Hyperparameter optimization and neural architecture search algorithms for graph Neural Networks in cheminformatics
[Display omitted] •Comprehensive review of cheminformatics datasets for molecular property prediction.•Survey of optimization techniques for Graph Neural Networks in cheminformatics.•Comparison of optimization methods, highlighting strengths and limitations.•Identify gaps and future directions in Gr...
Saved in:
| Published in | Computational materials science Vol. 254; p. 113904 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
20.05.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0927-0256 1879-0801 |
| DOI | 10.1016/j.commatsci.2025.113904 |
Cover
| Abstract | [Display omitted]
•Comprehensive review of cheminformatics datasets for molecular property prediction.•Survey of optimization techniques for Graph Neural Networks in cheminformatics.•Comparison of optimization methods, highlighting strengths and limitations.•Identify gaps and future directions in Graph Neural Networks for cheminformatics.
Cheminformatics, an interdisciplinary field bridging chemistry and information science, leverages computational tools to analyze and interpret chemical data, playing a critical role in drug discovery, material science, and environmental chemistry. Traditional methods, reliant on rule-based algorithms and expert-curated datasets, face challenges in scalability and adaptability. Recently, machine learning and deep learning have revolutionized cheminformatics by offering data-driven approaches that uncover complex patterns in vast chemical datasets, advancing molecular property prediction, chemical reaction modeling, and de novo molecular design. Among the most promising techniques are Graph Neural Networks (GNNs), which have emerged as a powerful tool for modeling molecules in a manner that mirrors their underlying chemical structures. Despite their success, the performance of GNNs is highly sensitive to architectural choices and hyperparameters, making optimal configuration selection a non-trivial task. Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO) are crucial for improving GNN performance, but the complexity and computational cost of these processes have traditionally hindered progress. This review examines various strategies for automating NAS and HPO in GNNs, highlighting their potential to enhance model performance, scalability, and efficiency in key cheminformatics applications. As the field evolves, automated optimization techniques are expected to play a pivotal role in advancing GNN-based solutions in cheminformatics. |
|---|---|
| AbstractList | [Display omitted]
•Comprehensive review of cheminformatics datasets for molecular property prediction.•Survey of optimization techniques for Graph Neural Networks in cheminformatics.•Comparison of optimization methods, highlighting strengths and limitations.•Identify gaps and future directions in Graph Neural Networks for cheminformatics.
Cheminformatics, an interdisciplinary field bridging chemistry and information science, leverages computational tools to analyze and interpret chemical data, playing a critical role in drug discovery, material science, and environmental chemistry. Traditional methods, reliant on rule-based algorithms and expert-curated datasets, face challenges in scalability and adaptability. Recently, machine learning and deep learning have revolutionized cheminformatics by offering data-driven approaches that uncover complex patterns in vast chemical datasets, advancing molecular property prediction, chemical reaction modeling, and de novo molecular design. Among the most promising techniques are Graph Neural Networks (GNNs), which have emerged as a powerful tool for modeling molecules in a manner that mirrors their underlying chemical structures. Despite their success, the performance of GNNs is highly sensitive to architectural choices and hyperparameters, making optimal configuration selection a non-trivial task. Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO) are crucial for improving GNN performance, but the complexity and computational cost of these processes have traditionally hindered progress. This review examines various strategies for automating NAS and HPO in GNNs, highlighting their potential to enhance model performance, scalability, and efficiency in key cheminformatics applications. As the field evolves, automated optimization techniques are expected to play a pivotal role in advancing GNN-based solutions in cheminformatics. |
| ArticleNumber | 113904 |
| Author | Liu, Qian Ebadi, Ali Kaur, Manpreet |
| Author_xml | – sequence: 1 givenname: Ali surname: Ebadi fullname: Ebadi, Ali – sequence: 2 givenname: Manpreet surname: Kaur fullname: Kaur, Manpreet – sequence: 3 givenname: Qian surname: Liu fullname: Liu, Qian email: qi.liu@uwinnipeg.ca |
| BookMark | eNqVkE1OwzAQhb0oEi1wBnyBBOc_WVYVUKSqbGBtOc6kcUnsaOxSldPjKIgtQhppNKP3RvO-FVloo4GQ-4iFEYvyh2MozTAIZ6UKYxZnYRQlFUsXZMmquAj8Jr8mK2uPzKurMl4S3F5GwFGgGMABUjM6Nagv4ZTRVOiGajih6KlA2SkH0p0QqIVppKI_GFSuGyxtDdIDirGj-1m_B3c2-GGp0lR2MCjtJf4zJe0tuWpFb-Hup9-Q96fHt8022L0-v2zWu0DGKXNBWheZzxAVWSNBptVUrJS1LHKZQZJGoq1ZLbKE1XXZ5DIXcVWzPGmLFLKMtckNKee7Jz2Ky1n0PR9RDQIvPGJ84sWP_JcXn3jxmZe3FrNVorEWof2Hcz07wSf7VIDcK0BLaBR6erwx6s8b3z79krg |
| Cites_doi | 10.1002/jcc.27490 10.1039/b719311b 10.1109/TSP.2020.3033962 10.1016/j.drudis.2021.02.011 10.1016/j.softx.2020.100520 10.1093/nar/gkaa970 10.1021/acs.jmedchem.9b00959 10.1021/acs.jctc.3c01003 10.1103/PhysRevLett.108.058301 10.1093/bioinformatics/18.1.130 10.1186/s13321-022-00593-9 10.1093/bib/bbab112 10.1021/ie060370h 10.3389/fphar.2023.1265573 10.1021/ci300124c 10.1021/jm00106a046 10.1145/3404835.3463007 10.1038/s41597-022-01882-6 10.1109/CVPR.2017.576 10.1016/j.biotechadv.2021.107739 10.1021/ci7002076 10.1016/j.neucom.2013.09.010 10.1016/j.aca.2022.340558 10.1145/3292500.3330701 10.1093/nar/gkv352 10.1021/ci500081m 10.1093/nar/gkad976 10.1021/jm030580l 10.1038/s42256-021-00438-4 10.1016/j.omtn.2019.04.025 10.1109/TPDS.2022.3151895 10.1016/j.knosys.2024.112321 10.1093/bib/bbac408 10.1039/D4DD00088A 10.1021/ci034243x 10.1039/C7SC02664A 10.3390/pharmaceutics11080377 10.1063/5.0155322 10.1093/bib/bbac231 10.1007/BF00994018 10.1016/j.drudis.2017.08.010 10.1162/neco_a_01199 10.1021/acs.jcim.9b00237 10.1021/acsomega.1c06389 10.1021/acs.jctc.4c00794 10.1021/acs.jcim.6b00290 10.3390/biom10111566 10.1007/s11030-021-10217-3 10.24963/ijcai.2020/195 10.2174/1386207013330670 10.1021/ci300415d 10.1093/nar/gkl999 10.3390/ijms241411488 10.3389/fnins.2022.866666 10.1021/jm048957q 10.1038/s41524-024-01259-w 10.1016/j.jmgm.2023.108506 10.1109/ICDM.2006.39 10.1145/3366423.3380027 10.1016/j.ddtec.2020.11.009 10.1021/ci3001277 10.1038/s43246-022-00315-6 10.1021/ci034143r 10.1038/s41597-022-01288-4 10.1609/aaai.v34i04.5997 10.1007/s10822-014-9747-x 10.1021/acs.chemrestox.6b00135 10.1371/journal.pcbi.1010812 10.3389/fphar.2020.565644 10.1021/ja902302h 10.1093/bioinformatics/btu626 10.1186/s13062-015-0046-9 10.1038/sdata.2014.22 10.1016/j.jhazmat.2023.133355 10.1093/nar/gkac956 10.1016/S0022-2836(03)00628-4 10.1093/bioinformatics/bti1007 10.1021/acs.jcim.3c00899 10.1002/bkcs.10334 10.1021/acs.accounts.6b00491 10.1039/D4DD00038B 10.1039/D2CP03966D 10.1145/3449639.3459370 10.1093/nar/gkaa876 10.1021/ci500080q 10.1145/3638529.3654055 10.1021/ci9000053 10.1088/2632-2153/abcf91 10.1063/1.5019779 10.1038/s41524-021-00554-0 10.1021/ci8002649 10.1016/j.ymeth.2022.09.005 10.1021/ci100104j 10.1080/00268976.2017.1333644 10.1002/wnan.1554 10.1038/s41524-020-00406-3 10.1145/3449726.3463192 10.1093/nar/gkv1075 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.commatsci.2025.113904 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10.1016/j.commatsci.2025.113904 10_1016_j_commatsci_2025_113904 S0927025625002472 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABJNI ABMAC ABXRA ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AECPX AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSH SSM SST SSZ T5K XPP ZMT ~G- 29F AAQXK AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 M24 M41 R2- SBC SMS VH1 WUQ ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c240t-4b75202175dcec49c49c08cbc76c5e341afb0ba530bb8d6c6a29b063f74e550f3 |
| IEDL.DBID | UNPAY |
| ISSN | 0927-0256 1879-0801 |
| IngestDate | Tue Aug 19 23:29:23 EDT 2025 Wed Oct 01 06:34:50 EDT 2025 Sat May 03 15:40:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Machine learning (ML) Cheminformatics Neural architecture search (NAS) Deep learning (DL) Hyperparameter optimization (HPO) Graph neural networks (GNN) |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c240t-4b75202175dcec49c49c08cbc76c5e341afb0ba530bb8d6c6a29b063f74e550f3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.commatsci.2025.113904 |
| ParticipantIDs | unpaywall_primary_10_1016_j_commatsci_2025_113904 crossref_primary_10_1016_j_commatsci_2025_113904 elsevier_sciencedirect_doi_10_1016_j_commatsci_2025_113904 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-20 |
| PublicationDateYYYYMMDD | 2025-05-20 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | Computational materials science |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hansen (b0665) 2016 Oloulade, Gao, Chen, Lyu, Al-Sabri (b0100) 2022; 27 Du, Gao, Weng, Ding, Chai, Pang, Kang, Li, Cao, Hou (b0255) 2021; 49 E. Lindelöf, Deep learning for drug discovery, property prediction with neural networks on raw molecular graphs, (2019). F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, M.M. Bronstein, Geometric deep learning on graphs and manifolds using mixture model CNNs, (2016). Mercado, Rastemo, Lindelöf, Klambauer, Engkvist, Chen, E. (b0490) 2021 Hamilton, Ying, Leskovec (b0545) 2017 Deng, Lei, Hong, Zhang, Zhou (b0625) 2022; 7 Wieder, Kohlbacher, Kuenemann, Garon, Ducrot, Seidel, Langer (b0050) 2020; 37 Cortes, Vapnik (b0555) 1995; 20 Y. Yuan, W. Wang, W. Pang, A systematic comparison study on hyperparameter optimisation of graph neural networks for molecular property prediction, in: Proceedings of the Genetic and Evolutionary Computation Conference, ACM, New York, NY, USA, 2021: pp. 386–394. Xiong, Wang, Liu, Zhong, Wan, Li, Li, Luo, Chen, Jiang, Zheng (b0570) 2020; 63 Delaney (b0175) 2004; 44 Bischl, Binder, Lang, Pielok, Richter, Coors, Thomas, Ullmann, Becker, Boulesteix, Deng, Lindauer (b0095) 2023; 13 T. Yu, H. Zhu, Hyper-parameter optimization: A review of algorithms and applications, ArXiv Preprint ArXiv:2003.05689 (2020). Hou, Wang, Li (b0375) 2007; 47 Yi, You, Zhou, Cheng, Li, Jiang, Chen (b0395) 2019; 17 Kim, Chen, Cheng, Gindulyte, He, He, Li, Shoemaker, Thiessen, Yu, Zaslavsky, Zhang, Bolton (b0115) 2023; 51 Bergstra, Bardenet, Bengio, Kégl (b0580) 2011; 24 Chen, Gao, Lyu, Oloulade, Hu (b0685) 2021 Chan, Wang, Soh, Rajapakse (b0070) 2022; 16 Galuzio, de Vasconcelos Segundo, Dos, Coelho, Mariani (b0650) 2020; 12 Aouichaoui, Fan, Mansouri, Sin (b0645) 2022 Choudhary, Wines, Li, Garrity, Gupta, Romero, Krogel, Saritas, Fuhr, Ganesh, Kent, Yan, Lin, Ji, Blaiszik, Reiser, Friederich, Agrawal, Tiwary, Beyerle, Minch, Rhone, Takeuchi, Wexler, Mannodi-Kanakkithodi, Ertekin, Mishra, Mathew, Wood, Rohskopf, Hattrick-Simpers, Wang, Achenie, Xin, Williams, Biacchi, Tavazza (b0755) 2024; 10 Pope, Kolouri, Rostami, Martin, Hoffmann (b0550) 2019 Rupp, Tkatchenko, Müller, von Lilienfeld (b0145) 2012; 108 S. Falkner, A. Klein, F. Hutter, BOHB: Robust and Efficient Hyperparameter Optimization at Scale, (2018). Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (b0575) 2017; 30 Khrabrov, Shenbin, Ryabov, Tsypin, Telepov, Alekseev, Grishin, Strashnov, Zhilyaev, Nikolenko, Kadurin (b0165) 2022; 24 . Shervashidze, Schweitzer, Van Leeuwen, Mehlhorn, Borgwardt (b0290) 2011; 12 Real, Aggarwal, Huang, Le (b0700) 2019 Ruddigkeit, van Deursen, Blum, Reymond (b0130) 2012; 52 Rohrer, Baumann (b0195) 2009; 49 Zhan, Zhu, Qiao, Hu (b0465) 2023; 1244 Liu, Su, Han, Liu, Yang, Li, Wang (b0345) 2017; 50 Gupta, Srivastava, Sahu, Tiwari, Ambasta, Kumar (b0040) 2021; 25 Wang, Fang, Lu, Yang, Wang (b0320) 2005; 48 Eastman, Behara, Dotson, Galvelis, Herr, Horton, Mao, Chodera, Pritchard, Wang, De Fabritiis, Markland (b0155) 2023; 10 Singh, Singh, Singla, Agarwal, Raghava (b0380) 2015; 10 DIPPR Project 801, (n.d.). Li, Liu, Li, Han, Liu, Zhao, Wang (b0335) 2014; 54 Reel, Reel, Pearson, Trucco, Jefferson (b0035) 2021; 49 J. Bergstra, J.B. Ca, Y.B. Ca, Random Search for Hyper-Parameter Optimization Yoshua Bengio, 2012. Mobley, Guthrie (b0180) 2014; 28 Hamilton, Ying, Leskovec (b0415) 2017; 30 Kuhn, Letunic, Jensen, Bork (b0215) 2016; 44 Martins, Teixeira, Pinheiro, Falcao (b0205) 2012; 52 O. Vinyals, S. Bengio, M. Kudlur, Order Matters: Sequence to sequence for sets, (2015). Knox, Wilson, Klinger, Franklin, Oler, Wilson, Pon, Cox, Lucy Chin, Strawbridge, Garcia-Patino, Kruger, Sivakumaran, Sanford, Doshi, Khetarpal, Fatokun, Doucet, Zubkowski, Rayat, Jackson, Harford, Anjum, Zakir, Wang, Tian, Lee, Liigand, Peters, Rachel Wang, Nguyen, So, Sharp, Da Silva, Gabriel, Scantlebury, Jasinski, Ackerman, Jewison, Sajed, Gautam, Wishart (b0260) 2024; 52 Kyoto Encyclopedia of Genes and Genomes, (n.d.). Bhowmik, Kant, Manaithiya, Saluja, Vyas, Nath, Qureshi, Parkkila, Aspatwar (b0030) 2023; 14 J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural Message Passing for Quantum Chemistry, (2017). Wu, Jiang, Hsieh, Chen, Liao, Cao, Hou (b0595) 2021; 22 E. Ranjan, S. Sanyal, P.P. Talukdar, ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations, (2019). Chen, Liu, Gilson (b0250) 2001; 4 Sutherland, O’Brien, Weaver (b0265) 2003; 43 Abranches, Maginn, Colón (b0635) 2023; 19 Lee, Kim (b0400) 2019; 11 Medina-Franco, Saldívar-González (b0005) 2020; 10 Li, Liu, Lu, Hua, Chi, Xia (b0425) 2022; 23 Fang, Liu, Lei, He, Zhang, Zhou, Wang, Wu, Wang (b0440) 2022; 4 Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe (b0735) 2019 I. Batatia, D.P. Kovacs, G. Simm, C. Ortner, G. Csanyi, MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields, in: S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh (Eds.), Adv Neural Inf Process Syst, Curran Associates, Inc., 2022: pp. 11423–11436. Li, Tarlow, Brockschmidt, Zemel, Sequence (b0495) 2015 (accessed October 28, 2024). Irwin, Sterling, Mysinger, Bolstad, Coleman (b0350) 2012; 52 Ramakrishnan, Dral, Rupp, von Lilienfeld (b0125) 2014; 1 Niazi, Mariam (b0025) 2023; 24 Ruiz, Gama, Ribeiro (b0475) 2020; 68 Dobson, Doig (b0295) 2003; 330 You, Ying, Leskovec (b0740) 2020 Richard, Judson, Houck, Grulke, Volarath, Thillainadarajah, Yang, Rathman, Martin, Wambaugh, Knudsen, Kancherla, Mansouri, Patlewicz, Williams, Little, Crofton, Thomas (b0210) 2016; 29 Fung, Zhang, Juarez, Sumpter (b0085) 2021; 7 K. Khrabrov, A. Ber, A. Tsypin, K. Ushenin, E. Rumiantsev, A. Telepov, D. Protasov, I. Shenbin, A. Alekseev, M. Shirokikh, S. Nikolenko, E. Tutubalina, A. Kadurin, $\nabla^2$DFT: A Universal Quantum Chemistry Dataset of Drug-Like Molecules and a Benchmark for Neural Network Potentials, (2024). Liu, Lin, Wen, Jorissen, Gilson (b0235) 2007; 35 Kim, Kim (b0640) 2015; 36 Kriege, Mutzel (b0275) 2012 J. Chen, J. Gao, Y. Chen, M.B. Oloulade, T. Lyu, Z. Li, GraphPAS: Parallel Architecture Search for Graph Neural Networks, in: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, New York, NY, USA, 2021: pp. 2182–2186. Debnath, Lopez de Compadre, Debnath, Shusterman, Hansch (b0280) 1991; 34 Duarte, Márquez-Miranda, Miossec, González-Nilo (b0010) 2019; 11 T.N. Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, (2016). Müller, Galkin, Morris, Rampášek (b0530) 2023 Wu, Ramsundar, Feinberg, Gomes, Geniesse, Pappu, Leswing, Pande (b0135) 2018; 9 Mardirossian, Head-Gordon (b0020) 2017; 115 Zhang, Tan, Han, Zhu (b0390) 2017; 22 Zdrazil, Felix, Hunter, Manners, Blackshaw, Corbett, de Veij, Ioannidis, Lopez, Mosquera, Magarinos, Bosc, Arcila, Kizilören, Gaulton, Bento, Adasme, Monecke, Landrum, Leach (b0220) 2023; 52 Dwivedi, Joshi, Luu, Laurent, Bengio, Bresson (b0525) 2020 Reiser, Neubert, Eberhard, Torresi, Zhou, Shao, Metni, van Hoesel, Schopmans, Sommer, Friederich (b0045) 2022; 3 D. Khan, A. Benali, S.Y.H. Kim, G.F. von Rudorff, O.A. von Lilienfeld, Quantum mechanical dataset of 836k neutral closed shell molecules with upto 5 heavy atoms from CNOFSiPSClBr, (2024). Chen (b0600) 2015 Y. Yuan, W. Wang, X. Li, K. Chen, Y. Zhang, W. Pang, Evolving Molecular Graph Neural Networks with Hierarchical Evaluation Strategy, in: Proceedings of the Genetic and Evolutionary Computation Conference, ACM, New York, NY, USA, 2024: pp. 1417–1425. Kovács, Batatia, Arany, Csányi (b0450) 2023; 159 Bao, Xiong, Hu (b0480) 2014; 129 Ullah, Chen, Dral (b0140) 2024; 5 (accessed October 18, 2024). Gal, Ghahramani (b0705) 2015 T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, New York, NY, USA, 2019: pp. 2623–2631. Subramanian, Ramsundar, Pande, Denny (b0185) 2016; 56 Li, Han, Liu, Wang (b0330) 2014; 54 Ma, Lei (b0405) 2023; 19 Shen, Cheng, Xu, Li, Tang (b0370) 2010; 50 Y.-X. Wu, X. Wang, A. Zhang, X. He, T.-S. Chua, Discovering Invariant Rationales for Graph Neural Networks, (2022). Yang, Swanson, Jin, Coley, Eiden, Gao, Guzman-Perez, Hopper, Kelley, Mathea, Palmer, Settels, Jaakkola, Jensen, Barzilay (b0510) 2019; 59 H. Liu, K. Simonyan, Y. Yang, DARTS: Differentiable Architecture Search, (2018). Y. Gao, H. Yang, P. Zhang, C. Zhou, Y. Hu, Graph neural architecture search, in: International Joint Conference on Artificial Intelligence, 2021. Xiong, Xiong, Chen, Jiang, Zheng (b0075) 2021; 26 Zeng, Feng, Li, Lv, Wen, Li (b0460) 2024; 45 Mullins, Oldland, Liu, Wang, Sandler, Chen, Zwolak, Seavey (b0305) 2006; 45 Schütt, Sauceda, Kindermans, Tkatchenko, Müller (b0420) 2018; 148 Dunn, Wang, Ganose, Dopp, Jain (b0760) 2020; 6 Kanehisa, Furumichi, Sato, Ishiguro-Watanabe, Tanabe (b0360) 2021; 49 Zantedeschi, Kusner, Niculae (b0470) 2021 Chen, Wulamu, Zou, Zheng, Wen, Guo, Chen, Zhang, Zhang (b0410) 2023; 123 Qin, Wang, Zhang, Xie, Zhu (b0710) 2022 Veličković, Cucurull, Casanova, Romero, Liò, Bengio, Attention (b0060) 2017 Cai, Zhang, Zhao, Wu, Wang (b0585) 2022; 23 Morris, Kriege, Bause, Kersting, Mutzel, Neumann (b0270) 2020. Davies, Nowotka, Papadatos, Dedman, Gaulton, Atkinson, Bellis, Overington (b0225) 2015; 43 Nakata, Maeda (b0120) 2023; 63 Jiang, Qin, Van Lehn, Balaprakash, Zavala (b0695) 2024; 3 Dey, Salem (b0615) 2017 Wang, Gu, Lou, Gong, Wu, Li, Tang, Liu (b0565) 2022; 14 Axelrod, Gómez-Bombarelli (b0310) 2022; 9 Huang, Yu, He, Yu, Deng, Yang, Zhu, Shao (b0605) 2024; 465 Cano Gil, Rowley (b0515) 2024 Chen, Wei, Huang, Ding, Li (b0520) 2020 Gilson, Liu, Baitaluk, Nicola, Hwang, Chong (b0230) 2015; 44 J. Bergstra, D. Yamins, D. Cox, Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures, in: S. Dasgupta, D. McAllester (Eds.), Proceedings of the 30th International Conference on Machine Learning, PMLR, Atlanta, Georgia, USA, 2013: pp. 115–123. Chen, Gao, Chen, Oloulade, Lyu, Li (b0750) 2022; 33 N. Wale, G. Karypis, Comp Shervashidze (10.1016/j.commatsci.2025.113904_b0290) 2011; 12 Dunn (10.1016/j.commatsci.2025.113904_b0760) 2020; 6 10.1016/j.commatsci.2025.113904_b0015 10.1016/j.commatsci.2025.113904_b0535 10.1016/j.commatsci.2025.113904_b0655 Mardirossian (10.1016/j.commatsci.2025.113904_b0020) 2017; 115 Hamilton (10.1016/j.commatsci.2025.113904_b0545) 2017 Kovács (10.1016/j.commatsci.2025.113904_b0450) 2023; 159 Khrabrov (10.1016/j.commatsci.2025.113904_b0165) 2022; 24 Delaney (10.1016/j.commatsci.2025.113904_b0175) 2004; 44 Bao (10.1016/j.commatsci.2025.113904_b0480) 2014; 129 Chen (10.1016/j.commatsci.2025.113904_b0750) 2022; 33 Singh (10.1016/j.commatsci.2025.113904_b0380) 2015; 10 Zeng (10.1016/j.commatsci.2025.113904_b0460) 2024; 45 Wang (10.1016/j.commatsci.2025.113904_b0320) 2005; 48 Ma (10.1016/j.commatsci.2025.113904_b0405) 2023; 19 Morris (10.1016/j.commatsci.2025.113904_b0270) 2020 Bhowmik (10.1016/j.commatsci.2025.113904_b0030) 2023; 14 10.1016/j.commatsci.2025.113904_b0660 Ruddigkeit (10.1016/j.commatsci.2025.113904_b0130) 2012; 52 Chen (10.1016/j.commatsci.2025.113904_b0250) 2001; 4 Gilson (10.1016/j.commatsci.2025.113904_b0230) 2015; 44 Shen (10.1016/j.commatsci.2025.113904_b0370) 2010; 50 Abranches (10.1016/j.commatsci.2025.113904_b0635) 2023; 19 Kim (10.1016/j.commatsci.2025.113904_b0115) 2023; 51 Yi (10.1016/j.commatsci.2025.113904_b0395) 2019; 17 Hamilton (10.1016/j.commatsci.2025.113904_b0415) 2017; 30 Deng (10.1016/j.commatsci.2025.113904_b0625) 2022; 7 10.1016/j.commatsci.2025.113904_b0630 Cai (10.1016/j.commatsci.2025.113904_b0585) 2022; 23 Du (10.1016/j.commatsci.2025.113904_b0255) 2021; 49 Schütt (10.1016/j.commatsci.2025.113904_b0420) 2018; 148 10.1016/j.commatsci.2025.113904_b0590 Liu (10.1016/j.commatsci.2025.113904_b0340) 2015; 31 Brody (10.1016/j.commatsci.2025.113904_b0540) 2021 Xiong (10.1016/j.commatsci.2025.113904_b0570) 2020; 63 Subramanian (10.1016/j.commatsci.2025.113904_b0185) 2016; 56 10.1016/j.commatsci.2025.113904_b0080 Mobley (10.1016/j.commatsci.2025.113904_b0180) 2014; 28 Li (10.1016/j.commatsci.2025.113904_b0330) 2014; 54 Hou (10.1016/j.commatsci.2025.113904_b0375) 2007; 47 Bergstra (10.1016/j.commatsci.2025.113904_b0580) 2011; 24 Li (10.1016/j.commatsci.2025.113904_b0495) 2015 Kriege (10.1016/j.commatsci.2025.113904_b0275) 