A FrameWork for the Error Analysis of Discontinuous Finite Element Methods for Elliptic Optimal Control Problems and Applications to C 0 IP Methods

In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posterior...

Full description

Saved in:
Bibliographic Details
Published inNumerical functional analysis and optimization Vol. 36; no. 11; pp. 1388 - 1419
Main Authors Chowdhury, Sudipto, Gudi, Thirupathi, Nandakumaran, A. K.
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 02.11.2015
Subjects
Online AccessGet full text
ISSN0163-0563
1532-2467
DOI10.1080/01630563.2015.1068182

Cover

Abstract In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C 0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings.
AbstractList In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C 0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings.
Author Chowdhury, Sudipto
Gudi, Thirupathi
Nandakumaran, A. K.
Author_xml – sequence: 1
  givenname: Sudipto
  surname: Chowdhury
  fullname: Chowdhury, Sudipto
  organization: Department of Mathematics , Indian Institute of Science
– sequence: 2
  givenname: Thirupathi
  surname: Gudi
  fullname: Gudi, Thirupathi
  email: gudi@math.iisc.ernet.in
  organization: Department of Mathematics , Indian Institute of Science
– sequence: 3
  givenname: A. K.
  surname: Nandakumaran
  fullname: Nandakumaran, A. K.
  organization: Department of Mathematics , Indian Institute of Science
BookMark eNqFkMtOAyEUhompifXyCCbnBUa5FGYaNza11SYaXWhcThgGIkqhARrT5_CFpVU3LnQDhPzfn3O-QzTwwWuETgk-I7jB55gIhrlgZxQTXr5EQxq6h4aEM1rRkagHaLjNVNvQATpM6RVjzOi4GaKPCcyjXOrnEN_AhAj5RcMsxvKaeOk2ySYIBq5sUsFn69dhnWBuvc0l5vRS-wx3Or-EPu3wmXN2la2C-3IupYNpwWJw8BBDV_IJpO9hslo5q2S2wSfIAaaAYfHwU3SM9o10SZ9830foaT57nN5Ut_fXi-nktlJ0hHMlaiWpEow0nBquedle6Brrru7NuCdMdJJ3HEvcEUkU6RnVZqSYbsa67owW7Ajxr14VQ0pRm3YVy8xx0xLcbs22P2bbrdn222zhLn5xyubdMjlK6_6lL79o64uwpXwP0fVtlhsXoonSK5ta9nfFJxSdlYs
CitedBy_id crossref_primary_10_1016_j_cam_2016_12_005
crossref_primary_10_1080_00207160_2019_1704739
crossref_primary_10_1016_j_matcom_2023_12_025
crossref_primary_10_1051_cocv_2019068
crossref_primary_10_1007_s00245_022_09872_1
crossref_primary_10_1007_s10915_025_02841_0
crossref_primary_10_1137_21M145361X
crossref_primary_10_1002_oca_3135
crossref_primary_10_1016_j_apnum_2023_01_004
crossref_primary_10_1016_j_apnum_2022_12_001
crossref_primary_10_1080_01630563_2018_1538158
crossref_primary_10_1051_m2an_2022040
Cites_doi 10.1016/S0045-7825(02)00286-4
10.1007/s10589-009-9308-8
10.1007/s10589-005-4559-5
10.1090/S0025-5718-10-02360-4
10.1137/S1052623401383558
10.1051/cocv:2007057
10.1007/s10915-004-4135-7
10.1007/s00211-012-0445-0
10.1093/imanum/drn057
10.1137/060652361
10.1007/s10092-012-0063-3
10.1081/NFA-200042165
10.1007/s00211-014-0653-x
10.1137/130915856
10.1051/m2an/1991250607111
10.1007/s10589-011-9427-x
10.1137/0733054
10.1093/imanum/drq031
10.1137/100786988
10.1137/S0363012903431608
10.1007/s00211-011-0360-9
10.1007/978-0-387-75934-0
10.1093/imanum/drt022
10.1007/s10915-012-9612-9
10.1016/j.cam.2009.07.039
10.1137/050626600
10.1137/080735734
10.1137/110847469
10.1016/j.camwa.2014.08.012
10.1137/120902975
10.1137/130909251
10.1016/0022-247X(73)90022-X
10.1002/mma.1670020416
10.1007/978-3-322-96844-9
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2015
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2015
DBID AAYXX
CITATION
DOI 10.1080/01630563.2015.1068182
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-2467
EndPage 1419
ExternalDocumentID 10_1080_01630563_2015_1068182
1068182
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UT5
UU3
YNT
YQT
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c240t-67ca2c631852f5e52016e70eb7df9d136ba5b50a0b1a1c1d32ef4c3e89e7bfe63
ISSN 0163-0563
IngestDate Wed Oct 01 04:47:44 EDT 2025
Thu Apr 24 22:52:02 EDT 2025
Mon Oct 20 23:37:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c240t-67ca2c631852f5e52016e70eb7df9d136ba5b50a0b1a1c1d32ef4c3e89e7bfe63
PageCount 32
ParticipantIDs informaworld_taylorfrancis_310_1080_01630563_2015_1068182
crossref_citationtrail_10_1080_01630563_2015_1068182
crossref_primary_10_1080_01630563_2015_1068182
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 11/2/2015
2015-11-02
PublicationDateYYYYMMDD 2015-11-02
PublicationDate_xml – month: 11
  year: 2015
  text: 11/2/2015
  day: 02
PublicationDecade 2010
PublicationTitle Numerical functional analysis and optimization
PublicationYear 2015
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References CIT0030
CIT0010
CIT0032
CIT0012
CIT0034
CIT0011
CIT0033
CIT0014
CIT0035
Liu W. (CIT0036) 2008
CIT0016
CIT0038
CIT0037
CIT0018
CIT0017
CIT0039
Grisvard P. (CIT0020) 1985
CIT0041
Deckelnick K. (CIT0015) 2009; 48
CIT0040
CIT0001
CIT0023
CIT0022
Hinze M. (CIT0031) 2009
Grisvard P. (CIT0021) 1992
Ciarlet P. G. (CIT0013) 1978
Gunzburger M.D. (CIT0027) 1991; 25
Geveci T. (CIT0019) 1979; 13
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0017
  doi: 10.1016/S0045-7825(02)00286-4
– ident: CIT0026
  doi: 10.1007/s10589-009-9308-8
– ident: CIT0030
  doi: 10.1007/s10589-005-4559-5
– ident: CIT0022
  doi: 10.1090/S0025-5718-10-02360-4
– ident: CIT0029
  doi: 10.1137/S1052623401383558
– ident: CIT0032
  doi: 10.1051/cocv:2007057
– ident: CIT0005
  doi: 10.1007/s10915-004-4135-7
– volume: 48
  start-page: 2798
  year: 2009
  ident: CIT0015
  publication-title: SIAM J. Numer. Anal.
– ident: CIT0033
  doi: 10.1007/s00211-012-0445-0
– ident: CIT0007
  doi: 10.1093/imanum/drn057
– ident: CIT0014
  doi: 10.1137/060652361
– volume-title: Optimization with PDE Constraints
  year: 2009
  ident: CIT0031
– ident: CIT0018
  doi: 10.1007/s10092-012-0063-3
– volume-title: Elliptic Problems in Nonsmooth Domains
  year: 1985
  ident: CIT0020
– volume-title: Adaptive Finite Element Methods: Optimal Control Governed by PDEs
  year: 2008
  ident: CIT0036
– ident: CIT0004
  doi: 10.1081/NFA-200042165
– ident: CIT0039
  doi: 10.1007/s00211-014-0653-x
– ident: CIT0011
  doi: 10.1137/130915856
– volume: 13
  start-page: 313
  year: 1979
  ident: CIT0019
  publication-title: Math. Models Numer. Anal.
– volume-title: Singularities In Boundary Value Problems
  year: 1992
  ident: CIT0021
– volume: 25
  start-page: 711
  year: 1991
  ident: CIT0027
  publication-title: Math. Model. Numer. Anal.
  doi: 10.1051/m2an/1991250607111
– ident: CIT0001
  doi: 10.1007/s10589-011-9427-x
– ident: CIT0016
  doi: 10.1137/0733054
– ident: CIT0023
  doi: 10.1093/imanum/drq031
– ident: CIT0009
  doi: 10.1137/100786988
– ident: CIT0038
  doi: 10.1137/S0363012903431608
– ident: CIT0040
  doi: 10.1007/s00211-011-0360-9
– ident: CIT0006
  doi: 10.1007/978-0-387-75934-0
– ident: CIT0002
  doi: 10.1093/imanum/drt022
– ident: CIT0025
  doi: 10.1007/s10915-012-9612-9
– ident: CIT0010
  doi: 10.1016/j.cam.2009.07.039
– ident: CIT0012
  doi: 10.1137/050626600
– ident: CIT0037
  doi: 10.1137/080735734
– ident: CIT0008
  doi: 10.1137/110847469
– ident: CIT0024
  doi: 10.1016/j.camwa.2014.08.012
– ident: CIT0034
  doi: 10.1137/120902975
– ident: CIT0035
  doi: 10.1137/130909251
– ident: CIT0028
  doi: 10.1016/0022-247X(73)90022-X
– ident: CIT0003
  doi: 10.1002/mma.1670020416
– ident: CIT0041
  doi: 10.1007/978-3-322-96844-9
– volume-title: The Finite Element Method for Elliptic Problems
  year: 1978
  ident: CIT0013
SSID ssj0003298
Score 2.1241379
Snippet In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed....
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 1388
SubjectTerms Biharmonic
Discontinuous Galerkin
Error bounds
Finite element
IP method
Optimal control
Simply supported plate
Title A FrameWork for the Error Analysis of Discontinuous Finite Element Methods for Elliptic Optimal Control Problems and Applications to C 0 IP Methods
URI https://www.tandfonline.com/doi/abs/10.1080/01630563.2015.1068182
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1532-2467
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0003298
  issn: 0163-0563
  databaseCode: ABDBF
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1532-2467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003298
  issn: 0163-0563
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-2467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003298
  issn: 0163-0563
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5c59IeSp80TVv20JuQ0a60kn0UjoPTktRQh4ZexEpaUdPECo5EIX-j_6u_qTP7kGUS-rws8ordFZrPO6PZb2YIeauqiVTjceFLKQR8oCSJL5liYMgJ0P5S74nItjiN52fRu3NxPhj86LGW2iYfFTd3xpX8i1ShD-SKUbJ_IdluUuiAa5AvtCBhaP9IxinanZcKHd4dXXC22cBVP9fI4eoaCemrdYt016MVWpnezNDGvRNdQVonZfCQv3GFCVw_QHupvQqGx74wVWdMOue0d-SNluvUC7zjhZuob-yetuY46MJD7WmdjtI9Gc5V40I2EnRLNKi_lV_s8f7HtoRHqjuWEPw0tKbVptXFlDtnNnpEviJf3Hh005H3ftR3aTChY_u2H8DLW9VFeo446wbF02dht0bltm7u88gU93B7u0mu4jDMejs1C005Qav1WWR27lsaxVIwYUFcD7mAAjpjsHP4VoV2xEZ75x7Z46BlgiHZS-eHnz91tkHIdXXm7vldTBlme79riR1raSeXbs8KWj4iD-3nC00NFh-TgVo_IQ9Outy_10_J95R2qKQwE4V7VKOSOlTSuqI7qKQGldSiklow6eEOldSiklpUUodKCqKnfVTSpqZTGtDjhZvoGTk7mi2nc9-W_vALMDEbP04KyYtYh_ZXQgl4J7FKApUnZTUpWRjnUuQikEHOJCtYGXJVRUWoxhOV5JWKw-dkuK7X6gWhCahQsIETjrHCspSSy6gCO1WG4yKUId8nkXvFWWHz4mN5louMufS5VjIZSiazktkno27YlUkM87sBk778skajvDIAz8Jfjn35H2MPyP3tf-wVGTabVr0GQ7rJ31h0_gT558Vi
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG-MHtSD30b8fAevw22lGxwJQkABOUDibelKmxAVDBsX_w3_Yd_rNgIm6sHLsqx5Xdu17_3a_d57jN1qU5O6WlWOlELgBiUMHelpD4GcQOsvrU4ktkU_aI8qD8_iecUXhmiVtIc2WaAIq6tpcdNhdEGJu0OYQsiXEzNL4KMArQ6q4S2BYJ-yGHC3v9TG3Lf5cEnEIZnCi-enatbs01r00hW709pnqmhxRjd5KS_SuKw-vgVz_F-XDtheDkuhns2jQ7ahp0dst7eM6Zocs886tIjJRcfrgO0FLIPmfI53RWQTmBm4nyREf59MF7NFAq0JYVpoZiR16Nl81YkVJ7YI6isFT3h9w5c3MtY8DLIcNwlgb6C-8oMd0hk0wIXOoKjohI1azWGj7eQpHRyF0CF1glBJXwXWZdsILbC3gQ5dHYdjUxt7PIiliIUr3diTnvLG3Nemoriu1nQYGx3wU7Y5nU31GYMQVSNim9AnH1A5ltKXFYP4Q_Kq4pL7JVYpPmSk8njnlHbjNfKKsKj5mEc05lE-5iVWXoq9ZwE__hKorc6SKLUnLSZLixLxX2XP_yF7w7bbw1436nb6jxdsh4qsj6R_yTbT-UJfIVhK42u7Gr4A2bUE0g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQkRAMvBFvbmBNSeI6aceqNCqv0oFKbJHj2FIFtKhJF_4Gf5g7J6kKEjB0iaJYl9iOfffZ_u6OsUttWlI3m8qRUghcoIShIz3tIZATaP2l1YnEtugHvWHj9llUbMKspFXSGtoUgSKsrqbJ_Z6aihF3hSiFgC8nYpbARwEaHdTCqwGdipEXh9ufK2Pu23S4JOKQTOXE89trvpmnb8FLF8xOtMWSqsIF2-SlPsuTuvr4EctxqRZts80SlEK7GEU7bEWPd9nGwzyia7bHPtsQEY-LNtcBqwtYBt3pFO-quCYwMXA9yoj8PhrPJrMMohEhWugWFHV4sNmqMytOXBHUVgoe8fqGH-8UnHkYFBluMsDGQHvheB3yCXTAhZtB9aJ9Noy6T52eUyZ0cBQCh9wJQiV9FViHbSO0wNYGOnR1EqamlXo8SKRIhCvdxJOe8lLua9NQXDdbOkyMDvgBq40nY33IIETFiMgm9MkDVKZS-rJhEH1I3lRccv-INar_GKsy2jkl3XiNvSooatnnMfV5XPb5EavPxd6LcB__CbQWB0mc230WUyRFifmfssdLyF6wtcF1FN_f9O9O2DqVWAdJ_5TV8ulMnyFSypNzOxe-AJJNA3Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+FrameWork+for+the+Error+Analysis+of+Discontinuous+Finite+Element+Methods+for+Elliptic+Optimal+Control+Problems+and+Applications+to+C+0+IP+Methods&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=Chowdhury%2C+Sudipto&rft.au=Gudi%2C+Thirupathi&rft.au=Nandakumaran%2C+A.+K.&rft.date=2015-11-02&rft.pub=Taylor+%26+Francis+Group&rft.issn=0163-0563&rft.eissn=1532-2467&rft.volume=36&rft.issue=11&rft.spage=1388&rft.epage=1419&rft_id=info:doi/10.1080%2F01630563.2015.1068182&rft.externalDocID=1068182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon