A FrameWork for the Error Analysis of Discontinuous Finite Element Methods for Elliptic Optimal Control Problems and Applications to C 0 IP Methods
In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posterior...
Saved in:
| Published in | Numerical functional analysis and optimization Vol. 36; no. 11; pp. 1388 - 1419 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Taylor & Francis Group
02.11.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0163-0563 1532-2467 |
| DOI | 10.1080/01630563.2015.1068182 |
Cover
| Abstract | In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C
0
interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings. |
|---|---|
| AbstractList | In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C
0
interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings. |
| Author | Chowdhury, Sudipto Gudi, Thirupathi Nandakumaran, A. K. |
| Author_xml | – sequence: 1 givenname: Sudipto surname: Chowdhury fullname: Chowdhury, Sudipto organization: Department of Mathematics , Indian Institute of Science – sequence: 2 givenname: Thirupathi surname: Gudi fullname: Gudi, Thirupathi email: gudi@math.iisc.ernet.in organization: Department of Mathematics , Indian Institute of Science – sequence: 3 givenname: A. K. surname: Nandakumaran fullname: Nandakumaran, A. K. organization: Department of Mathematics , Indian Institute of Science |
| BookMark | eNqFkMtOAyEUhompifXyCCbnBUa5FGYaNza11SYaXWhcThgGIkqhARrT5_CFpVU3LnQDhPzfn3O-QzTwwWuETgk-I7jB55gIhrlgZxQTXr5EQxq6h4aEM1rRkagHaLjNVNvQATpM6RVjzOi4GaKPCcyjXOrnEN_AhAj5RcMsxvKaeOk2ySYIBq5sUsFn69dhnWBuvc0l5vRS-wx3Or-EPu3wmXN2la2C-3IupYNpwWJw8BBDV_IJpO9hslo5q2S2wSfIAaaAYfHwU3SM9o10SZ9830foaT57nN5Ut_fXi-nktlJ0hHMlaiWpEow0nBquedle6Brrru7NuCdMdJJ3HEvcEUkU6RnVZqSYbsa67owW7Ajxr14VQ0pRm3YVy8xx0xLcbs22P2bbrdn222zhLn5xyubdMjlK6_6lL79o64uwpXwP0fVtlhsXoonSK5ta9nfFJxSdlYs |
| CitedBy_id | crossref_primary_10_1016_j_cam_2016_12_005 crossref_primary_10_1080_00207160_2019_1704739 crossref_primary_10_1016_j_matcom_2023_12_025 crossref_primary_10_1051_cocv_2019068 crossref_primary_10_1007_s00245_022_09872_1 crossref_primary_10_1007_s10915_025_02841_0 crossref_primary_10_1137_21M145361X crossref_primary_10_1002_oca_3135 crossref_primary_10_1016_j_apnum_2023_01_004 crossref_primary_10_1016_j_apnum_2022_12_001 crossref_primary_10_1080_01630563_2018_1538158 crossref_primary_10_1051_m2an_2022040 |
| Cites_doi | 10.1016/S0045-7825(02)00286-4 10.1007/s10589-009-9308-8 10.1007/s10589-005-4559-5 10.1090/S0025-5718-10-02360-4 10.1137/S1052623401383558 10.1051/cocv:2007057 10.1007/s10915-004-4135-7 10.1007/s00211-012-0445-0 10.1093/imanum/drn057 10.1137/060652361 10.1007/s10092-012-0063-3 10.1081/NFA-200042165 10.1007/s00211-014-0653-x 10.1137/130915856 10.1051/m2an/1991250607111 10.1007/s10589-011-9427-x 10.1137/0733054 