2012 10.1016/j.commatsci.2025.113904_b0365 Chen (10.1016/j.commatsci.2025.113904_b0685) 2021 Mullins (10.1016/j.commatsci.2025.113904_b0305) 2006; 45 Zdrazil (10.1016/j.commatsci.2025.113904_b0220) 2023; 52 Sutherland (10.1016/j.commatsci.2025.113904_b0265) 2003; 43 Zhan (10.1016/j.commatsci.2025.113904_b0465) 2023; 1244 10.1016/j.commatsci.2025.113904_b0485 Rupp (10.1016/j.commatsci.2025.113904_b0145) 2012; 108 Li (10.1016/j.commatsci.2025.113904_b0425) 2022; 23 Wu (10.1016/j.commatsci.2025.113904_b0135) 2018; 9 Zhang (10.1016/j.commatsci.2025.113904_b0745) 2018 Dwivedi (10.1016/j.commatsci.2025.113904_b0525) 2020 Chen (10.1016/j.commatsci.2025.113904_b0600) 2015 10.1016/j.commatsci.2025.113904_b0090 Wang (10.1016/j.commatsci.2025.113904_b0315) 2004; 47 Zhang (10.1016/j.commatsci.2025.113904_b0390) 2017; 22 Blum (10.1016/j.commatsci.2025.113904_b0110) 2009; 131 Niazi (10.1016/j.commatsci.2025.113904_b0025) 2023; 24 Veličković (10.1016/j.commatsci.2025.113904_b0060) 2017 Eastman (10.1016/j.commatsci.2025.113904_b0160) 2024; 20 Cheng (10.1016/j.commatsci.2025.113904_b0325) 2009; 49 Reiser (10.1016/j.commatsci.2025.113904_b0045) 2022; 3 Nakata (10.1016/j.commatsci.2025.113904_b0120) 2023; 63 10.1016/j.commatsci.2025.113904_b0455 Kim (10.1016/j.commatsci.2025.113904_b0640) 2015; 36 10.1016/j.commatsci.2025.113904_b0690 10.1016/j.commatsci.2025.113904_b0170 10.1016/j.commatsci.2025.113904_b0055 Morris (10.1016/j.commatsci.2025.113904_b0735) 2019 Rohrer (10.1016/j.commatsci.2025.113904_b0195) 2009; 49 Irwin (10.1016/j.commatsci.2025.113904_b0350) 2012; 52 Polykovskiy (10.1016/j.commatsci.2025.113904_b0355) 2020; 11 Fang (10.1016/j.commatsci.2025.113904_b0440) 2022; 4 Friedman (10.1016/j.commatsci.2025.113904_b0560) 2001 Gal (10.1016/j.commatsci.2025.113904_b0705) 2015 Wieder (10.1016/j.commatsci.2025.113904_b0050) 2020; 37 Ramakrishnan (10.1016/j.commatsci.2025.113904_b0125) 2014; 1 Chauhan (10.1016/j.commatsci.2025.113904_b0385) 2018 Chen (10.1016/j.commatsci.2025.113904_b0245) 2002; 18 You (10.1016/j.commatsci.2025.113904_b0740) 2020 Ruiz (10.1016/j.commatsci.2025.113904_b0475) 2020; 68 Real (10.1016/j.commatsci.2025.113904_b0700) 2019 Chen (10.1016/j.commatsci.2025.113904_b0240) 2001; 61 Li (10.1016/j.commatsci.2025.113904_b0335) 2014; 54 10.1016/j.commatsci.2025.113904_b0500 10.1016/j.commatsci.2025.113904_b0620 Gupta (10.1016/j.commatsci.2025.113904_b0040) 2021; 25 Ullah (10.1016/j.commatsci.2025.113904_b0140) 2024; 5 Borgwardt (10.1016/j.commatsci.2025.113904_b0300) 2005; 21 Lee (10.1016/j.commatsci.2025.113904_b0400) 2019; 11 10.1016/j.commatsci.2025.113904_b0105 Martins (10.1016/j.commatsci.2025.113904_b0205) 2012; 52 Dobson (10.1016/j.commatsci.2025.113904_b0295) 2003; 330 Hansen (10.1016/j.commatsci.2025.113904_b0665) 2016 10.1016/j.commatsci.2025.113904_b0065 Huang (10.1016/j.commatsci.2025.113904_b0605) 2024; 465 Cortes (10.1016/j.commatsci.2025.113904_b0555) 1995; 20 Chan (10.1016/j.commatsci.2025.113904_b0070) 2022; 16 Cano Gil (10.1016/j.commatsci.2025.113904_b0515) 2024 10.1016/j.commatsci.2025.113904_b0190 Liu (10.1016/j.commatsci.2025.113904_b0235) 2007; 35 Bischl (10.1016/j.commatsci.2025.113904_b0095) 2023; 13 Oloulade (10.1016/j.commatsci.2025.113904_b0100) 2022; 27 10.1016/j.commatsci.2025.113904_b0505 Müller (10.1016/j.commatsci.2025.113904_b0530) 2023 Galuzio (10.1016/j.commatsci.2025.113904_b0650) 2020; 12 10.1016/j.commatsci.2025.113904_b0675 Kuhn (10.1016/j.commatsci.2025.113904_b0215) 2016; 44 Debnath (10.1016/j.commatsci.2025.113904_b0280) 1991; 34 Chen (10.1016/j.commatsci.2025.113904_b0410) 2023; 123 10.1016/j.commatsci.2025.113904_b0435 Duarte (10.1016/j.commatsci.2025.113904_b0010) 2019; 11 10.1016/j.commatsci.2025.113904_b0150 Zhao (10.1016/j.commatsci.2025.113904_b0430) 2022; 207 10.1016/j.commatsci.2025.113904_b0670 Jiang (10.1016/j.commatsci.2025.113904_b0695) 2024; 3 Qin (10.1016/j.commatsci.2025.113904_b0710) 2022 Dey (10.1016/j.commatsci.2025.113904_b0615) 2017 Wu (10.1016/j.commatsci.2025.113904_b0730) 2024; 301 Zantedeschi (10.1016/j.commatsci.2025.113904_b0470) 2021 10.1016/j.commatsci.2025.113904_b0715 Yu (10.1016/j.commatsci.2025.113904_b0610) 2019; 31 Choudhary (10.1016/j.commatsci.2025.113904_b0755) 2024; 10 Chen (10.1016/j.commatsci.2025.113904_b0520) 2020 Aouichaoui (10.1016/j.commatsci.2025.113904_b0645) 2022 Xiong (10.1016/j.commatsci.2025.113904_b0075) 2021; 26 10.1016/j.commatsci.2025.113904_b0445 10.1016/j.commatsci.2025.113904_b0720 Axelrod (10.1016/j.commatsci.2025.113904_b0310) 2022; 9 10.1016/j.commatsci.2025.113904_b0200 Ke (10.1016/j.commatsci.2025.113904_b0575) 2017; 30 Liu (10.1016/j.commatsci.2025.113904_b0345) 2017; 50 Davies (10.1016/j.commatsci.2025.113904_b0225) 2015; 43 Knox (10.1016/j.commatsci.2025.113904_b0260) 2024; 52 Richard (10.1016/j.commatsci.2025.113904_b0210) 2016; 29 10.1016/j.commatsci.2025.113904_b0285 Medina-Franco (10.1016/j.commatsci.2025.113904_b0005) 2020; 10 10.1016/j.commatsci.2025.113904_b0680 Wu (10.1016/j.commatsci.2025.113904_b0595) 2021; 22 Mercado (10.1016/j.commatsci.2025.113904_b0490) 2021 Yang (10.1016/j.commatsci.2025.113904_b0510) 2019; 59 Fung (10.1016/j.commatsci.2025.113904_b0085) 2021; 7 Pope (10.1016/j.commatsci.2025.113904_b0550) 2019 Eastman (10.1016/j.commatsci.2025.113904_b0155) 2023; 10 Kanehisa (10.1016/j.commatsci.2025.113904_b0360) 2021; 49 10.1016/j.commatsci.2025.113904_b0725 Reel (10.1016/j.commatsci.2025.113904_b0035) 2021; 49 Wang (10.1016/j.commatsci.2025.113904_b0565) 2022; 14 |
| References_xml | – volume: 22 start-page: 1680 year: 2017 end-page: 1685 ident: b0390 article-title: From machine learning to deep learning: progress in machine intelligence for rational drug discovery publication-title: Drug Discov. Today – volume: 465 year: 2024 ident: b0605 article-title: AI-enhanced chemical paradigm: From molecular graphs to accurate prediction and mechanism publication-title: J. Hazard. Mater. – reference: V.G. Satorras, E. Hoogeboom, M. Welling, E(n) Equivariant Graph Neural Networks, in: M. Meila, T. Zhang (Eds.), Proceedings of the 38th International Conference on Machine Learning, PMLR, 2021: pp. 9323–9332. – volume: 61 start-page: 127 year: 2001 end-page: 141 ident: b0240 article-title: The binding database: overview and user’s guide, Biopolymers: Original Research on publication-title: Biomolecules – volume: 10 start-page: 11 year: 2023 ident: b0155 article-title: SPICE A dataset of drug-like molecules and peptides for training machine learning potentials, publication-title: Sci. Data – year: 2021 ident: b0490 article-title: Jannik bjerrum, graph networks for molecular design publication-title: Mach Learn Sci. Technol. – volume: 4 start-page: 127 year: 2022 end-page: 134 ident: b0440 article-title: Geometry-enhanced molecular representation learning for property prediction publication-title: Nat. Mach. Intell. – reference: AIDS Antiviral Screen Data, (n.d.). – volume: 7 start-page: 3713 year: 2022 end-page: 3721 ident: b0625 article-title: Describe molecules by a heterogeneous graph neural network with transformer-like attention for supervised property predictions publication-title: ACS Omega – reference: S. Falkner, A. Klein, F. Hutter, BOHB: Robust and Efficient Hyperparameter Optimization at Scale, (2018). – volume: 11 start-page: 377 year: 2019 ident: b0400 article-title: Comparison of target features for predicting drug-target interactions by deep neural network based on large-scale drug-induced transcriptome data publication-title: Pharmaceutics – volume: 24 year: 2011 ident: b0580 article-title: Algorithms for hyper-parameter optimization publication-title: Adv. Neural Inf. Process Syst. – start-page: 4602 year: 2019 end-page: 4609 ident: b0735 article-title: Weisfeiler and leman go neural: Higher-order graph Neural Networks publication-title: Proceedings of the AAAI Conference on Artificial Intelligence 33 – volume: 5 year: 2024 ident: b0140 article-title: Molecular quantum chemical data sets and databases for machine learning potentials publication-title: Mach. Learn.: Sci. Technol. – volume: 11 year: 2019 ident: b0010 article-title: Integration of target discovery, drug discovery and drug delivery: A review on computational strategies publication-title: WIREs Nanomed. Nanobiotechnol. – volume: 52 start-page: D1180 year: 2023 end-page: D1192 ident: b0220 article-title: The ChEMBL Database in, a drug discovery platform spanning multiple bioactivity data types and time periods publication-title: Nucleic Acids Res. – reference: F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, M.M. Bronstein, Geometric deep learning on graphs and manifolds using mixture model CNNs, (2016). – reference: E. Ranjan, S. Sanyal, P.P. Talukdar, ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations, (2019). – volume: 115 start-page: 2315 year: 2017 end-page: 2372 ident: b0020 article-title: Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals publication-title: Mol. Phys. – volume: 43 start-page: 1906 year: 2003 end-page: 1915 ident: b0265 article-title: Spline-fitting with a genetic algorithm: A method for developing classification structure−activity relationships publication-title: J. Chem. Inf. Comput. Sci. – volume: 48 start-page: 4111 year: 2005 end-page: 4119 ident: b0320 article-title: The PDBbind Database: Methodologies and updates publication-title: J. Med. Chem. – volume: 207 start-page: 81 year: 2022 end-page: 89 ident: b0430 article-title: Toward drug-miRNA resistance association prediction by positional encoding graph neural network and multi-channel neural network publication-title: Methods – volume: 7 start-page: 84 year: 2021 ident: b0085 article-title: Benchmarking graph neural networks for materials chemistry publication-title: NPJ. Comput. Mater – year: 2023 ident: b0530 publication-title: Attending to Graph Transformers – volume: 1244 year: 2023 ident: b0465 article-title: Graph Neural Tree: A novel and interpretable deep learning-based framework for accurate molecular property predictions publication-title: Anal. Chim. Acta – start-page: 1591 year: 2022: end-page: 1596 ident: b0645 article-title: Molecular representations in deep-learning models for chemical property prediction publication-title: In – reference: J. Bergstra, D. Yamins, D. Cox, Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures, in: S. Dasgupta, D. McAllester (Eds.), Proceedings of the 30th International Conference on Machine Learning, PMLR, Atlanta, Georgia, USA, 2013: pp. 115–123. – volume: 24 start-page: 25853 year: 2022 end-page: 25863 ident: b0165 article-title: nablaDFT: Large-scale conformational energy and hamiltonian prediction benchmark and dataset publication-title: PCCP – reference: T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, New York, NY, USA, 2019: pp. 2623–2631. – reference: Y. Yuan, W. Wang, X. Li, K. Chen, Y. Zhang, W. Pang, Evolving Molecular Graph Neural Networks with Hierarchical Evaluation Strategy, in: Proceedings of the Genetic and Evolutionary Computation Conference, ACM, New York, NY, USA, 2024: pp. 1417–1425. – volume: 330 start-page: 771 year: 2003 end-page: 783 ident: b0295 article-title: Distinguishing enzyme structures from non-enzymes without alignments publication-title: J. Mol. Biol. – volume: 3 start-page: 1534 year: 2024 end-page: 1553 ident: b0695 article-title: Uncertainty quantification for molecular property predictions with graph neural architecture search, publication-title: Digital Discovery – volume: 12 year: 2020 ident: b0650 article-title: MOBOpt — multi-objective Bayesian optimization publication-title: SoftwareX – reference: J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural Message Passing for Quantum Chemistry, (2017). – volume: 23 year: 2022 ident: b0585 article-title: FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction publication-title: Brief. Bioinform. – reference: Y. Yuan, W. Wang, W. Pang, A systematic comparison study on hyperparameter optimisation of graph neural networks for molecular property prediction, in: Proceedings of the Genetic and Evolutionary Computation Conference, ACM, New York, NY, USA, 2021: pp. 386–394. – reference: Tox21 Challenge, (n.d.). – volume: 54 start-page: 1717 year: 2014 end-page: 1736 ident: b0330 article-title: Comparative assessment of scoring functions on an updated benchmark: 2 Evaluation methods and general results, publication-title: J. Chem. Inf. Model – volume: 14 start-page: 16 year: 2022 ident: b0565 article-title: A multitask GNN-based interpretable model for discovery of selective JAK inhibitors publication-title: J. Cheminform – year: 2016 ident: b0665 article-title: The CMA evolution strategy publication-title: A Tutorial – volume: 49 start-page: 169 year: 2009 end-page: 184 ident: b0195 article-title: Maximum unbiased validation (MUV) data sets for virtual screening based on pubchem bioactivity data publication-title: J. Chem. Inf. Model. – volume: 50 start-page: 302 year: 2017 end-page: 309 ident: b0345 article-title: Forging the basis for developing protein–ligand interaction scoring functions publication-title: Acc. Chem. Res. – volume: 49 start-page: D545 year: 2021 end-page: D551 ident: b0360 article-title: KEGG: integrating viruses and cellular organisms publication-title: Nucleic Acids Res. – year: 2018 ident: b0745 article-title: An end-to-end deep learning architecture for graph classification publication-title: Proceedings of the AAAI Conference on Artificial Intelligence 32 – volume: 47 start-page: 2408 year: 2007 end-page: 2415 ident: b0375 article-title: ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine publication-title: J. Chem. Inf. Model. – volume: 23 year: 2022 ident: b0425 article-title: Multiphysical graph neural network (MP-GNN) for COVID-19 drug design publication-title: Brief. Bioinform. – volume: 50 start-page: 1034 year: 2010 end-page: 1041 ident: b0370 article-title: Estimation of ADME properties with substructure pattern recognition publication-title: J. Chem. Inf. Model. – volume: 9 start-page: 185 year: 2022 ident: b0310 article-title: GEOM, energy-annotated molecular conformations for property prediction and molecular generation publication-title: Sci. Data – reference: DIPPR Project 801, (n.d.). – reference: (accessed October 18, 2024). – volume: 45 start-page: 4389 year: 2006 end-page: 4415 ident: b0305 article-title: Sigma-profile database for using COSMO-based thermodynamic methods publication-title: Ind. Eng. Chem. Res. – reference: J. Bergstra, J.B. Ca, Y.B. Ca, Random Search for Hyper-Parameter Optimization Yoshua Bengio, 2012. – volume: 44 start-page: D1045 year: 2015 end-page: D1053 ident: b0230 article-title: BindingDB in, A public database for medicinal chemistry, computational chemistry and systems pharmacology publication-title: Nucleic Acids Res. – year: 2021 ident: b0540 publication-title: How Attentive Are Graph Attention Networks? – year: 2020 ident: b0740 publication-title: Design Space for Graph Neural Networks – year: 2012 ident: b0275 article-title: Subgraph matching kernels for attributed graphs publication-title: ArXiv Preprint ArXiv:1206.6483 – reference: T. Yu, H. Zhu, Hyper-parameter optimization: A review of algorithms and applications, ArXiv Preprint ArXiv:2003.05689 (2020). – year: 2015 ident: b0705 article-title: Dropout as a bayesian approximation – volume: 10 start-page: 93 year: 2024 ident: b0755 article-title: JARVIS-Leaderboard: a large scale benchmark of materials design methods publication-title: npj Comput. Mater. – volume: 148 year: 2018 ident: b0420 article-title: SchNet – A deep learning architecture for molecules and materials publication-title: J. Chem. Phys. – volume: 49 year: 2021 ident: b0035 article-title: Using machine learning approaches for multi-omics data analysis: A review publication-title: Biotechnol. Adv.. – volume: 31 start-page: 1235 year: 2019 end-page: 1270 ident: b0610 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Comput. – volume: 52 start-page: 1686 year: 2012 end-page: 1697 ident: b0205 article-title: A bayesian approach to in silico blood-brain barrier penetration modeling publication-title: J. Chem. Inf. Model. – year: 2020 ident: b0525 publication-title: Benchmarking Graph Neural Networks – start-page: 4780 year: 2019 end-page: 4789 ident: b0700 article-title: Regularized Evolution for image classifier architecture search publication-title: Proceedings of the AAAI Conference on Artificial Intelligence 33 – volume: 52 start-page: D1265 year: 2024 end-page: D1275 ident: b0260 article-title: DrugBank 6.0: the DrugBank knowledgebase for 2024 publication-title: Nucleic Acids Res. – volume: 123 year: 2023 ident: b0410 article-title: MD-GNN: A mechanism-data-driven graph neural network for molecular properties prediction and new material discovery publication-title: J. Mol. Graph. Model. – reference: H. Liu, K. Simonyan, Y. Yang, DARTS: Differentiable Architecture Search, (2018). – start-page: 12298 year: 2021 end-page: 12309 ident: b0470 article-title: Learning Binary Decision Trees by Argmin Differentiation publication-title: Proceedings of the 38th International Conference on Machine Learning – volume: 12 year: 2011 ident: b0290 article-title: Weisfeiler-lehman graph kernels publication-title: J. Mach. Learn. Res. – volume: 36 start-page: 1769 year: 2015 end-page: 1777 ident: b0640 article-title: Universal structure conversion method for organic molecules: From atomic connectivity to three‐dimensional geometry publication-title: Bull. Kor. Chem. Soc. – year: 2017 ident: b0545 publication-title: Inductive Representation Learning on Large Graphs – volume: 49 start-page: D1122 year: 2021 end-page: D1129 ident: b0255 article-title: CovalentInDB: a comprehensive database facilitating the discovery of covalent inhibitors publication-title: Nucleic Acids Res. – year: 2020 ident: b0520 publication-title: Simple and Deep Graph Convolutional, Networks – volume: 25 start-page: 1315 year: 2021 end-page: 1360 ident: b0040 article-title: Artificial intelligence to deep learning: machine intelligence approach for drug discovery publication-title: Mol. Divers – volume: 37 start-page: 1 year: 2020 end-page: 12 ident: b0050 article-title: A compact review of molecular property prediction with graph neural networks publication-title: Drug Discov. Today Technol. – volume: 13 year: 2023 ident: b0095 article-title: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges publication-title: WIREs Data Min. Knowl. Discovery – volume: 52 start-page: 2864 year: 2012 end-page: 2875 ident: b0130 article-title: Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17 publication-title: J. Chem. Inf. Model. – volume: 30 year: 2017 ident: b0575 article-title: Lightgbm: A highly efficient gradient boosting decision tree publication-title: Adv. Neural Inf. Process Syst. – volume: 19 year: 2023 ident: b0405 article-title: A dual graph neural network for drug–drug interactions prediction based on molecular structure and interactions publication-title: PLoS Comput. Biol. – volume: 30 year: 2017 ident: b0415 article-title: Inductive representation learning on large graphs publication-title: Adv Neural Inf Process Syst – start-page: 1 year: 2015 ident: b0600 article-title: Xgboost: extreme gradient boosting publication-title: R Package Version – volume: 24 start-page: 11488 year: 2023 ident: b0025 article-title: Recent advances in machine-learning-based chemoinformatics: A comprehensive review publication-title: Int. J. Mol. Sci. – year: 2015 ident: b0495 publication-title: Neural Netw. – volume: 35 start-page: D198 year: 2007 end-page: D201 ident: b0235 article-title: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities publication-title: Nucleic Acids Res. – volume: 10 start-page: 10 year: 2015 ident: b0380 article-title: QSAR based model for discriminating EGFR inhibitors and non-inhibitors using Random forest publication-title: Biol. Direct – volume: 63 start-page: 5734 year: 2023 end-page: 5754 ident: b0120 article-title: PubChemQC B3LYP/6-31G*//PM6 Data Set: The electronic structures of 86 million molecules using B3LYP/6-31G* calculations publication-title: J. Chem. Inf. Model. – volume: 28 start-page: 711 year: 2014 end-page: 720 ident: b0180 article-title: FreeSolv: a database of experimental and calculated hydration free energies, with input files publication-title: J. Comput. Aided Mol. Des. – volume: 54 start-page: 1700 year: 2014 end-page: 1716 ident: b0335 article-title: Comparative assessment of scoring functions on an updated benchmark: 1 Compilation of the test set, publication-title: J. Chem. Inf. Model – reference: S.M. Bachrach, Computational organic chemistry, Annual Reports Section “B” (Organic Chemistry) 104 (2008) 394. – volume: 51 start-page: D1373 year: 2023 end-page: D1380 ident: b0115 article-title: PubChem, update publication-title: Nucleic Acids Res. – volume: 18 start-page: 130 year: 2002 end-page: 139 ident: b0245 article-title: The Binding Database: data management and interface design publication-title: Bioinformatics – reference: K. Khrabrov, A. Ber, A. Tsypin, K. Ushenin, E. Rumiantsev, A. Telepov, D. Protasov, I. Shenbin, A. Alekseev, M. Shirokikh, S. Nikolenko, E. Tutubalina, A. Kadurin, $\nabla^2$DFT: A Universal Quantum Chemistry Dataset of Drug-Like Molecules and a Benchmark for Neural Network Potentials, (2024). – volume: 301 year: 2024 ident: b0730 article-title: Depth-adaptive graph neural architecture search for graph classification publication-title: Knowl. Based Syst. – volume: 31 start-page: 405 year: 2015 end-page: 412 ident: b0340 article-title: PDB-wide collection of binding data: current status of the PDBbind database publication-title: Bioinformatics – volume: 22 year: 2021 ident: b0595 article-title: Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method publication-title: Brief. Bioinform. – volume: 21 start-page: i47 year: 2005 end-page: i56 ident: b0300 article-title: Protein function prediction via graph kernels publication-title: Bioinformatics – volume: 29 start-page: 1225 year: 2016 end-page: 1251 ident: b0210 article-title: ToxCast chemical landscape: paving the road to 21st century toxicology publication-title: Chem. Res. Toxicol. – volume: 63 start-page: 8749 year: 2020 end-page: 8760 ident: b0570 article-title: Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism publication-title: J. Med. Chem. – volume: 17 start-page: 1 year: 2019 end-page: 9 ident: b0395 article-title: ACP-DL: A deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation publication-title: Mol. Ther. Nucleic Acids – year: 2020. ident: b0270 article-title: TUDataset: A collection of benchmark datasets for learning with graphs, in publication-title: ICML 2020 Workshop on Graph Representation Learning and beyond (GRL+ 2020) – reference: N. Wale, G. Karypis, Comparison of Descriptor Spaces for Chemical Compound Retrieval and Classification, in: Sixth International Conference on Data Mining (ICDM’06), IEEE, 2006: pp. 678–689. – volume: 68 start-page: 6303 year: 2020 end-page: 6318 ident: b0475 article-title: Gated graph recurrent Neural Networks publication-title: IEEE Trans. Signal Process. – volume: 131 start-page: 8732 year: 2009 end-page: 8733 ident: b0110 article-title: 970 Million druglike small molecules for virtual screening in the chemical universe database GDB-13 publication-title: J. Am. Chem. Soc. – start-page: 1776 year: 2024 end-page: 1792 ident: b0515 article-title: Graph neural networks for identifying protein-reactive compounds publication-title: Digital Discovery 3 – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0555 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 26 start-page: 1382 year: 2021 end-page: 1393 ident: b0075 article-title: Graph neural networks for automated de novo drug design publication-title: Drug Discov. Today – start-page: 347 year: 2018 end-page: 352 ident: b0385 publication-title: Review on Conventional Machine Learning Vs Deep Learning, in – volume: 45 start-page: 2825 year: 2024 end-page: 2834 ident: b0460 article-title: <scp>GNN</scp> ‐ <scp>DDAS</scp> : Drug discovery for identifying anti‐schistosome small molecules based on graph neural network publication-title: J. Comput. Chem. – volume: 159 year: 2023 ident: b0450 article-title: Evaluation of the MACE force field architecture: From medicinal chemistry to materials science publication-title: J. Chem. Phys. – volume: 16 year: 2022 ident: b0070 article-title: Combining neuroimaging and omics datasets for disease classification using graph Neural Networks publication-title: Front. Neurosci.. – reference: H. Linusson, Multi-output random forests, (2013). – volume: 49 start-page: 1079 year: 2009 end-page: 1093 ident: b0325 article-title: Comparative assessment of scoring functions on a diverse test set publication-title: J. Chem. Inf. Model. – volume: 6 start-page: 138 year: 2020 ident: b0760 article-title: Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm publication-title: NPJ Comput. Mater. – reference: T.N. Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, (2016). – reference: (accessed September 26, 2017). – reference: Z. Hu, Y. Dong, K. Wang, Y. Sun, Heterogeneous Graph Transformer, in: Proceedings of The Web Conference 2020, ACM, New York, NY, USA, 2020: pp. 2704–2710. – start-page: 1189 year: 2001 end-page: 1232 ident: b0560 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – reference: J. Chen, J. Gao, Y. Chen, M.B. Oloulade, T. Lyu, Z. Li, GraphPAS: Parallel Architecture Search for Graph Neural Networks, in: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, New York, NY, USA, 2021: pp. 2182–2186. – volume: 33 start-page: 3117 year: 2022 end-page: 3128 ident: b0750 article-title: Auto-GNAS: A Parallel graph neural architecture search framework publication-title: IEEE Trans. Parallel Distrib. Syst. – volume: 1 year: 2014 ident: b0125 article-title: Quantum chemistry structures and properties of 134 kilo molecules publication-title: Sci. Data – start-page: 10764 year: 2019 end-page: 10773 ident: b0550 article-title: Explainability methods for graph convolutional Neural Networks publication-title: In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 129 start-page: 482 year: 2014 end-page: 493 ident: b0480 article-title: Multi-step-ahead time series prediction using multiple-output support vector regression publication-title: Neurocomputing – volume: 27 start-page: 692 year: 2022 end-page: 708 ident: b0100 article-title: Graph neural architecture search: A survey, Tsinghua publication-title: Sci. Technol. – reference: Kyoto Encyclopedia of Genes and Genomes, (n.d.). – reference: Y. Gao, H. Yang, P. Zhang, C. Zhou, Y. Hu, Graph neural architecture search, in: International Joint Conference on Artificial Intelligence, 2021. – volume: 47 start-page: 2977 year: 2004 end-page: 2980 ident: b0315 article-title: The PDBbind database: Collection of binding affinities for protein−ligand complexes with known three-dimensional structures publication-title: J. Med. Chem. – year: 2017 ident: b0060 publication-title: Networks – volume: 44 start-page: 1000 year: 2004 end-page: 1005 ident: b0175 article-title: ESOL: Estimating aqueous solubility directly from molecular structure publication-title: J. Chem. Inf. Comput. Sci. – volume: 108 year: 2012 ident: b0145 article-title: Fast and accurate modeling of molecular atomization energies with machine learning publication-title: Phys. Rev. Lett. – volume: 19 start-page: 9318 year: 2023 end-page: 9328 ident: b0635 article-title: Boosting graph Neural Networks with molecular mechanics: A case study of sigma profile prediction publication-title: J. Chem. Theory Comput. – volume: 59 start-page: 3370 year: 2019 end-page: 3388 ident: b0510 article-title: Analyzing learned molecular representations for property prediction publication-title: J. Chem. Inf. Model. – reference: Y.-X. Wu, X. Wang, A. Zhang, X. He, T.-S. Chua, Discovering Invariant Rationales for Graph Neural Networks, (2022). – reference: Y. Yuan, W. Wang, W. Pang, Which hyperparameters to optimise?, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, ACM, New York, NY, USA, 2021: pp. 1403–1404. – volume: 56 start-page: 1936 year: 2016 end-page: 1949 ident: b0185 article-title: Computational Modeling of β-Secretase 1 (BACE-1) Inhibitors Using Ligand Based Approaches publication-title: J. Chem. Inf. Model. – volume: 11 year: 2020 ident: b0355 article-title: Molecular sets (MOSES): A benchmarking platform for molecular generation models publication-title: Front. Pharmacol. – start-page: 171 year: 2021 end-page: 176 ident: b0685 article-title: Multi-label metabolic pathway prediction with auto molecular structure representation learning publication-title: In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) – reference: E. Lindelöf, Deep learning for drug discovery, property prediction with neural networks on raw molecular graphs, (2019). – volume: 14 year: 2023 ident: b0030 article-title: Navigating bioactivity space in anti-tubercular drug discovery through the deployment of advanced machine learning models and cheminformatics tools: a molecular modeling based retrospective study publication-title: Front. Pharmacol. – volume: 20 start-page: 8583 year: 2024 end-page: 8593 ident: b0160 article-title: Nutmeg and SPICE: Models and data for biomolecular machine learning publication-title: J. Chem. Theory Comput. – reference: I. Batatia, D.P. Kovacs, G. Simm, C. Ortner, G. Csanyi, MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields, in: S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh (Eds.), Adv Neural Inf Process Syst, Curran Associates, Inc., 2022: pp. 11423–11436. – volume: 52 start-page: 1757 year: 2012 end-page: 1768 ident: b0350 article-title: ZINC: A free tool to discover chemistry for biology publication-title: J. Chem. Inf. Model. – reference: D. Khan, A. Benali, S.Y.H. Kim, G.F. von Rudorff, O.A. von Lilienfeld, Quantum mechanical dataset of 836k neutral closed shell molecules with upto 5 heavy atoms from CNOFSiPSClBr, (2024). – reference: (accessed October 28, 2024). – volume: 44 start-page: D1075 year: 2016 end-page: D1079 ident: b0215 article-title: The SIDER database of drugs and side effects publication-title: Nucleic Acids Res. – volume: 10 start-page: 1566 year: 2020 ident: b0005 article-title: Cheminformatics to characterize pharmacologically active natural products publication-title: Biomolecules – start-page: 18083 year: 2022 end-page: 18095 ident: b0710 article-title: Graph neural architecture search under distribution shifts publication-title: Proceedings of the 39th International Conference on Machine Learning – volume: 34 start-page: 786 year: 1991 end-page: 797 ident: b0280 article-title: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds correlation with molecular orbital energies and hydrophobicity, publication-title: J. Med. Chem. – volume: 43 start-page: W612 year: 2015 end-page: W620 ident: b0225 article-title: ChEMBL web services: streamlining access to drug discovery data and utilities publication-title: Nucleic Acids Res. – year: 2017 ident: b0615 article-title: Gate-variants of gated recurrent unit (GRU) publication-title: Neural Netw. – reference: . – volume: 3 start-page: 93 year: 2022 ident: b0045 article-title: Graph neural networks for materials science and chemistry publication-title: Commun. Mater – volume: 9 start-page: 513 year: 2018 end-page: 530 ident: b0135 article-title: MoleculeNet: a benchmark for molecular machine learning publication-title: Chem. Sci. – reference: O. Vinyals, S. Bengio, M. Kudlur, Order Matters: Sequence to sequence for sets, (2015). – volume: 4 start-page: 719 year: 2001 end-page: 725 ident: b0250 article-title: BindingDB: A web-accessible molecular recognition database publication-title: Comb. Chem. High Throughput Screen. – year: 2017 ident: 10.1016/j.commatsci.2025.113904_b0060 publication-title: Networks – start-page: 1189 year: 2001 ident: 10.1016/j.commatsci.2025.113904_b0560 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 45 start-page: 2825 year: 2024 ident: 10.1016/j.commatsci.2025.113904_b0460 article-title: GNN ‐ DDAS : Drug discovery for identifying anti‐schistosome small molecules based on graph neural network publication-title: J. Comput. Chem. doi: 10.1002/jcc.27490 – ident: 10.1016/j.commatsci.2025.113904_b0015 doi: 10.1039/b719311b – year: 2017 ident: 10.1016/j.commatsci.2025.113904_b0615 article-title: Gate-variants of gated recurrent unit (GRU) publication-title: Neural Netw. – volume: 68 start-page: 6303 year: 2020 ident: 10.1016/j.commatsci.2025.113904_b0475 article-title: Gated graph recurrent Neural Networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.3033962 – volume: 26 start-page: 1382 year: 2021 ident: 10.1016/j.commatsci.2025.113904_b0075 article-title: Graph neural networks for automated de novo drug design publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2021.02.011 – ident: 10.1016/j.commatsci.2025.113904_b0150 – volume: 12 year: 2020 ident: 10.1016/j.commatsci.2025.113904_b0650 article-title: MOBOpt — multi-objective Bayesian optimization publication-title: SoftwareX doi: 10.1016/j.softx.2020.100520 – start-page: 18083 year: 2022 ident: 10.1016/j.commatsci.2025.113904_b0710 article-title: Graph neural architecture search under distribution shifts – volume: 49 start-page: D545 year: 2021 ident: 10.1016/j.commatsci.2025.113904_b0360 article-title: KEGG: integrating viruses and cellular organisms publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa970 – volume: 63 start-page: 8749 year: 2020 ident: 10.1016/j.commatsci.2025.113904_b0570 article-title: Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.9b00959 – volume: 19 start-page: 9318 year: 2023 ident: 10.1016/j.commatsci.2025.113904_b0635 article-title: Boosting graph Neural Networks with molecular mechanics: A case study of sigma profile prediction publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.3c01003 – ident: 10.1016/j.commatsci.2025.113904_b0725 – volume: 30 year: 2017 ident: 10.1016/j.commatsci.2025.113904_b0575 article-title: Lightgbm: A highly efficient gradient boosting decision tree publication-title: Adv. Neural Inf. Process Syst. – ident: 10.1016/j.commatsci.2025.113904_b0660 – volume: 108 year: 2012 ident: 10.1016/j.commatsci.2025.113904_b0145 article-title: Fast and accurate modeling of molecular atomization energies with machine learning publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.058301 – volume: 18 start-page: 130 year: 2002 ident: 10.1016/j.commatsci.2025.113904_b0245 article-title: The Binding Database: data management and interface design publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.1.130 – volume: 14 start-page: 16 year: 2022 ident: 10.1016/j.commatsci.2025.113904_b0565 article-title: A multitask GNN-based interpretable model for discovery of selective JAK inhibitors publication-title: J. Cheminform doi: 10.1186/s13321-022-00593-9 – volume: 22 year: 2021 ident: 10.1016/j.commatsci.2025.113904_b0595 article-title: Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method publication-title: Brief. Bioinform. doi: 10.1093/bib/bbab112 – volume: 45 start-page: 4389 year: 2006 ident: 10.1016/j.commatsci.2025.113904_b0305 article-title: Sigma-profile database for using COSMO-based thermodynamic methods publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060370h – volume: 14 year: 2023 ident: 10.1016/j.commatsci.2025.113904_b0030 article-title: Navigating bioactivity space in anti-tubercular drug discovery through the deployment of advanced machine learning models and cheminformatics tools: a molecular modeling based retrospective study publication-title: Front. Pharmacol. doi: 10.3389/fphar.2023.1265573 – volume: 5 year: 2024 ident: 10.1016/j.commatsci.2025.113904_b0140 article-title: Molecular quantum chemical data sets and databases for machine learning potentials publication-title: Mach. Learn.: Sci. Technol. – start-page: 12298 year: 2021 ident: 10.1016/j.commatsci.2025.113904_b0470 article-title: Learning Binary Decision Trees by Argmin Differentiation – volume: 52 start-page: 1686 year: 2012 ident: 10.1016/j.commatsci.2025.113904_b0205 article-title: A bayesian approach to in silico blood-brain barrier penetration modeling publication-title: J. Chem. Inf. Model. doi: 10.1021/ci300124c – volume: 34 start-page: 786 year: 1991 ident: 10.1016/j.commatsci.2025.113904_b0280 article-title: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds correlation with molecular orbital energies and hydrophobicity, publication-title: J. Med. Chem. doi: 10.1021/jm00106a046 – ident: 10.1016/j.commatsci.2025.113904_b0690 doi: 10.1145/3404835.3463007 – volume: 10 start-page: 11 year: 2023 ident: 10.1016/j.commatsci.2025.113904_b0155 article-title: SPICE A dataset of drug-like molecules and peptides for training machine learning potentials, publication-title: Sci. Data doi: 10.1038/s41597-022-01882-6 – start-page: 4602 year: 2019 ident: 10.1016/j.commatsci.2025.113904_b0735 article-title: Weisfeiler and leman go neural: Higher-order graph Neural Networks – ident: 10.1016/j.commatsci.2025.113904_b0535 doi: 10.1109/CVPR.2017.576 – start-page: 1591 year: 2022 ident: 10.1016/j.commatsci.2025.113904_b0645 article-title: Molecular representations in deep-learning models for chemical property prediction publication-title: In – volume: 49 year: 2021 ident: 10.1016/j.commatsci.2025.113904_b0035 article-title: Using machine learning approaches for multi-omics data analysis: A review publication-title: Biotechnol. Adv.. doi: 10.1016/j.biotechadv.2021.107739 – volume: 47 start-page: 2408 year: 2007 ident: 10.1016/j.commatsci.2025.113904_b0375 article-title: ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine publication-title: J. Chem. Inf. Model. doi: 10.1021/ci7002076 – volume: 129 start-page: 482 year: 2014 ident: 10.1016/j.commatsci.2025.113904_b0480 article-title: Multi-step-ahead time series prediction using multiple-output support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.010 – volume: 1244 year: 2023 ident: 10.1016/j.commatsci.2025.113904_b0465 article-title: Graph Neural Tree: A novel and interpretable deep learning-based framework for accurate molecular property predictions publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.340558 – ident: 10.1016/j.commatsci.2025.113904_b0445 – ident: 10.1016/j.commatsci.2025.113904_b0720 – ident: 10.1016/j.commatsci.2025.113904_b0620 doi: 10.1145/3292500.3330701 – volume: 43 start-page: W612 year: 2015 ident: 10.1016/j.commatsci.2025.113904_b0225 article-title: ChEMBL web services: streamlining access to drug discovery data and utilities publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv352 – volume: 54 start-page: 1717 year: 2014 ident: 10.1016/j.commatsci.2025.113904_b0330 article-title: Comparative assessment of scoring functions on an updated benchmark: 2 Evaluation methods and general results, publication-title: J. Chem. Inf. Model doi: 10.1021/ci500081m – ident: 10.1016/j.commatsci.2025.113904_b0190 – year: 2020 ident: 10.1016/j.commatsci.2025.113904_b0270 article-title: TUDataset: A collection of benchmark datasets for learning with graphs, in – volume: 52 start-page: D1265 year: 2024 ident: 10.1016/j.commatsci.2025.113904_b0260 article-title: DrugBank 6.0: the DrugBank knowledgebase for 2024 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad976 – volume: 47 start-page: 2977 year: 2004 ident: 10.1016/j.commatsci.2025.113904_b0315 article-title: The PDBbind database: Collection of binding affinities for protein−ligand complexes with known three-dimensional structures publication-title: J. Med. Chem. doi: 10.1021/jm030580l – volume: 4 start-page: 127 year: 2022 ident: 10.1016/j.commatsci.2025.113904_b0440 article-title: Geometry-enhanced molecular representation learning for property prediction publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00438-4 – start-page: 171 year: 2021 ident: 10.1016/j.commatsci.2025.113904_b0685 article-title: Multi-label metabolic pathway prediction with auto molecular structure representation learning – volume: 30 year: 2017 ident: 10.1016/j.commatsci.2025.113904_b0415 article-title: Inductive representation learning on large graphs publication-title: Adv Neural Inf Process Syst – volume: 17 start-page: 1 year: 2019 ident: 10.1016/j.commatsci.2025.113904_b0395 article-title: ACP-DL: A deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2019.04.025 – volume: 33 start-page: 3117 year: 2022 ident: 10.1016/j.commatsci.2025.113904_b0750 article-title: Auto-GNAS: A Parallel graph neural architecture search framework publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2022.3151895 – volume: 301 year: 2024 ident: 10.1016/j.commatsci.2025.113904_b0730 article-title: Depth-adaptive graph neural architecture search for graph classification publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2024.112321 – volume: 13 year: 2023 ident: 10.1016/j.commatsci.2025.113904_b0095 article-title: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges publication-title: WIREs Data Min. Knowl. Discovery – volume: 23 year: 2022 ident: 10.1016/j.commatsci.2025.113904_b0585 article-title: FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction publication-title: Brief. Bioinform. doi: 10.1093/bib/bbac408 – volume: 3 start-page: 1534 year: 2024 ident: 10.1016/j.commatsci.2025.113904_b0695 article-title: Uncertainty quantification for molecular property predictions with graph neural architecture search, publication-title: Digital Discovery doi: 10.1039/D4DD00088A – volume: 44 start-page: 1000 year: 2004 ident: 10.1016/j.commatsci.2025.113904_b0175 article-title: ESOL: Estimating aqueous solubility directly from molecular structure publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci034243x – ident: 10.1016/j.commatsci.2025.113904_b0065 – year: 2015 ident: 10.1016/j.commatsci.2025.113904_b0705 – volume: 9 start-page: 513 year: 2018 ident: 10.1016/j.commatsci.2025.113904_b0135 article-title: MoleculeNet: a benchmark for molecular machine learning publication-title: Chem. Sci. doi: 10.1039/C7SC02664A – year: 2020 ident: 10.1016/j.commatsci.2025.113904_b0740 publication-title: Design Space for Graph Neural Networks – ident: 10.1016/j.commatsci.2025.113904_b0170 – ident: 10.1016/j.commatsci.2025.113904_b0105 – volume: 11 start-page: 377 year: 2019 ident: 10.1016/j.commatsci.2025.113904_b0400 article-title: Comparison of target features for predicting drug-target interactions by deep neural network based on large-scale drug-induced transcriptome data publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11080377 – volume: 159 year: 2023 ident: 10.1016/j.commatsci.2025.113904_b0450 article-title: Evaluation of the MACE force field architecture: From medicinal chemistry to materials science publication-title: J. Chem. Phys. doi: 10.1063/5.0155322 – volume: 23 year: 2022 ident: 10.1016/j.commatsci.2025.113904_b0425 article-title: Multiphysical graph neural network (MP-GNN) for COVID-19 drug design publication-title: Brief. Bioinform. doi: 10.1093/bib/bbac231 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.commatsci.2025.113904_b0555 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 22 start-page: 1680 year: 2017 ident: 10.1016/j.commatsci.2025.113904_b0390 article-title: From machine learning to deep learning: progress in machine intelligence for rational drug discovery publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2017.08.010 – volume: 31 start-page: 1235 year: 2019 ident: 10.1016/j.commatsci.2025.113904_b0610 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Comput. doi: 10.1162/neco_a_01199 – ident: 10.1016/j.commatsci.2025.113904_b0365 – year: 2020 ident: 10.1016/j.commatsci.2025.113904_b0520 publication-title: Simple and Deep Graph Convolutional, Networks – ident: 10.1016/j.commatsci.2025.113904_b0675 doi: 10.1145/3292500.3330701 – volume: 59 start-page: 3370 year: 2019 ident: 10.1016/j.commatsci.2025.113904_b0510 article-title: Analyzing learned molecular representations for property prediction publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00237 – volume: 7 start-page: 3713 year: 2022 ident: 10.1016/j.commatsci.2025.113904_b0625 article-title: Describe molecules by a heterogeneous graph neural network with transformer-like attention for supervised property predictions publication-title: ACS Omega doi: 10.1021/acsomega.1c06389 – volume: 20 start-page: 8583 year: 2024 ident: 10.1016/j.commatsci.2025.113904_b0160 article-title: Nutmeg and SPICE: Models and data for biomolecular machine learning publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.4c00794 – volume: 56 start-page: 1936 year: 2016 ident: 10.1016/j.commatsci.2025.113904_b0185 article-title: Computational Modeling of β-Secretase 1 (BACE-1) Inhibitors Using Ligand Based Approaches publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00290 – volume: 10 start-page: 1566 year: 2020 ident: 10.1016/j.commatsci.2025.113904_b0005 article-title: Cheminformatics to characterize pharmacologically active natural products publication-title: Biomolecules doi: 10.3390/biom10111566 – volume: 25 start-page: 1315 year: 2021 ident: 10.1016/j.commatsci.2025.113904_b0040 article-title: Artificial intelligence to deep learning: machine intelligence approach for drug discovery publication-title: Mol. Divers doi: 10.1007/s11030-021-10217-3 – ident: 10.1016/j.commatsci.2025.113904_b0080 doi: 10.24963/ijcai.2020/195 – year: 2020 ident: 10.1016/j.commatsci.2025.113904_b0525 publication-title: Benchmarking Graph Neural Networks – volume: 4 start-page: 719 year: 2001 ident: 10.1016/j.commatsci.2025.113904_b0250 article-title: BindingDB: A web-accessible molecular recognition database publication-title: Comb. Chem. High Throughput Screen. doi: 10.2174/1386207013330670 – volume: 52 start-page: 2864 year: 2012 ident: 10.1016/j.commatsci.2025.113904_b0130 article-title: Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17 publication-title: J. Chem. Inf. Model. doi: 10.1021/ci300415d – volume: 35 start-page: D198 year: 2007 ident: 10.1016/j.commatsci.2025.113904_b0235 article-title: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl999 – volume: 24 start-page: 11488 year: 2023 ident: 10.1016/j.commatsci.2025.113904_b0025 article-title: Recent advances in machine-learning-based chemoinformatics: A comprehensive review publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms241411488 – start-page: 347 year: 2018 ident: 10.1016/j.commatsci.2025.113904_b0385 – year: 2017 ident: 10.1016/j.commatsci.2025.113904_b0545 publication-title: Inductive Representation Learning on Large Graphs – volume: 16 year: 2022 ident: 10.1016/j.commatsci.2025.113904_b0070 article-title: Combining neuroimaging and omics datasets for disease classification using graph Neural Networks publication-title: Front. Neurosci.. doi: 10.3389/fnins.2022.866666 – volume: 48 start-page: 4111 year: 2005 ident: 10.1016/j.commatsci.2025.113904_b0320 article-title: The PDBbind Database: Methodologies and updates publication-title: J. Med. Chem. doi: 10.1021/jm048957q – year: 2012 ident: 10.1016/j.commatsci.2025.113904_b0275 article-title: Subgraph matching kernels for attributed graphs publication-title: ArXiv Preprint ArXiv:1206.6483 – year: 2018 ident: 10.1016/j.commatsci.2025.113904_b0745 article-title: An end-to-end deep learning architecture for graph classification – volume: 10 start-page: 93 year: 2024 ident: 10.1016/j.commatsci.2025.113904_b0755 article-title: JARVIS-Leaderboard: a large scale benchmark of materials design methods publication-title: npj Comput. Mater. doi: 10.1038/s41524-024-01259-w – volume: 123 year: 2023 ident: 10.1016/j.commatsci.2025.113904_b0410 article-title: MD-GNN: A mechanism-data-driven graph neural network for molecular properties prediction and new material discovery publication-title: J. Mol. Graph. Model. doi: 10.1016/j.jmgm.2023.108506 – volume: 24 year: 2011 ident: 10.1016/j.commatsci.2025.113904_b0580 article-title: Algorithms for hyper-parameter optimization publication-title: Adv. Neural Inf. Process Syst. – ident: 10.1016/j.commatsci.2025.113904_b0285 doi: 10.1109/ICDM.2006.39 – ident: 10.1016/j.commatsci.2025.113904_b0630 doi: 10.1145/3366423.3380027 – volume: 37 start-page: 1 year: 2020 ident: 10.1016/j.commatsci.2025.113904_b0050 article-title: A compact review of molecular property prediction with graph neural networks publication-title: Drug Discov. Today Technol. doi: 10.1016/j.ddtec.2020.11.009 – volume: 52 start-page: 1757 year: 2012 ident: 10.1016/j.commatsci.2025.113904_b0350 article-title: ZINC: A free tool to discover chemistry for biology publication-title: J. Chem. Inf. Model. doi: 10.1021/ci3001277 – ident: 10.1016/j.commatsci.2025.113904_b0435 – volume: 3 start-page: 93 year: 2022 ident: 10.1016/j.commatsci.2025.113904_b0045 article-title: Graph neural networks for materials science and chemistry publication-title: Commun. Mater doi: 10.1038/s43246-022-00315-6 – volume: 43 start-page: 1906 year: 2003 ident: 10.1016/j.commatsci.2025.113904_b0265 article-title: Spline-fitting with a genetic algorithm: A method for developing classification structure−activity relationships publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci034143r – volume: 9 start-page: 185 year: 2022 ident: 10.1016/j.commatsci.2025.113904_b0310 article-title: GEOM, energy-annotated molecular conformations for property prediction and molecular generation publication-title: Sci. Data doi: 10.1038/s41597-022-01288-4 – ident: 10.1016/j.commatsci.2025.113904_b0715 doi: 10.1609/aaai.v34i04.5997 – volume: 28 start-page: 711 year: 2014 ident: 10.1016/j.commatsci.2025.113904_b0180 article-title: FreeSolv: a database of experimental and calculated hydration free energies, with input files publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-014-9747-x – volume: 29 start-page: 1225 year: 2016 ident: 10.1016/j.commatsci.2025.113904_b0210 article-title: ToxCast chemical landscape: paving the road to 21st century toxicology publication-title: Chem. Res. Toxicol. doi: 10.1021/acs.chemrestox.6b00135 – volume: 19 year: 2023 ident: 10.1016/j.commatsci.2025.113904_b0405 article-title: A dual graph neural network for drug–drug interactions prediction based on molecular structure and interactions publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1010812 – volume: 44 start-page: D1045 issue: 2016 year: 2015 ident: 10.1016/j.commatsci.2025.113904_b0230 article-title: BindingDB in, A public database for medicinal chemistry, computational chemistry and systems pharmacology publication-title: Nucleic Acids Res. – volume: 11 year: 2020 ident: 10.1016/j.commatsci.2025.113904_b0355 article-title: Molecular sets (MOSES): A benchmarking platform for molecular generation models publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.565644 – volume: 131 start-page: 8732 year: 2009 ident: 10.1016/j.commatsci.2025.113904_b0110 article-title: 970 Million druglike small molecules for virtual screening in the chemical universe database GDB-13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902302h – volume: 31 start-page: 405 year: 2015 ident: 10.1016/j.commatsci.2025.113904_b0340 article-title: PDB-wide collection of binding data: current status of the PDBbind database publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu626 – volume: 10 start-page: 10 year: 2015 ident: 10.1016/j.commatsci.2025.113904_b0380 article-title: QSAR based model for discriminating EGFR inhibitors and non-inhibitors using Random forest publication-title: Biol. Direct doi: 10.1186/s13062-015-0046-9 – volume: 1 year: 2014 ident: 10.1016/j.commatsci.2025.113904_b0125 article-title: Quantum chemistry structures and properties of 134 kilo molecules publication-title: Sci. Data doi: 10.1038/sdata.2014.22 – ident: 10.1016/j.commatsci.2025.113904_b0455 – year: 2023 ident: 10.1016/j.commatsci.2025.113904_b0530 publication-title: Attending to Graph Transformers – year: 2015 ident: 10.1016/j.commatsci.2025.113904_b0495 publication-title: Neural Netw. – start-page: 1 issue: 4-2 year: 2015 ident: 10.1016/j.commatsci.2025.113904_b0600 article-title: Xgboost: extreme gradient boosting publication-title: R Package Version – volume: 465 year: 2024 ident: 10.1016/j.commatsci.2025.113904_b0605 article-title: AI-enhanced chemical paradigm: From molecular graphs to accurate prediction and mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.133355 – volume: 51 start-page: D1373 issue: 2023 year: 2023 ident: 10.1016/j.commatsci.2025.113904_b0115 article-title: PubChem, update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac956 – volume: 330 start-page: 771 year: 2003 ident: 10.1016/j.commatsci.2025.113904_b0295 article-title: Distinguishing enzyme structures from non-enzymes without alignments publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00628-4 – volume: 12 year: 2011 ident: 10.1016/j.commatsci.2025.113904_b0290 article-title: Weisfeiler-lehman graph kernels publication-title: J. Mach. Learn. Res. – volume: 61 start-page: 127 year: 2001 ident: 10.1016/j.commatsci.2025.113904_b0240 article-title: The binding database: overview and user’s guide, Biopolymers: Original Research on publication-title: Biomolecules – volume: 21 start-page: i47 year: 2005 ident: 10.1016/j.commatsci.2025.113904_b0300 article-title: Protein function prediction via graph kernels publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1007 – ident: 10.1016/j.commatsci.2025.113904_b0505 – volume: 63 start-page: 5734 year: 2023 ident: 10.1016/j.commatsci.2025.113904_b0120 article-title: PubChemQC B3LYP/6-31G*//PM6 Data Set: The electronic structures of 86 million molecules using B3LYP/6-31G* calculations publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.3c00899 – volume: 36 start-page: 1769 year: 2015 ident: 10.1016/j.commatsci.2025.113904_b0640 article-title: Universal structure conversion method for organic molecules: From atomic connectivity to three‐dimensional geometry publication-title: Bull. Kor. Chem. Soc. doi: 10.1002/bkcs.10334 – volume: 50 start-page: 302 year: 2017 ident: 10.1016/j.commatsci.2025.113904_b0345 article-title: Forging the basis for developing protein–ligand interaction scoring functions publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00491 – start-page: 1776 year: 2024 ident: 10.1016/j.commatsci.2025.113904_b0515 article-title: Graph neural networks for identifying protein-reactive compounds publication-title: Digital Discovery 3 doi: 10.1039/D4DD00038B – volume: 24 start-page: 25853 year: 2022 ident: 10.1016/j.commatsci.2025.113904_b0165 article-title: nablaDFT: Large-scale conformational energy and hamiltonian prediction benchmark and dataset publication-title: PCCP doi: 10.1039/D2CP03966D – ident: 10.1016/j.commatsci.2025.113904_b0090 doi: 10.1145/3449639.3459370 – volume: 49 start-page: D1122 year: 2021 ident: 10.1016/j.commatsci.2025.113904_b0255 article-title: CovalentInDB: a comprehensive database facilitating the discovery of covalent inhibitors publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa876 – volume: 54 start-page: 1700 year: 2014 ident: 10.1016/j.commatsci.2025.113904_b0335 article-title: Comparative assessment of scoring functions on an updated benchmark: 1 Compilation of the test set, publication-title: J. Chem. Inf. Model doi: 10.1021/ci500080q – ident: 10.1016/j.commatsci.2025.113904_b0680 doi: 10.1145/3638529.3654055 – year: 2016 ident: 10.1016/j.commatsci.2025.113904_b0665 article-title: The CMA evolution strategy publication-title: A Tutorial – volume: 49 start-page: 1079 year: 2009 ident: 10.1016/j.commatsci.2025.113904_b0325 article-title: Comparative assessment of scoring functions on a diverse test set publication-title: J. Chem. Inf. Model. doi: 10.1021/ci9000053 – year: 2021 ident: 10.1016/j.commatsci.2025.113904_b0490 article-title: Jannik bjerrum, graph networks for molecular design publication-title: Mach Learn Sci. Technol. doi: 10.1088/2632-2153/abcf91 – ident: 10.1016/j.commatsci.2025.113904_b0500 – volume: 148 year: 2018 ident: 10.1016/j.commatsci.2025.113904_b0420 article-title: SchNet – A deep learning architecture for molecules and materials publication-title: J. Chem. Phys. doi: 10.1063/1.5019779 – ident: 10.1016/j.commatsci.2025.113904_b0055 – ident: 10.1016/j.commatsci.2025.113904_b0200 – ident: 10.1016/j.commatsci.2025.113904_b0485 – volume: 7 start-page: 84 year: 2021 ident: 10.1016/j.commatsci.2025.113904_b0085 article-title: Benchmarking graph neural networks for materials chemistry publication-title: NPJ. Comput. Mater doi: 10.1038/s41524-021-00554-0 – volume: 49 start-page: 169 year: 2009 ident: 10.1016/j.commatsci.2025.113904_b0195 article-title: Maximum unbiased validation (MUV) data sets for virtual screening based on pubchem bioactivity data publication-title: J. Chem. Inf. Model. doi: 10.1021/ci8002649 – year: 2021 ident: 10.1016/j.commatsci.2025.113904_b0540 publication-title: How Attentive Are Graph Attention Networks? – volume: 27 start-page: 692 year: 2022 ident: 10.1016/j.commatsci.2025.113904_b0100 article-title: Graph neural architecture search: A survey, Tsinghua publication-title: Sci. Technol. – volume: 207 start-page: 81 year: 2022 ident: 10.1016/j.commatsci.2025.113904_b0430 article-title: Toward drug-miRNA resistance association prediction by positional encoding graph neural network and multi-channel neural network publication-title: Methods doi: 10.1016/j.ymeth.2022.09.005 – start-page: 4780 year: 2019 ident: 10.1016/j.commatsci.2025.113904_b0700 article-title: Regularized Evolution for image classifier architecture search – volume: 52 start-page: D1180 issue: 2024 year: 2023 ident: 10.1016/j.commatsci.2025.113904_b0220 article-title: The ChEMBL Database in, a drug discovery platform spanning multiple bioactivity data types and time periods publication-title: Nucleic Acids Res. – ident: 10.1016/j.commatsci.2025.113904_b0655 – volume: 50 start-page: 1034 year: 2010 ident: 10.1016/j.commatsci.2025.113904_b0370 article-title: Estimation of ADME properties with substructure pattern recognition publication-title: J. Chem. Inf. Model. doi: 10.1021/ci100104j – volume: 115 start-page: 2315 year: 2017 ident: 10.1016/j.commatsci.2025.113904_b0020 article-title: Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals publication-title: Mol. Phys. doi: 10.1080/00268976.2017.1333644 – volume: 11 year: 2019 ident: 10.1016/j.commatsci.2025.113904_b0010 article-title: Integration of target discovery, drug discovery and drug delivery: A review on computational strategies publication-title: WIREs Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1554 – volume: 6 start-page: 138 year: 2020 ident: 10.1016/j.commatsci.2025.113904_b0760 article-title: Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-020-00406-3 – start-page: 10764 year: 2019 ident: 10.1016/j.commatsci.2025.113904_b0550 article-title: Explainability methods for graph convolutional Neural Networks – ident: 10.1016/j.commatsci.2025.113904_b0590 – ident: 10.1016/j.commatsci.2025.113904_b0670 doi: 10.1145/3449726.3463192 – volume: 44 start-page: D1075 year: 2016 ident: 10.1016/j.commatsci.2025.113904_b0215 article-title: The SIDER database of drugs and side effects publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1075 |
| SSID | ssj0016982 |
| Score | 2.4427993 |
| Snippet | [Display omitted]
•Comprehensive review of cheminformatics datasets for molecular property prediction.•Survey of optimization techniques for Graph Neural... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 113904 |
| SubjectTerms | Cheminformatics Deep learning (DL) Graph neural networks (GNN) Hyperparameter optimization (HPO) Machine learning (ML) Neural architecture search (NAS) |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KL-pBfGJ9sQevsUma3XS9SbEUD71oobewO9lopE1LmiJe_O3O5FEqCApCICRMZsNkmPmGfDvD2I3SnmviXuDoUEgnCAPhKBACax4_lELFQkDJ8h3L0SR4nIppiw2avTBEq6xjfxXTy2hd3-nW1uwu07T75CraS0UAnhJNSHE4wBP69O3nhubhSVUOjCJhh6S_cbxQN-JC1I6Foi9ovomqJ7b9kKF21tlSf7zr2WwrAw0P2H4NHfl99XaHrGWzI7a31VDwmOUjLCtzauc9J5oLX2BAmNc7LbnOYk7tK1HH9u8DXjk717OXRZ4Wr_MVRyDLy07WfFzJjyuy-IqnGQdqMZDVWBdWJ2wyfHgejJx6qoIDmL0LJzCh8KkSETFYCBQdbh8MhBKExaSmE-MaLXquMf1YgtS-MghkkjCwWM4kvVPWzhaZPWPcgjHgQyJAYlVirTJSJdYYzwB4FtwOcxtLRsuqeUbUsMreoo3xIzJ-VBm_w-4ai0ff_CDCEP_7w97mG_11wfP_LHjBdumK2AS-e8naRb62VwhSCnNdeuEXGMLprg priority: 102 providerName: Elsevier |
| Title | Hyperparameter optimization and neural architecture search algorithms for graph Neural Networks in cheminformatics |
| URI | https://dx.doi.org/10.1016/j.commatsci.2025.113904 https://doi.org/10.1016/j.commatsci.2025.113904 |
| UnpaywallVersion | publishedVersion |
| Volume | 254 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1879-0801 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016982 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1879-0801 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016982 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 1879-0801 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016982 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 1879-0801 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016982 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1879-0801 databaseCode: AKRWK dateStart: 19930301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016982 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6C9jA4DDaYYLDKh11TkjR26t0qBMo2KeJApe4U2S_OgLUpSlMhOPC37zk_UIuG2CblEil2kvecvO-TP38G-CyV5-p0EDgq5MIJwoA7EjknzuOHgsuUc6xUvrGIxsG3CZ9swEm7FmZt_r7SYVHgCbtRPSAy53O7B4m0_p9d6km4HeiO44vRj8pRzw8dW8EtxRqG0iEs5K0puv7Y00v16M0yv1X3d2o6Xak35ztw0T5pLTP51V-Wuo8Pz0wc_-FVduFtgz3ZqB4s72DD5O9he8WRcA-KiHhpYf3AZ1Ynw-b0R5k1SzWZylNm_S-pj9X5B1Z_LUxNf86L6_JqtmCEhFllhc3i-vq4Vpsv2HXO0HoU5A1YxsU-jM_PLk8jp9mWwUEq_6UT6JD7lsrwFA0G0h7uEDWGArmhqqgy7WrFB67Ww1SgUL7UhISyMDDEh7LBB-jk89wcADOoNfqYcRREa4yRWsjMaO1pRM-gewhum5zktnbfSFpZ2k3yFM7EhjOpw3kIX9okJg2IqMFBQvl4vbH3lPa_veHH_2hzBFv2zKoQfPcYOmWxNJ8I3JS6B5v9R68H3dHX71Hca4b3b29Q-2E |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ED-pBfGJ97sFrbJJmN643KZb66kULvYXdyUYrbVrSiHjxtzuTR6kgKAg5JZPdMFlmvo_9doaxM6U918StwNGhkE4QBsJRIARyHj-UQsVCQKHy7cluP7gdiMESa9dnYUhWWcX-MqYX0bq606y82ZwOh81HV9FZKgLwlGhCjMMrgfBDYmDnn3OdhydV0TGKrB0y_ybywsERGOLwyBR9QQ1OVNWy7YcUtfqWTvXHux6NFlJQZ5NtVNiRX5Wft8WWbLrN1hcqCu6wrIu8MqN63mPSufAJRoRxddSS6zTmVL8Sx1jcP-Dlaud69DzJhvnLeMYRyfKilDXvlfa9Ui0-48OUA9UYSCuwC7Nd1u9cP7W7TtVWwQFM37kTmFD4REVEDBYCRZd7AQZCCcJiVtOJcY0WLdeYi1iC1L4yiGSSMLDIZ5LWHltOJ6ndZ9yCMeBDIkAiLbFWGakSa4xnADwLboO5tSejaVk9I6plZa_R3PkROT8qnd9gl7XHo28LIcIY__vL3vwf_XXCg_9MeMpWu08P99H9Te_ukK3RE5IW-O4RW86zN3uMiCU3J8WK_ALlfuzR |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4IPKgP3o14Sx98HW5j7ahvxEiID4QHSfBpac86RWGQMWL013u6CwGj8ZLsZcnabed0O9-Xfv1KyKWQjq3CpmdJn3HL8z1mCWAMOY_rcyZCxiBT-fZ4d-DdDdmwQq7KtTBr8_eZDgsDj9gN6wGSOZeZPUiE8f-sYU_crpLaoNdvP2SOeq5vmQpuKFbLFxZiIWdN0fVlT9_Vo41FPJNvr3I8Xqk3nR3SL580l5m8NBapasD7JxPHP7zKLtkusCdt54Nlj1R0vE-2VhwJD0jSRV6aGD_widHJ0Cn-USbFUk0q45Aa_0vsY3X-geZfC5Xjx2kySp8mc4pImGZW2LSXX9_L1eZzOoopGI-CuADLMD8kg87t_U3XKrZlsADLf2p5ymeuoTIsBA2eMIfdAgU-B6axKspI2Uqypq1UK-TApSsUIqHI9zTyoah5RKrxNNbHhGpQClyIGHCkNVoLxUWklXIUgKPBrhO7TE4wy903glKW9hwswxmYcAZ5OOvkukxiUICIHBwEmI-fGzvLtP_2hif_aHNKNs2ZUSG49hmppslCnyO4SdVFMaA_AMZ7-NU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperparameter+optimization+and+neural+architecture+search+algorithms+for+graph+Neural+Networks+in+cheminformatics&rft.jtitle=Computational+materials+science&rft.au=Ebadi%2C+Ali&rft.au=Kaur%2C+Manpreet&rft.au=Liu%2C+Qian&rft.date=2025-05-20&rft.issn=0927-0256&rft.volume=254&rft.spage=113904&rft_id=info:doi/10.1016%2Fj.commatsci.2025.113904&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2025_113904 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon |