=summon