10.1093/imanum/drq031 10.1137/100786988 10.1137/S0363012903431608 10.1007/s00211-011-0360-9 10.1007/978-0-387-75934-0 10.1093/imanum/drt022 10.1007/s10915-012-9612-9 10.1016/j.cam.2009.07.039 10.1137/050626600 10.1137/080735734 10.1137/110847469 10.1016/j.camwa.2014.08.012 10.1137/120902975 10.1137/130909251 10.1016/0022-247X(73)90022-X 10.1002/mma.1670020416 10.1007/978-3-322-96844-9 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2015 |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2015 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/01630563.2015.1068182 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1532-2467 |
| EndPage | 1419 |
| ExternalDocumentID | 10_1080_01630563_2015_1068182 1068182 |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EJD EMK EPL EST ESX E~A E~B GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS TWF UT5 UU3 YNT YQT ZGOLN ~S~ AAYXX CITATION |
| ID | FETCH-LOGICAL-c240t-67ca2c631852f5e52016e70eb7df9d136ba5b50a0b1a1c1d32ef4c3e89e7bfe63 |
| ISSN | 0163-0563 |
| IngestDate | Wed Oct 01 04:47:44 EDT 2025 Thu Apr 24 22:52:02 EDT 2025 Mon Oct 20 23:37:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c240t-67ca2c631852f5e52016e70eb7df9d136ba5b50a0b1a1c1d32ef4c3e89e7bfe63 |
| PageCount | 32 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_01630563_2015_1068182 crossref_citationtrail_10_1080_01630563_2015_1068182 crossref_primary_10_1080_01630563_2015_1068182 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 11/2/2015 2015-11-02 |
| PublicationDateYYYYMMDD | 2015-11-02 |
| PublicationDate_xml | – month: 11 year: 2015 text: 11/2/2015 day: 02 |
| PublicationDecade | 2010 |
| PublicationTitle | Numerical functional analysis and optimization |
| PublicationYear | 2015 |
| Publisher | Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis Group |
| References | CIT0030 CIT0010 CIT0032 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 CIT0035 Liu W. (CIT0036) 2008 CIT0016 CIT0038 CIT0037 CIT0018 CIT0017 CIT0039 Grisvard P. (CIT0020) 1985 CIT0041 Deckelnick K. (CIT0015) 2009; 48 CIT0040 CIT0001 CIT0023 CIT0022 Hinze M. (CIT0031) 2009 Grisvard P. (CIT0021) 1992 Ciarlet P. G. (CIT0013) 1978 Gunzburger M.D. (CIT0027) 1991; 25 Geveci T. (CIT0019) 1979; 13 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0017 doi: 10.1016/S0045-7825(02)00286-4 – ident: CIT0026 doi: 10.1007/s10589-009-9308-8 – ident: CIT0030 doi: 10.1007/s10589-005-4559-5 – ident: CIT0022 doi: 10.1090/S0025-5718-10-02360-4 – ident: CIT0029 doi: 10.1137/S1052623401383558 – ident: CIT0032 doi: 10.1051/cocv:2007057 – ident: CIT0005 doi: 10.1007/s10915-004-4135-7 – volume: 48 start-page: 2798 year: 2009 ident: CIT0015 publication-title: SIAM J. Numer. Anal. – ident: CIT0033 doi: 10.1007/s00211-012-0445-0 – ident: CIT0007 doi: 10.1093/imanum/drn057 – ident: CIT0014 doi: 10.1137/060652361 – volume-title: Optimization with PDE Constraints year: 2009 ident: CIT0031 – ident: CIT0018 doi: 10.1007/s10092-012-0063-3 – volume-title: Elliptic Problems in Nonsmooth Domains year: 1985 ident: CIT0020 – volume-title: Adaptive Finite Element Methods: Optimal Control Governed by PDEs year: 2008 ident: CIT0036 – ident: CIT0004 doi: 10.1081/NFA-200042165 – ident: CIT0039 doi: 10.1007/s00211-014-0653-x – ident: CIT0011 doi: 10.1137/130915856 – volume: 13 start-page: 313 year: 1979 ident: CIT0019 publication-title: Math. Models Numer. Anal. – volume-title: Singularities In Boundary Value Problems year: 1992 ident: CIT0021 – volume: 25 start-page: 711 year: 1991 ident: CIT0027 publication-title: Math. Model. Numer. Anal. doi: 10.1051/m2an/1991250607111 – ident: CIT0001 doi: 10.1007/s10589-011-9427-x – ident: CIT0016 doi: 10.1137/0733054 – ident: CIT0023 doi: 10.1093/imanum/drq031 – ident: CIT0009 doi: 10.1137/100786988 – ident: CIT0038 doi: 10.1137/S0363012903431608 – ident: CIT0040 doi: 10.1007/s00211-011-0360-9 – ident: CIT0006 doi: 10.1007/978-0-387-75934-0 – ident: CIT0002 doi: 10.1093/imanum/drt022 – ident: CIT0025 doi: 10.1007/s10915-012-9612-9 – ident: CIT0010 doi: 10.1016/j.cam.2009.07.039 – ident: CIT0012 doi: 10.1137/050626600 – ident: CIT0037 doi: 10.1137/080735734 – ident: CIT0008 doi: 10.1137/110847469 – ident: CIT0024 doi: 10.1016/j.camwa.2014.08.012 – ident: CIT0034 doi: 10.1137/120902975 – ident: CIT0035 doi: 10.1137/130909251 – ident: CIT0028 doi: 10.1016/0022-247X(73)90022-X – ident: CIT0003 doi: 10.1002/mma.1670020416 – ident: CIT0041 doi: 10.1007/978-3-322-96844-9 – volume-title: The Finite Element Method for Elliptic Problems year: 1978 ident: CIT0013 |
| SSID | ssj0003298 |
| Score | 2.1241379 |
| Snippet | In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed.... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1388 |
| SubjectTerms | Biharmonic Discontinuous Galerkin Error bounds Finite element IP method Optimal control Simply supported plate |
| Title | A FrameWork for the Error Analysis of Discontinuous Finite Element Methods for Elliptic Optimal Control Problems and Applications to C 0 IP Methods |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01630563.2015.1068182 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1532-2467 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0003298 issn: 0163-0563 databaseCode: ABDBF dateStart: 20010201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1532-2467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003298 issn: 0163-0563 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1532-2467 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003298 issn: 0163-0563 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5c59IeSp80TVv20JuQ0a60kn0UjoPTktRQh4ZexEpaUdPECo5EIX-j_6u_qTP7kGUS-rws8ordFZrPO6PZb2YIeauqiVTjceFLKQR8oCSJL5liYMgJ0P5S74nItjiN52fRu3NxPhj86LGW2iYfFTd3xpX8i1ShD-SKUbJ_IdluUuiAa5AvtCBhaP9IxinanZcKHd4dXXC22cBVP9fI4eoaCemrdYt016MVWpnezNDGvRNdQVonZfCQv3GFCVw_QHupvQqGx74wVWdMOue0d-SNluvUC7zjhZuob-yetuY46MJD7WmdjtI9Gc5V40I2EnRLNKi_lV_s8f7HtoRHqjuWEPw0tKbVptXFlDtnNnpEviJf3Hh005H3ftR3aTChY_u2H8DLW9VFeo446wbF02dht0bltm7u88gU93B7u0mu4jDMejs1C005Qav1WWR27lsaxVIwYUFcD7mAAjpjsHP4VoV2xEZ75x7Z46BlgiHZS-eHnz91tkHIdXXm7vldTBlme79riR1raSeXbs8KWj4iD-3nC00NFh-TgVo_IQ9Outy_10_J95R2qKQwE4V7VKOSOlTSuqI7qKQGldSiklow6eEOldSiklpUUodKCqKnfVTSpqZTGtDjhZvoGTk7mi2nc9-W_vALMDEbP04KyYtYh_ZXQgl4J7FKApUnZTUpWRjnUuQikEHOJCtYGXJVRUWoxhOV5JWKw-dkuK7X6gWhCahQsIETjrHCspSSy6gCO1WG4yKUId8nkXvFWWHz4mN5louMufS5VjIZSiazktkno27YlUkM87sBk778skajvDIAz8Jfjn35H2MPyP3tf-wVGTabVr0GQ7rJ31h0_gT558Vi |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG-MHtSD30b8fAevw22lGxwJQkABOUDibelKmxAVDBsX_w3_Yd_rNgIm6sHLsqx5Xdu17_3a_d57jN1qU5O6WlWOlELgBiUMHelpD4GcQOsvrU4ktkU_aI8qD8_iecUXhmiVtIc2WaAIq6tpcdNhdEGJu0OYQsiXEzNL4KMArQ6q4S2BYJ-yGHC3v9TG3Lf5cEnEIZnCi-enatbs01r00hW709pnqmhxRjd5KS_SuKw-vgVz_F-XDtheDkuhns2jQ7ahp0dst7eM6Zocs886tIjJRcfrgO0FLIPmfI53RWQTmBm4nyREf59MF7NFAq0JYVpoZiR16Nl81YkVJ7YI6isFT3h9w5c3MtY8DLIcNwlgb6C-8oMd0hk0wIXOoKjohI1azWGj7eQpHRyF0CF1glBJXwXWZdsILbC3gQ5dHYdjUxt7PIiliIUr3diTnvLG3Nemoriu1nQYGx3wU7Y5nU31GYMQVSNim9AnH1A5ltKXFYP4Q_Kq4pL7JVYpPmSk8njnlHbjNfKKsKj5mEc05lE-5iVWXoq9ZwE__hKorc6SKLUnLSZLixLxX2XP_yF7w7bbw1436nb6jxdsh4qsj6R_yTbT-UJfIVhK42u7Gr4A2bUE0g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQkRAMvBFvbmBNSeI6aceqNCqv0oFKbJHj2FIFtKhJF_4Gf5g7J6kKEjB0iaJYl9iOfffZ_u6OsUttWlI3m8qRUghcoIShIz3tIZATaP2l1YnEtugHvWHj9llUbMKspFXSGtoUgSKsrqbJ_Z6aihF3hSiFgC8nYpbARwEaHdTCqwGdipEXh9ufK2Pu23S4JOKQTOXE89trvpmnb8FLF8xOtMWSqsIF2-SlPsuTuvr4EctxqRZts80SlEK7GEU7bEWPd9nGwzyia7bHPtsQEY-LNtcBqwtYBt3pFO-quCYwMXA9yoj8PhrPJrMMohEhWugWFHV4sNmqMytOXBHUVgoe8fqGH-8UnHkYFBluMsDGQHvheB3yCXTAhZtB9aJ9Noy6T52eUyZ0cBQCh9wJQiV9FViHbSO0wNYGOnR1EqamlXo8SKRIhCvdxJOe8lLua9NQXDdbOkyMDvgBq40nY33IIETFiMgm9MkDVKZS-rJhEH1I3lRccv-INar_GKsy2jkl3XiNvSooatnnMfV5XPb5EavPxd6LcB__CbQWB0mc230WUyRFifmfssdLyF6wtcF1FN_f9O9O2DqVWAdJ_5TV8ulMnyFSypNzOxe-AJJNA3Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+FrameWork+for+the+Error+Analysis+of+Discontinuous+Finite+Element+Methods+for+Elliptic+Optimal+Control+Problems+and+Applications+to+C+0+IP+Methods&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=Chowdhury%2C+Sudipto&rft.au=Gudi%2C+Thirupathi&rft.au=Nandakumaran%2C+A.+K.&rft.date=2015-11-02&rft.pub=Taylor+%26+Francis+Group&rft.issn=0163-0563&rft.eissn=1532-2467&rft.volume=36&rft.issue=11&rft.spage=1388&rft.epage=1419&rft_id=info:doi/10.1080%2F01630563.2015.1068182&rft.externalDocID=1068182 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon |