Hyperparameter optimization and neural architecture search algorithms for graph Neural Networks in cheminformatics

[Display omitted] •Comprehensive review of cheminformatics datasets for molecular property prediction.•Survey of optimization techniques for Graph Neural Networks in cheminformatics.•Comparison of optimization methods, highlighting strengths and limitations.•Identify gaps and future directions in Gr...

Full description

Saved in:
Bibliographic Details
Published inComputational materials science Vol. 254; p. 113904
Main Authors Ebadi, Ali, Kaur, Manpreet, Liu, Qian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 20.05.2025
Subjects
Online AccessGet full text
ISSN0927-0256
1879-0801
DOI10.1016/j.commatsci.2025.113904

Cover

Abstract [Display omitted] •Comprehensive review of cheminformatics datasets for molecular property prediction.•Survey of optimization techniques for Graph Neural Networks in cheminformatics.•Comparison of optimization methods, highlighting strengths and limitations.•Identify gaps and future directions in Graph Neural Networks for cheminformatics. Cheminformatics, an interdisciplinary field bridging chemistry and information science, leverages computational tools to analyze and interpret chemical data, playing a critical role in drug discovery, material science, and environmental chemistry. Traditional methods, reliant on rule-based algorithms and expert-curated datasets, face challenges in scalability and adaptability. Recently, machine learning and deep learning have revolutionized cheminformatics by offering data-driven approaches that uncover complex patterns in vast chemical datasets, advancing molecular property prediction, chemical reaction modeling, and de novo molecular design. Among the most promising techniques are Graph Neural Networks (GNNs), which have emerged as a powerful tool for modeling molecules in a manner that mirrors their underlying chemical structures. Despite their success, the performance of GNNs is highly sensitive to architectural choices and hyperparameters, making optimal configuration selection a non-trivial task. Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO) are crucial for improving GNN performance, but the complexity and computational cost of these processes have traditionally hindered progress. This review examines various strategies for automating NAS and HPO in GNNs, highlighting their potential to enhance model performance, scalability, and efficiency in key cheminformatics applications. As the field evolves, automated optimization techniques are expected to play a pivotal role in advancing GNN-based solutions in cheminformatics.
AbstractList [Display omitted] •Comprehensive review of cheminformatics datasets for molecular property prediction.•Survey of optimization techniques for Graph Neural Networks in cheminformatics.•Comparison of optimization methods, highlighting strengths and limitations.•Identify gaps and future directions in Graph Neural Networks for cheminformatics. Cheminformatics, an interdisciplinary field bridging chemistry and information science, leverages computational tools to analyze and interpret chemical data, playing a critical role in drug discovery, material science, and environmental chemistry. Traditional methods, reliant on rule-based algorithms and expert-curated datasets, face challenges in scalability and adaptability. Recently, machine learning and deep learning have revolutionized cheminformatics by offering data-driven approaches that uncover complex patterns in vast chemical datasets, advancing molecular property prediction, chemical reaction modeling, and de novo molecular design. Among the most promising techniques are Graph Neural Networks (GNNs), which have emerged as a powerful tool for modeling molecules in a manner that mirrors their underlying chemical structures. Despite their success, the performance of GNNs is highly sensitive to architectural choices and hyperparameters, making optimal configuration selection a non-trivial task. Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO) are crucial for improving GNN performance, but the complexity and computational cost of these processes have traditionally hindered progress. This review examines various strategies for automating NAS and HPO in GNNs, highlighting their potential to enhance model performance, scalability, and efficiency in key cheminformatics applications. As the field evolves, automated optimization techniques are expected to play a pivotal role in advancing GNN-based solutions in cheminformatics.
ArticleNumber 113904
Author Liu, Qian
Ebadi, Ali
Kaur, Manpreet
Author_xml – sequence: 1
  givenname: Ali
  surname: Ebadi
  fullname: Ebadi, Ali
– sequence: 2
  givenname: Manpreet
  surname: Kaur
  fullname: Kaur, Manpreet
– sequence: 3
  givenname: Qian
  surname: Liu
  fullname: Liu, Qian
  email: qi.liu@uwinnipeg.ca
BookMark eNqVkE1OwzAQhb0oEi1wBnyBBOc_WVYVUKSqbGBtOc6kcUnsaOxSldPjKIgtQhppNKP3RvO-FVloo4GQ-4iFEYvyh2MozTAIZ6UKYxZnYRQlFUsXZMmquAj8Jr8mK2uPzKurMl4S3F5GwFGgGMABUjM6Nagv4ZTRVOiGajih6KlA2SkH0p0QqIVppKI_GFSuGyxtDdIDirGj-1m_B3c2-GGp0lR2MCjtJf4zJe0tuWpFb-Hup9-Q96fHt8022L0-v2zWu0DGKXNBWheZzxAVWSNBptVUrJS1LHKZQZJGoq1ZLbKE1XXZ5DIXcVWzPGmLFLKMtckNKee7Jz2Ky1n0PR9RDQIvPGJ84sWP_JcXn3jxmZe3FrNVorEWof2Hcz07wSf7VIDcK0BLaBR6erwx6s8b3z79krg
Cites_doi 10.1002/jcc.27490
10.1039/b719311b
10.1109/TSP.2020.3033962
10.1016/j.drudis.2021.02.011
10.1016/j.softx.2020.100520
10.1093/nar/gkaa970
10.1021/acs.jmedchem.9b00959
10.1021/acs.jctc.3c01003
10.1103/PhysRevLett.108.058301
10.1093/bioinformatics/18.1.130
10.1186/s13321-022-00593-9
10.1093/bib/bbab112
10.1021/ie060370h
10.3389/fphar.2023.1265573
10.1021/ci300124c
10.1021/jm00106a046
10.1145/3404835.3463007
10.1038/s41597-022-01882-6
10.1109/CVPR.2017.576
10.1016/j.biotechadv.2021.107739
10.1021/ci7002076
10.1016/j.neucom.2013.09.010
10.1016/j.aca.2022.340558
10.1145/3292500.3330701
10.1093/nar/gkv352
10.1021/ci500081m
10.1093/nar/gkad976
10.1021/jm030580l
10.1038/s42256-021-00438-4
10.1016/j.omtn.2019.04.025
10.1109/TPDS.2022.3151895
10.1016/j.knosys.2024.112321
10.1093/bib/bbac408
10.1039/D4DD00088A
10.1021/ci034243x
10.1039/C7SC02664A
10.3390/pharmaceutics11080377
10.1063/5.0155322
10.1093/bib/bbac231
10.1007/BF00994018
10.1016/j.drudis.2017.08.010
10.1162/neco_a_01199
10.1021/acs.jcim.9b00237
10.1021/acsomega.1c06389
10.1021/acs.jctc.4c00794
10.1021/acs.jcim.6b00290
10.3390/biom10111566
10.1007/s11030-021-10217-3
10.24963/ijcai.2020/195
10.2174/1386207013330670
10.1021/ci300415d
10.1093/nar/gkl999
10.3390/ijms241411488
10.3389/fnins.2022.866666
10.1021/jm048957q
10.1038/s41524-024-01259-w
10.1016/j.jmgm.2023.108506
10.1109/ICDM.2006.39
10.1145/3366423.3380027
10.1016/j.ddtec.2020.11.009
10.1021/ci3001277
10.1038/s43246-022-00315-6
10.1021/ci034143r
10.1038/s41597-022-01288-4
10.1609/aaai.v34i04.5997
10.1007/s10822-014-9747-x
10.1021/acs.chemrestox.6b00135
10.1371/journal.pcbi.1010812
10.3389/fphar.2020.565644
10.1021/ja902302h
10.1093/bioinformatics/btu626
10.1186/s13062-015-0046-9
10.1038/sdata.2014.22
10.1016/j.jhazmat.2023.133355
10.1093/nar/gkac956
10.1016/S0022-2836(03)00628-4
10.1093/bioinformatics/bti1007
10.1021/acs.jcim.3c00899
10.1002/bkcs.10334
10.1021/acs.accounts.6b00491
10.1039/D4DD00038B
10.1039/D2CP03966D
10.1145/3449639.3459370
10.1093/nar/gkaa876
10.1021/ci500080q
10.1145/3638529.3654055
10.1021/ci9000053
10.1088/2632-2153/abcf91
10.1063/1.5019779
10.1038/s41524-021-00554-0
10.1021/ci8002649
10.1016/j.ymeth.2022.09.005
10.1021/ci100104j
10.1080/00268976.2017.1333644
10.1002/wnan.1554
10.1038/s41524-020-00406-3
10.1145/3449726.3463192
10.1093/nar/gkv1075
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.commatsci.2025.113904
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10.1016/j.commatsci.2025.113904
10_1016_j_commatsci_2025_113904
S0927025625002472
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSH
SSM
SST
SSZ
T5K
XPP
ZMT
~G-
29F
AAQXK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
M24
M41
R2-
SBC
SMS
VH1
WUQ
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c240t-4b75202175dcec49c49c08cbc76c5e341afb0ba530bb8d6c6a29b063f74e550f3
IEDL.DBID UNPAY
ISSN 0927-0256
1879-0801
IngestDate Tue Aug 19 23:29:23 EDT 2025
Wed Oct 01 06:34:50 EDT 2025
Sat May 03 15:40:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Machine learning (ML)
Cheminformatics
Neural architecture search (NAS)
Deep learning (DL)
Hyperparameter optimization (HPO)
Graph neural networks (GNN)
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c240t-4b75202175dcec49c49c08cbc76c5e341afb0ba530bb8d6c6a29b063f74e550f3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.commatsci.2025.113904
ParticipantIDs unpaywall_primary_10_1016_j_commatsci_2025_113904
crossref_primary_10_1016_j_commatsci_2025_113904
elsevier_sciencedirect_doi_10_1016_j_commatsci_2025_113904
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-20
PublicationDateYYYYMMDD 2025-05-20
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-20
  day: 20
PublicationDecade 2020
PublicationTitle Computational materials science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hansen (b0665) 2016
Oloulade, Gao, Chen, Lyu, Al-Sabri (b0100) 2022; 27
Du, Gao, Weng, Ding, Chai, Pang, Kang, Li, Cao, Hou (b0255) 2021; 49
E. Lindelöf, Deep learning for drug discovery, property prediction with neural networks on raw molecular graphs, (2019).
F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, M.M. Bronstein, Geometric deep learning on graphs and manifolds using mixture model CNNs, (2016).
Mercado, Rastemo, Lindelöf, Klambauer, Engkvist, Chen, E. (b0490) 2021
Hamilton, Ying, Leskovec (b0545) 2017
Deng, Lei, Hong, Zhang, Zhou (b0625) 2022; 7
Wieder, Kohlbacher, Kuenemann, Garon, Ducrot, Seidel, Langer (b0050) 2020; 37
Cortes, Vapnik (b0555) 1995; 20
Y. Yuan, W. Wang, W. Pang, A systematic comparison study on hyperparameter optimisation of graph neural networks for molecular property prediction, in: Proceedings of the Genetic and Evolutionary Computation Conference, ACM, New York, NY, USA, 2021: pp. 386–394.
Xiong, Wang, Liu, Zhong, Wan, Li, Li, Luo, Chen, Jiang, Zheng (b0570) 2020; 63
Delaney (b0175) 2004; 44
Bischl, Binder, Lang, Pielok, Richter, Coors, Thomas, Ullmann, Becker, Boulesteix, Deng, Lindauer (b0095) 2023; 13
T. Yu, H. Zhu, Hyper-parameter optimization: A review of algorithms and applications, ArXiv Preprint ArXiv:2003.05689 (2020).
Hou, Wang, Li (b0375) 2007; 47
Yi, You, Zhou, Cheng, Li, Jiang, Chen (b0395) 2019; 17
Kim, Chen, Cheng, Gindulyte, He, He, Li, Shoemaker, Thiessen, Yu, Zaslavsky, Zhang, Bolton (b0115) 2023; 51
Bergstra, Bardenet, Bengio, Kégl (b0580) 2011; 24
Chen, Gao, Lyu, Oloulade, Hu (b0685) 2021
Chan, Wang, Soh, Rajapakse (b0070) 2022; 16
Galuzio, de Vasconcelos Segundo, Dos, Coelho, Mariani (b0650) 2020; 12
Aouichaoui, Fan, Mansouri, Sin (b0645) 2022
Choudhary, Wines, Li, Garrity, Gupta, Romero, Krogel, Saritas, Fuhr, Ganesh, Kent, Yan, Lin, Ji, Blaiszik, Reiser, Friederich, Agrawal, Tiwary, Beyerle, Minch, Rhone, Takeuchi, Wexler, Mannodi-Kanakkithodi, Ertekin, Mishra, Mathew, Wood, Rohskopf, Hattrick-Simpers, Wang, Achenie, Xin, Williams, Biacchi, Tavazza (b0755) 2024; 10
Pope, Kolouri, Rostami, Martin, Hoffmann (b0550) 2019
Rupp, Tkatchenko, Müller, von Lilienfeld (b0145) 2012; 108
S. Falkner, A. Klein, F. Hutter, BOHB: Robust and Efficient Hyperparameter Optimization at Scale, (2018).
Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (b0575) 2017; 30
Khrabrov, Shenbin, Ryabov, Tsypin, Telepov, Alekseev, Grishin, Strashnov, Zhilyaev, Nikolenko, Kadurin (b0165) 2022; 24
.
Shervashidze, Schweitzer, Van Leeuwen, Mehlhorn, Borgwardt (b0290) 2011; 12
Real, Aggarwal, Huang, Le (b0700) 2019
Ruddigkeit, van Deursen, Blum, Reymond (b0130) 2012; 52
Rohrer, Baumann (b0195) 2009; 49
Zhan, Zhu, Qiao, Hu (b0465) 2023; 1244
Liu, Su, Han, Liu, Yang, Li, Wang (b0345) 2017; 50
Gupta, Srivastava, Sahu, Tiwari, Ambasta, Kumar (b0040) 2021; 25
Wang, Fang, Lu, Yang, Wang (b0320) 2005; 48
Eastman, Behara, Dotson, Galvelis, Herr, Horton, Mao, Chodera, Pritchard, Wang, De Fabritiis, Markland (b0155) 2023; 10
Singh, Singh, Singla, Agarwal, Raghava (b0380) 2015; 10
DIPPR Project 801, (n.d.).
Li, Liu, Li, Han, Liu, Zhao, Wang (b0335) 2014; 54
Reel, Reel, Pearson, Trucco, Jefferson (b0035) 2021; 49
J. Bergstra, J.B. Ca, Y.B. Ca, Random Search for Hyper-Parameter Optimization Yoshua Bengio, 2012.
Mobley, Guthrie (b0180) 2014; 28
Hamilton, Ying, Leskovec (b0415) 2017; 30
Kuhn, Letunic, Jensen, Bork (b0215) 2016; 44
Martins, Teixeira, Pinheiro, Falcao (b0205) 2012; 52
O. Vinyals, S. Bengio, M. Kudlur, Order Matters: Sequence to sequence for sets, (2015).
Knox, Wilson, Klinger, Franklin, Oler, Wilson, Pon, Cox, Lucy Chin, Strawbridge, Garcia-Patino, Kruger, Sivakumaran, Sanford, Doshi, Khetarpal, Fatokun, Doucet, Zubkowski, Rayat, Jackson, Harford, Anjum, Zakir, Wang, Tian, Lee, Liigand, Peters, Rachel Wang, Nguyen, So, Sharp, Da Silva, Gabriel, Scantlebury, Jasinski, Ackerman, Jewison, Sajed, Gautam, Wishart (b0260) 2024; 52
Kyoto Encyclopedia of Genes and Genomes, (n.d.).
Bhowmik, Kant, Manaithiya, Saluja, Vyas, Nath, Qureshi, Parkkila, Aspatwar (b0030) 2023; 14
J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural Message Passing for Quantum Chemistry, (2017).
Wu, Jiang, Hsieh, Chen, Liao, Cao, Hou (b0595) 2021; 22
E. Ranjan, S. Sanyal, P.P. Talukdar, ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations, (2019).
Chen, Liu, Gilson (b0250) 2001; 4
Sutherland, O’Brien, Weaver (b0265) 2003; 43
Abranches, Maginn, Colón (b0635) 2023; 19
Lee, Kim (b0400) 2019; 11
Medina-Franco, Saldívar-González (b0005) 2020; 10
Li, Liu, Lu, Hua, Chi, Xia (b0425) 2022; 23
Fang, Liu, Lei, He, Zhang, Zhou, Wang, Wu, Wang (b0440) 2022; 4
Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe (b0735) 2019
I. Batatia, D.P. Kovacs, G. Simm, C. Ortner, G. Csanyi, MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields, in: S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh (Eds.), Adv Neural Inf Process Syst, Curran Associates, Inc., 2022: pp. 11423–11436.
Li, Tarlow, Brockschmidt, Zemel, Sequence (b0495) 2015
(accessed October 28, 2024).
Irwin, Sterling, Mysinger, Bolstad, Coleman (b0350) 2012; 52
Ramakrishnan, Dral, Rupp, von Lilienfeld (b0125) 2014; 1
Niazi, Mariam (b0025) 2023; 24
Ruiz, Gama, Ribeiro (b0475) 2020; 68
Dobson, Doig (b0295) 2003; 330
You, Ying, Leskovec (b0740) 2020
Richard, Judson, Houck, Grulke, Volarath, Thillainadarajah, Yang, Rathman, Martin, Wambaugh, Knudsen, Kancherla, Mansouri, Patlewicz, Williams, Little, Crofton, Thomas (b0210) 2016; 29
Fung, Zhang, Juarez, Sumpter (b0085) 2021; 7
K. Khrabrov, A. Ber, A. Tsypin, K. Ushenin, E. Rumiantsev, A. Telepov, D. Protasov, I. Shenbin, A. Alekseev, M. Shirokikh, S. Nikolenko, E. Tutubalina, A. Kadurin, $\nabla^2$DFT: A Universal Quantum Chemistry Dataset of Drug-Like Molecules and a Benchmark for Neural Network Potentials, (2024).
Liu, Lin, Wen, Jorissen, Gilson (b0235) 2007; 35
Kim, Kim (b0640) 2015; 36
Kriege, Mutzel (b0275) 2012
J. Chen, J. Gao, Y. Chen, M.B. Oloulade, T. Lyu, Z. Li, GraphPAS: Parallel Architecture Search for Graph Neural Networks, in: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, New York, NY, USA, 2021: pp. 2182–2186.
Debnath, Lopez de Compadre, Debnath, Shusterman, Hansch (b0280) 1991; 34
Duarte, Márquez-Miranda, Miossec, González-Nilo (b0010) 2019; 11
T.N. Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, (2016).
Müller, Galkin, Morris, Rampášek (b0530) 2023
Wu, Ramsundar, Feinberg, Gomes, Geniesse, Pappu, Leswing, Pande (b0135) 2018; 9
Mardirossian, Head-Gordon (b0020) 2017; 115
Zhang, Tan, Han, Zhu (b0390) 2017; 22
Zdrazil, Felix, Hunter, Manners, Blackshaw, Corbett, de Veij, Ioannidis, Lopez, Mosquera, Magarinos, Bosc, Arcila, Kizilören, Gaulton, Bento, Adasme, Monecke, Landrum, Leach (b0220) 2023; 52
Dwivedi, Joshi, Luu, Laurent, Bengio, Bresson (b0525) 2020
Reiser, Neubert, Eberhard, Torresi, Zhou, Shao, Metni, van Hoesel, Schopmans, Sommer, Friederich (b0045) 2022; 3
D. Khan, A. Benali, S.Y.H. Kim, G.F. von Rudorff, O.A. von Lilienfeld, Quantum mechanical dataset of 836k neutral closed shell molecules with upto 5 heavy atoms from CNOFSiPSClBr, (2024).
Chen (b0600) 2015
Y. Yuan, W. Wang, X. Li, K. Chen, Y. Zhang, W. Pang, Evolving Molecular Graph Neural Networks with Hierarchical Evaluation Strategy, in: Proceedings of the Genetic and Evolutionary Computation Conference, ACM, New York, NY, USA, 2024: pp. 1417–1425.
Kovács, Batatia, Arany, Csányi (b0450) 2023; 159
Bao, Xiong, Hu (b0480) 2014; 129
Ullah, Chen, Dral (b0140) 2024; 5
(accessed October 18, 2024).
Gal, Ghahramani (b0705) 2015
T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, New York, NY, USA, 2019: pp. 2623–2631.
Subramanian, Ramsundar, Pande, Denny (b0185) 2016; 56
Li, Han, Liu, Wang (b0330) 2014; 54
Ma, Lei (b0405) 2023; 19
Shen, Cheng, Xu, Li, Tang (b0370) 2010; 50
Y.-X. Wu, X. Wang, A. Zhang, X. He, T.-S. Chua, Discovering Invariant Rationales for Graph Neural Networks, (2022).
Yang, Swanson, Jin, Coley, Eiden, Gao, Guzman-Perez, Hopper, Kelley, Mathea, Palmer, Settels, Jaakkola, Jensen, Barzilay (b0510) 2019; 59
H. Liu, K. Simonyan, Y. Yang, DARTS: Differentiable Architecture Search, (2018).
Y. Gao, H. Yang, P. Zhang, C. Zhou, Y. Hu, Graph neural architecture search, in: International Joint Conference on Artificial Intelligence, 2021.
Xiong, Xiong, Chen, Jiang, Zheng (b0075) 2021; 26
Zeng, Feng, Li, Lv, Wen, Li (b0460) 2024; 45
Mullins, Oldland, Liu, Wang, Sandler, Chen, Zwolak, Seavey (b0305) 2006; 45
Schütt, Sauceda, Kindermans, Tkatchenko, Müller (b0420) 2018; 148
Dunn, Wang, Ganose, Dopp, Jain (b0760) 2020; 6
Kanehisa, Furumichi, Sato, Ishiguro-Watanabe, Tanabe (b0360) 2021; 49
Zantedeschi, Kusner, Niculae (b0470) 2021
Chen, Wulamu, Zou, Zheng, Wen, Guo, Chen, Zhang, Zhang (b0410) 2023; 123
Qin, Wang, Zhang, Xie, Zhu (b0710) 2022
Veličković, Cucurull, Casanova, Romero, Liò, Bengio, Attention (b0060) 2017
Cai, Zhang, Zhao, Wu, Wang (b0585) 2022; 23
Morris, Kriege, Bause, Kersting, Mutzel, Neumann (b0270) 2020.
Davies, Nowotka, Papadatos, Dedman, Gaulton, Atkinson, Bellis, Overington (b0225) 2015; 43
Nakata, Maeda (b0120) 2023; 63
Jiang, Qin, Van Lehn, Balaprakash, Zavala (b0695) 2024; 3
Dey, Salem (b0615) 2017
Wang, Gu, Lou, Gong, Wu, Li, Tang, Liu (b0565) 2022; 14
Axelrod, Gómez-Bombarelli (b0310) 2022; 9
Huang, Yu, He, Yu, Deng, Yang, Zhu, Shao (b0605) 2024; 465
Cano Gil, Rowley (b0515) 2024
Chen, Wei, Huang, Ding, Li (b0520) 2020
Gilson, Liu, Baitaluk, Nicola, Hwang, Chong (b0230) 2015; 44
J. Bergstra, D. Yamins, D. Cox, Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures, in: S. Dasgupta, D. McAllester (Eds.), Proceedings of the 30th International Conference on Machine Learning, PMLR, Atlanta, Georgia, USA, 2013: pp. 115–123.
Chen, Gao, Chen, Oloulade, Lyu, Li (b0750) 2022; 33
N. Wale, G. Karypis, Comp
Shervashidze (10.1016/j.commatsci.2025.113904_b0290) 2011; 12
Dunn (10.1016/j.commatsci.2025.113904_b0760) 2020; 6
10.1016/j.commatsci.2025.113904_b0015
10.1016/j.commatsci.2025.113904_b0535
10.1016/j.commatsci.2025.113904_b0655
Mardirossian (10.1016/j.commatsci.2025.113904_b0020) 2017; 115
Hamilton (10.1016/j.commatsci.2025.113904_b0545) 2017
Kovács (10.1016/j.commatsci.2025.113904_b0450) 2023; 159
Khrabrov (10.1016/j.commatsci.2025.113904_b0165) 2022; 24
Delaney (10.1016/j.commatsci.2025.113904_b0175) 2004; 44
Bao (10.1016/j.commatsci.2025.113904_b0480) 2014; 129
Chen (10.1016/j.commatsci.2025.113904_b0750) 2022; 33
Singh (10.1016/j.commatsci.2025.113904_b0380) 2015; 10
Zeng (10.1016/j.commatsci.2025.113904_b0460) 2024; 45
Wang (10.1016/j.commatsci.2025.113904_b0320) 2005; 48
Ma (10.1016/j.commatsci.2025.113904_b0405) 2023; 19
Morris (10.1016/j.commatsci.2025.113904_b0270) 2020
Bhowmik (10.1016/j.commatsci.2025.113904_b0030) 2023; 14
10.1016/j.commatsci.2025.113904_b0660
Ruddigkeit (10.1016/j.commatsci.2025.113904_b0130) 2012; 52
Chen (10.1016/j.commatsci.2025.113904_b0250) 2001; 4
Gilson (10.1016/j.commatsci.2025.113904_b0230) 2015; 44
Shen (10.1016/j.commatsci.2025.113904_b0370) 2010; 50
Abranches (10.1016/j.commatsci.2025.113904_b0635) 2023; 19
Kim (10.1016/j.commatsci.2025.113904_b0115) 2023; 51
Yi (10.1016/j.commatsci.2025.113904_b0395) 2019; 17
Hamilton (10.1016/j.commatsci.2025.113904_b0415) 2017; 30
Deng (10.1016/j.commatsci.2025.113904_b0625) 2022; 7
10.1016/j.commatsci.2025.113904_b0630
Cai (10.1016/j.commatsci.2025.113904_b0585) 2022; 23
Du (10.1016/j.commatsci.2025.113904_b0255) 2021; 49
Schütt (10.1016/j.commatsci.2025.113904_b0420) 2018; 148
10.1016/j.commatsci.2025.113904_b0590
Liu (10.1016/j.commatsci.2025.113904_b0340) 2015; 31
Brody (10.1016/j.commatsci.2025.113904_b0540) 2021
Xiong (10.1016/j.commatsci.2025.113904_b0570) 2020; 63
Subramanian (10.1016/j.commatsci.2025.113904_b0185) 2016; 56
10.1016/j.commatsci.2025.113904_b0080
Mobley (10.1016/j.commatsci.2025.113904_b0180) 2014; 28
Li (10.1016/j.commatsci.2025.113904_b0330) 2014; 54
Hou (10.1016/j.commatsci.2025.113904_b0375) 2007; 47
Bergstra (10.1016/j.commatsci.2025.113904_b0580) 2011; 24
Li (10.1016/j.commatsci.2025.113904_b0495) 2015
Kriege (10.1016/j.commatsci.2025.113904_b0275) 2012
10.1016/j.commatsci.2025.113904_b0365
Chen (10.1016/j.commatsci.2025.113904_b0685) 2021
Mullins (10.1016/j.commatsci.2025.113904_b0305) 2006; 45
Zdrazil (10.1016/j.commatsci.2025.113904_b0220) 2023; 52
Sutherland (10.1016/j.commatsci.2025.113904_b0265) 2003; 43
Zhan (10.1016/j.commatsci.2025.113904_b0465) 2023; 1244
10.1016/j.commatsci.2025.113904_b0485
Rupp (10.1016/j.commatsci.2025.113904_b0145) 2012; 108
Li (10.1016/j.commatsci.2025.113904_b0425) 2022; 23
Wu (10.1016/j.commatsci.2025.113904_b0135) 2018; 9
Zhang (10.1016/j.commatsci.2025.113904_b0745) 2018
Dwivedi (10.1016/j.commatsci.2025.113904_b0525) 2020
Chen (10.1016/j.commatsci.2025.113904_b0600) 2015
10.1016/j.commatsci.2025.113904_b0090
Wang (10.1016/j.commatsci.2025.113904_b0315) 2004; 47
Zhang (10.1016/j.commatsci.2025.113904_b0390) 2017; 22
Blum (10.1016/j.commatsci.2025.113904_b0110) 2009; 131
Niazi (10.1016/j.commatsci.2025.113904_b0025) 2023; 24
Veličković (10.1016/j.commatsci.2025.113904_b0060) 2017
Eastman (10.1016/j.commatsci.2025.113904_b0160) 2024; 20
Cheng (10.1016/j.commatsci.2025.113904_b0325) 2009; 49
Reiser (10.1016/j.commatsci.2025.113904_b0045) 2022; 3
Nakata (10.1016/j.commatsci.2025.113904_b0120) 2023; 63
10.1016/j.commatsci.2025.113904_b0455
Kim (10.1016/j.commatsci.2025.113904_b0640) 2015; 36
10.1016/j.commatsci.2025.113904_b0690
10.1016/j.commatsci.2025.113904_b0170
10.1016/j.commatsci.2025.113904_b0055
Morris (10.1016/j.commatsci.2025.113904_b0735) 2019
Rohrer (10.1016/j.commatsci.2025.113904_b0195) 2009; 49
Irwin (10.1016/j.commatsci.2025.113904_b0350) 2012; 52
Polykovskiy (10.1016/j.commatsci.2025.113904_b0355) 2020; 11
Fang (10.1016/j.commatsci.2025.113904_b0440) 2022; 4
Friedman (10.1016/j.commatsci.2025.113904_b0560) 2001
Gal (10.1016/j.commatsci.2025.113904_b0705) 2015
Wieder (10.1016/j.commatsci.2025.113904_b0050) 2020; 37
Ramakrishnan (10.1016/j.commatsci.2025.113904_b0125) 2014; 1
Chauhan (10.1016/j.commatsci.2025.113904_b0385) 2018
Chen (10.1016/j.commatsci.2025.113904_b0245) 2002; 18
You (10.1016/j.commatsci.2025.113904_b0740) 2020
Ruiz (10.1016/j.commatsci.2025.113904_b0475) 2020; 68
Real (10.1016/j.commatsci.2025.113904_b0700) 2019
Chen (10.1016/j.commatsci.2025.113904_b0240) 2001; 61
Li (10.1016/j.commatsci.2025.113904_b0335) 2014; 54
10.1016/j.commatsci.2025.113904_b0500
10.1016/j.commatsci.2025.113904_b0620
Gupta (10.1016/j.commatsci.2025.113904_b0040) 2021; 25
Ullah (10.1016/j.commatsci.2025.113904_b0140) 2024; 5
Borgwardt (10.1016/j.commatsci.2025.113904_b0300) 2005; 21
Lee (10.1016/j.commatsci.2025.113904_b0400) 2019; 11
10.1016/j.commatsci.2025.113904_b0105
Martins (10.1016/j.commatsci.2025.113904_b0205) 2012; 52
Dobson (10.1016/j.commatsci.2025.113904_b0295) 2003; 330
Hansen (10.1016/j.commatsci.2025.113904_b0665) 2016
10.1016/j.commatsci.2025.113904_b0065
Huang (10.1016/j.commatsci.2025.113904_b0605) 2024; 465
Cortes (10.1016/j.commatsci.2025.113904_b0555) 1995; 20
Chan (10.1016/j.commatsci.2025.113904_b0070) 2022; 16
Cano Gil (10.1016/j.commatsci.2025.113904_b0515) 2024
10.1016/j.commatsci.2025.113904_b0190
Liu (10.1016/j.commatsci.2025.113904_b0235) 2007; 35
Bischl (10.1016/j.commatsci.2025.113904_b0095) 2023; 13
Oloulade (10.1016/j.commatsci.2025.113904_b0100) 2022; 27
10.1016/j.commatsci.2025.113904_b0505
Müller (10.1016/j.commatsci.2025.113904_b0530) 2023
Galuzio (10.1016/j.commatsci.2025.113904_b0650) 2020; 12
10.1016/j.commatsci.2025.113904_b0675
Kuhn (10.1016/j.commatsci.2025.113904_b0215) 2016; 44
Debnath (10.1016/j.commatsci.2025.113904_b0280) 1991; 34
Chen (10.1016/j.commatsci.2025.113904_b0410) 2023; 123
10.1016/j.commatsci.2025.113904_b0435
Duarte (10.1016/j.commatsci.2025.113904_b0010) 2019; 11
10.1016/j.commatsci.2025.113904_b0150
Zhao (10.1016/j.commatsci.2025.113904_b0430) 2022; 207
10.1016/j.commatsci.2025.113904_b0670
Jiang (10.1016/j.commatsci.2025.113904_b0695) 2024; 3
Qin (10.1016/j.commatsci.2025.113904_b0710) 2022
Dey (10.1016/j.commatsci.2025.113904_b0615) 2017
Wu (10.1016/j.commatsci.2025.113904_b0730) 2024; 301
Zantedeschi (10.1016/j.commatsci.2025.113904_b0470) 2021
10.1016/j.commatsci.2025.113904_b0715
Yu (10.1016/j.commatsci.2025.113904_b0610) 2019; 31
Choudhary (10.1016/j.commatsci.2025.113904_b0755) 2024; 10
Chen (10.1016/j.commatsci.2025.113904_b0520) 2020
Aouichaoui (10.1016/j.commatsci.2025.113904_b0645) 2022
Xiong (10.1016/j.commatsci.2025.113904_b0075) 2021; 26
10.1016/j.commatsci.2025.113904_b0445
10.1016/j.commatsci.2025.113904_b0720
Axelrod (10.1016/j.commatsci.2025.113904_b0310) 2022; 9
10.1016/j.commatsci.2025.113904_b0200
Ke (10.1016/j.commatsci.2025.113904_b0575) 2017; 30
Liu (10.1016/j.commatsci.2025.113904_b0345) 2017; 50
Davies (10.1016/j.commatsci.2025.113904_b0225) 2015; 43
Knox (10.1016/j.commatsci.2025.113904_b0260) 2024; 52
Richard (10.1016/j.commatsci.2025.113904_b0210) 2016; 29
10.1016/j.commatsci.2025.113904_b0285
Medina-Franco (10.1016/j.commatsci.2025.113904_b0005) 2020; 10
10.1016/j.commatsci.2025.113904_b0680
Wu (10.1016/j.commatsci.2025.113904_b0595) 2021; 22
Mercado (10.1016/j.commatsci.2025.113904_b0490) 2021
Yang (10.1016/j.commatsci.2025.113904_b0510) 2019; 59
Fung (10.1016/j.commatsci.2025.113904_b0085) 2021; 7
Pope (10.1016/j.commatsci.2025.113904_b0550) 2019
Eastman (10.1016/j.commatsci.2025.113904_b0155) 2023; 10
Kanehisa (10.1016/j.commatsci.2025.113904_b0360) 2021; 49
10.1016/j.commatsci.2025.113904_b0725
Reel (10.1016/j.commatsci.2025.113904_b0035) 2021; 49
Wang (10.1016/j.commatsci.2025.113904_b0565) 2022; 14
References_xml – volume: 22
  start-page: 1680
  year: 2017
  end-page: 1685
  ident: b0390
  article-title: From machine learning to deep learning: progress in machine intelligence for rational drug discovery
  publication-title: Drug Discov. Today
– volume: 465
  year: 2024
  ident: b0605
  article-title: AI-enhanced chemical paradigm: From molecular graphs to accurate prediction and mechanism
  publication-title: J. Hazard. Mater.
– reference: V.G. Satorras, E. Hoogeboom, M. Welling, E(n) Equivariant Graph Neural Networks, in: M. Meila, T. Zhang (Eds.), Proceedings of the 38th International Conference on Machine Learning, PMLR, 2021: pp. 9323–9332.
– volume: 61
  start-page: 127
  year: 2001
  end-page: 141
  ident: b0240
  article-title: The binding database: overview and user’s guide, Biopolymers: Original Research on
  publication-title: Biomolecules
– volume: 10
  start-page: 11
  year: 2023
  ident: b0155
  article-title: SPICE A dataset of drug-like molecules and peptides for training machine learning potentials,
  publication-title: Sci. Data
– year: 2021
  ident: b0490
  article-title: Jannik bjerrum, graph networks for molecular design
  publication-title: Mach Learn Sci. Technol.
– volume: 4
  start-page: 127
  year: 2022
  end-page: 134
  ident: b0440
  article-title: Geometry-enhanced molecular representation learning for property prediction
  publication-title: Nat. Mach. Intell.
– reference: AIDS Antiviral Screen Data, (n.d.).
– volume: 7
  start-page: 3713
  year: 2022
  end-page: 3721
  ident: b0625
  article-title: Describe molecules by a heterogeneous graph neural network with transformer-like attention for supervised property predictions
  publication-title: ACS Omega
– reference: S. Falkner, A. Klein, F. Hutter, BOHB: Robust and Efficient Hyperparameter Optimization at Scale, (2018).
– volume: 11
  start-page: 377
  year: 2019
  ident: b0400
  article-title: Comparison of target features for predicting drug-target interactions by deep neural network based on large-scale drug-induced transcriptome data
  publication-title: Pharmaceutics
– volume: 24
  year: 2011
  ident: b0580
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Adv. Neural Inf. Process Syst.
– start-page: 4602
  year: 2019
  end-page: 4609
  ident: b0735
  article-title: Weisfeiler and leman go neural: Higher-order graph Neural Networks
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence 33
– volume: 5
  year: 2024
  ident: b0140
  article-title: Molecular quantum chemical data sets and databases for machine learning potentials
  publication-title: Mach. Learn.: Sci. Technol.
– volume: 11
  year: 2019
  ident: b0010
  article-title: Integration of target discovery, drug discovery and drug delivery: A review on computational strategies
  publication-title: WIREs Nanomed. Nanobiotechnol.
– volume: 52
  start-page: D1180
  year: 2023
  end-page: D1192
  ident: b0220
  article-title: The ChEMBL Database in, a drug discovery platform spanning multiple bioactivity data types and time periods
  publication-title: Nucleic Acids Res.
– reference: F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, M.M. Bronstein, Geometric deep learning on graphs and manifolds using mixture model CNNs, (2016).
– reference: E. Ranjan, S. Sanyal, P.P. Talukdar, ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations, (2019).
– volume: 115
  start-page: 2315
  year: 2017
  end-page: 2372
  ident: b0020
  article-title: Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals
  publication-title: Mol. Phys.
– volume: 43
  start-page: 1906
  year: 2003
  end-page: 1915
  ident: b0265
  article-title: Spline-fitting with a genetic algorithm: A method for developing classification structure−activity relationships
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 48
  start-page: 4111
  year: 2005
  end-page: 4119
  ident: b0320
  article-title: The PDBbind Database: Methodologies and updates
  publication-title: J. Med. Chem.
– volume: 207
  start-page: 81
  year: 2022
  end-page: 89
  ident: b0430
  article-title: Toward drug-miRNA resistance association prediction by positional encoding graph neural network and multi-channel neural network
  publication-title: Methods
– volume: 7
  start-page: 84
  year: 2021
  ident: b0085
  article-title: Benchmarking graph neural networks for materials chemistry
  publication-title: NPJ. Comput. Mater
– year: 2023
  ident: b0530
  publication-title: Attending to Graph Transformers
– volume: 1244
  year: 2023
  ident: b0465
  article-title: Graph Neural Tree: A novel and interpretable deep learning-based framework for accurate molecular property predictions
  publication-title: Anal. Chim. Acta
– start-page: 1591
  year: 2022:
  end-page: 1596
  ident: b0645
  article-title: Molecular representations in deep-learning models for chemical property prediction
  publication-title: In
– reference: J. Bergstra, D. Yamins, D. Cox, Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures, in: S. Dasgupta, D. McAllester (Eds.), Proceedings of the 30th International Conference on Machine Learning, PMLR, Atlanta, Georgia, USA, 2013: pp. 115–123.
– volume: 24
  start-page: 25853
  year: 2022
  end-page: 25863
  ident: b0165
  article-title: nablaDFT: Large-scale conformational energy and hamiltonian prediction benchmark and dataset
  publication-title: PCCP
– reference: T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, New York, NY, USA, 2019: pp. 2623–2631.
– reference: Y. Yuan, W. Wang, X. Li, K. Chen, Y. Zhang, W. Pang, Evolving Molecular Graph Neural Networks with Hierarchical Evaluation Strategy, in: Proceedings of the Genetic and Evolutionary Computation Conference, ACM, New York, NY, USA, 2024: pp. 1417–1425.
– volume: 330
  start-page: 771
  year: 2003
  end-page: 783
  ident: b0295
  article-title: Distinguishing enzyme structures from non-enzymes without alignments
  publication-title: J. Mol. Biol.
– volume: 3
  start-page: 1534
  year: 2024
  end-page: 1553
  ident: b0695
  article-title: Uncertainty quantification for molecular property predictions with graph neural architecture search,
  publication-title: Digital Discovery
– volume: 12
  year: 2020
  ident: b0650
  article-title: MOBOpt — multi-objective Bayesian optimization
  publication-title: SoftwareX
– reference: J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural Message Passing for Quantum Chemistry, (2017).
– volume: 23
  year: 2022
  ident: b0585
  article-title: FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction
  publication-title: Brief. Bioinform.
– reference: Y. Yuan, W. Wang, W. Pang, A systematic comparison study on hyperparameter optimisation of graph neural networks for molecular property prediction, in: Proceedings of the Genetic and Evolutionary Computation Conference, ACM, New York, NY, USA, 2021: pp. 386–394.
– reference: Tox21 Challenge, (n.d.).
– volume: 54
  start-page: 1717
  year: 2014
  end-page: 1736
  ident: b0330
  article-title: Comparative assessment of scoring functions on an updated benchmark: 2 Evaluation methods and general results,
  publication-title: J. Chem. Inf. Model
– volume: 14
  start-page: 16
  year: 2022
  ident: b0565
  article-title: A multitask GNN-based interpretable model for discovery of selective JAK inhibitors
  publication-title: J. Cheminform
– year: 2016
  ident: b0665
  article-title: The CMA evolution strategy
  publication-title: A Tutorial
– volume: 49
  start-page: 169
  year: 2009
  end-page: 184
  ident: b0195
  article-title: Maximum unbiased validation (MUV) data sets for virtual screening based on pubchem bioactivity data
  publication-title: J. Chem. Inf. Model.
– volume: 50
  start-page: 302
  year: 2017
  end-page: 309
  ident: b0345
  article-title: Forging the basis for developing protein–ligand interaction scoring functions
  publication-title: Acc. Chem. Res.
– volume: 49
  start-page: D545
  year: 2021
  end-page: D551
  ident: b0360
  article-title: KEGG: integrating viruses and cellular organisms
  publication-title: Nucleic Acids Res.
– year: 2018
  ident: b0745
  article-title: An end-to-end deep learning architecture for graph classification
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence 32
– volume: 47
  start-page: 2408
  year: 2007
  end-page: 2415
  ident: b0375
  article-title: ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine
  publication-title: J. Chem. Inf. Model.
– volume: 23
  year: 2022
  ident: b0425
  article-title: Multiphysical graph neural network (MP-GNN) for COVID-19 drug design
  publication-title: Brief. Bioinform.
– volume: 50
  start-page: 1034
  year: 2010
  end-page: 1041
  ident: b0370
  article-title: Estimation of ADME properties with substructure pattern recognition
  publication-title: J. Chem. Inf. Model.
– volume: 9
  start-page: 185
  year: 2022
  ident: b0310
  article-title: GEOM, energy-annotated molecular conformations for property prediction and molecular generation
  publication-title: Sci. Data
– reference: DIPPR Project 801, (n.d.).
– reference: (accessed October 18, 2024).
– volume: 45
  start-page: 4389
  year: 2006
  end-page: 4415
  ident: b0305
  article-title: Sigma-profile database for using COSMO-based thermodynamic methods
  publication-title: Ind. Eng. Chem. Res.
– reference: J. Bergstra, J.B. Ca, Y.B. Ca, Random Search for Hyper-Parameter Optimization Yoshua Bengio, 2012.
– volume: 44
  start-page: D1045
  year: 2015
  end-page: D1053
  ident: b0230
  article-title: BindingDB in, A public database for medicinal chemistry, computational chemistry and systems pharmacology
  publication-title: Nucleic Acids Res.
– year: 2021
  ident: b0540
  publication-title: How Attentive Are Graph Attention Networks?
– year: 2020
  ident: b0740
  publication-title: Design Space for Graph Neural Networks
– year: 2012
  ident: b0275
  article-title: Subgraph matching kernels for attributed graphs
  publication-title: ArXiv Preprint ArXiv:1206.6483
– reference: T. Yu, H. Zhu, Hyper-parameter optimization: A review of algorithms and applications, ArXiv Preprint ArXiv:2003.05689 (2020).
– year: 2015
  ident: b0705
  article-title: Dropout as a bayesian approximation
– volume: 10
  start-page: 93
  year: 2024
  ident: b0755
  article-title: JARVIS-Leaderboard: a large scale benchmark of materials design methods
  publication-title: npj Comput. Mater.
– volume: 148
  year: 2018
  ident: b0420
  article-title: SchNet – A deep learning architecture for molecules and materials
  publication-title: J. Chem. Phys.
– volume: 49
  year: 2021
  ident: b0035
  article-title: Using machine learning approaches for multi-omics data analysis: A review
  publication-title: Biotechnol. Adv..
– volume: 31
  start-page: 1235
  year: 2019
  end-page: 1270
  ident: b0610
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
– volume: 52
  start-page: 1686
  year: 2012
  end-page: 1697
  ident: b0205
  article-title: A bayesian approach to in silico blood-brain barrier penetration modeling
  publication-title: J. Chem. Inf. Model.
– year: 2020
  ident: b0525
  publication-title: Benchmarking Graph Neural Networks
– start-page: 4780
  year: 2019
  end-page: 4789
  ident: b0700
  article-title: Regularized Evolution for image classifier architecture search
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence 33
– volume: 52
  start-page: D1265
  year: 2024
  end-page: D1275
  ident: b0260
  article-title: DrugBank 6.0: the DrugBank knowledgebase for 2024
  publication-title: Nucleic Acids Res.
– volume: 123
  year: 2023
  ident: b0410
  article-title: MD-GNN: A mechanism-data-driven graph neural network for molecular properties prediction and new material discovery
  publication-title: J. Mol. Graph. Model.
– reference: H. Liu, K. Simonyan, Y. Yang, DARTS: Differentiable Architecture Search, (2018).
– start-page: 12298
  year: 2021
  end-page: 12309
  ident: b0470
  article-title: Learning Binary Decision Trees by Argmin Differentiation
  publication-title: Proceedings of the 38th International Conference on Machine Learning
– volume: 12
  year: 2011
  ident: b0290
  article-title: Weisfeiler-lehman graph kernels
  publication-title: J. Mach. Learn. Res.
– volume: 36
  start-page: 1769
  year: 2015
  end-page: 1777
  ident: b0640
  article-title: Universal structure conversion method for organic molecules: From atomic connectivity to three‐dimensional geometry
  publication-title: Bull. Kor. Chem. Soc.
– year: 2017
  ident: b0545
  publication-title: Inductive Representation Learning on Large Graphs
– volume: 49
  start-page: D1122
  year: 2021
  end-page: D1129
  ident: b0255
  article-title: CovalentInDB: a comprehensive database facilitating the discovery of covalent inhibitors
  publication-title: Nucleic Acids Res.
– year: 2020
  ident: b0520
  publication-title: Simple and Deep Graph Convolutional, Networks
– volume: 25
  start-page: 1315
  year: 2021
  end-page: 1360
  ident: b0040
  article-title: Artificial intelligence to deep learning: machine intelligence approach for drug discovery
  publication-title: Mol. Divers
– volume: 37
  start-page: 1
  year: 2020
  end-page: 12
  ident: b0050
  article-title: A compact review of molecular property prediction with graph neural networks
  publication-title: Drug Discov. Today Technol.
– volume: 13
  year: 2023
  ident: b0095
  article-title: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges
  publication-title: WIREs Data Min. Knowl. Discovery
– volume: 52
  start-page: 2864
  year: 2012
  end-page: 2875
  ident: b0130
  article-title: Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17
  publication-title: J. Chem. Inf. Model.
– volume: 30
  year: 2017
  ident: b0575
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process Syst.
– volume: 19
  year: 2023
  ident: b0405
  article-title: A dual graph neural network for drug–drug interactions prediction based on molecular structure and interactions
  publication-title: PLoS Comput. Biol.
– volume: 30
  year: 2017
  ident: b0415
  article-title: Inductive representation learning on large graphs
  publication-title: Adv Neural Inf Process Syst
– start-page: 1
  year: 2015
  ident: b0600
  article-title: Xgboost: extreme gradient boosting
  publication-title: R Package Version
– volume: 24
  start-page: 11488
  year: 2023
  ident: b0025
  article-title: Recent advances in machine-learning-based chemoinformatics: A comprehensive review
  publication-title: Int. J. Mol. Sci.
– year: 2015
  ident: b0495
  publication-title: Neural Netw.
– volume: 35
  start-page: D198
  year: 2007
  end-page: D201
  ident: b0235
  article-title: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 10
  year: 2015
  ident: b0380
  article-title: QSAR based model for discriminating EGFR inhibitors and non-inhibitors using Random forest
  publication-title: Biol. Direct
– volume: 63
  start-page: 5734
  year: 2023
  end-page: 5754
  ident: b0120
  article-title: PubChemQC B3LYP/6-31G*//PM6 Data Set: The electronic structures of 86 million molecules using B3LYP/6-31G* calculations
  publication-title: J. Chem. Inf. Model.
– volume: 28
  start-page: 711
  year: 2014
  end-page: 720
  ident: b0180
  article-title: FreeSolv: a database of experimental and calculated hydration free energies, with input files
  publication-title: J. Comput. Aided Mol. Des.
– volume: 54
  start-page: 1700
  year: 2014
  end-page: 1716
  ident: b0335
  article-title: Comparative assessment of scoring functions on an updated benchmark: 1 Compilation of the test set,
  publication-title: J. Chem. Inf. Model
– reference: S.M. Bachrach, Computational organic chemistry, Annual Reports Section “B” (Organic Chemistry) 104 (2008) 394.
– volume: 51
  start-page: D1373
  year: 2023
  end-page: D1380
  ident: b0115
  article-title: PubChem, update
  publication-title: Nucleic Acids Res.
– volume: 18
  start-page: 130
  year: 2002
  end-page: 139
  ident: b0245
  article-title: The Binding Database: data management and interface design
  publication-title: Bioinformatics
– reference: K. Khrabrov, A. Ber, A. Tsypin, K. Ushenin, E. Rumiantsev, A. Telepov, D. Protasov, I. Shenbin, A. Alekseev, M. Shirokikh, S. Nikolenko, E. Tutubalina, A. Kadurin, $\nabla^2$DFT: A Universal Quantum Chemistry Dataset of Drug-Like Molecules and a Benchmark for Neural Network Potentials, (2024).
– volume: 301
  year: 2024
  ident: b0730
  article-title: Depth-adaptive graph neural architecture search for graph classification
  publication-title: Knowl. Based Syst.
– volume: 31
  start-page: 405
  year: 2015
  end-page: 412
  ident: b0340
  article-title: PDB-wide collection of binding data: current status of the PDBbind database
  publication-title: Bioinformatics
– volume: 22
  year: 2021
  ident: b0595
  article-title: Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method
  publication-title: Brief. Bioinform.
– volume: 21
  start-page: i47
  year: 2005
  end-page: i56
  ident: b0300
  article-title: Protein function prediction via graph kernels
  publication-title: Bioinformatics
– volume: 29
  start-page: 1225
  year: 2016
  end-page: 1251
  ident: b0210
  article-title: ToxCast chemical landscape: paving the road to 21st century toxicology
  publication-title: Chem. Res. Toxicol.
– volume: 63
  start-page: 8749
  year: 2020
  end-page: 8760
  ident: b0570
  article-title: Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism
  publication-title: J. Med. Chem.
– volume: 17
  start-page: 1
  year: 2019
  end-page: 9
  ident: b0395
  article-title: ACP-DL: A deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation
  publication-title: Mol. Ther. Nucleic Acids
– year: 2020.
  ident: b0270
  article-title: TUDataset: A collection of benchmark datasets for learning with graphs, in
  publication-title: ICML 2020 Workshop on Graph Representation Learning and beyond (GRL+ 2020)
– reference: N. Wale, G. Karypis, Comparison of Descriptor Spaces for Chemical Compound Retrieval and Classification, in: Sixth International Conference on Data Mining (ICDM’06), IEEE, 2006: pp. 678–689.
– volume: 68
  start-page: 6303
  year: 2020
  end-page: 6318
  ident: b0475
  article-title: Gated graph recurrent Neural Networks
  publication-title: IEEE Trans. Signal Process.
– volume: 131
  start-page: 8732
  year: 2009
  end-page: 8733
  ident: b0110
  article-title: 970 Million druglike small molecules for virtual screening in the chemical universe database GDB-13
  publication-title: J. Am. Chem. Soc.
– start-page: 1776
  year: 2024
  end-page: 1792
  ident: b0515
  article-title: Graph neural networks for identifying protein-reactive compounds
  publication-title: Digital Discovery 3
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0555
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 26
  start-page: 1382
  year: 2021
  end-page: 1393
  ident: b0075
  article-title: Graph neural networks for automated de novo drug design
  publication-title: Drug Discov. Today
– start-page: 347
  year: 2018
  end-page: 352
  ident: b0385
  publication-title: Review on Conventional Machine Learning Vs Deep Learning, in
– volume: 45
  start-page: 2825
  year: 2024
  end-page: 2834
  ident: b0460
  article-title: <scp>GNN</scp> ‐ <scp>DDAS</scp> : Drug discovery for identifying anti‐schistosome small molecules based on graph neural network
  publication-title: J. Comput. Chem.
– volume: 159
  year: 2023
  ident: b0450
  article-title: Evaluation of the MACE force field architecture: From medicinal chemistry to materials science
  publication-title: J. Chem. Phys.
– volume: 16
  year: 2022
  ident: b0070
  article-title: Combining neuroimaging and omics datasets for disease classification using graph Neural Networks
  publication-title: Front. Neurosci..
– reference: H. Linusson, Multi-output random forests, (2013).
– volume: 49
  start-page: 1079
  year: 2009
  end-page: 1093
  ident: b0325
  article-title: Comparative assessment of scoring functions on a diverse test set
  publication-title: J. Chem. Inf. Model.
– volume: 6
  start-page: 138
  year: 2020
  ident: b0760
  article-title: Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm
  publication-title: NPJ Comput. Mater.
– reference: T.N. Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, (2016).
– reference: (accessed September 26, 2017).
– reference: Z. Hu, Y. Dong, K. Wang, Y. Sun, Heterogeneous Graph Transformer, in: Proceedings of The Web Conference 2020, ACM, New York, NY, USA, 2020: pp. 2704–2710.
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: b0560
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– reference: J. Chen, J. Gao, Y. Chen, M.B. Oloulade, T. Lyu, Z. Li, GraphPAS: Parallel Architecture Search for Graph Neural Networks, in: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, New York, NY, USA, 2021: pp. 2182–2186.
– volume: 33
  start-page: 3117
  year: 2022
  end-page: 3128
  ident: b0750
  article-title: Auto-GNAS: A Parallel graph neural architecture search framework
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 1
  year: 2014
  ident: b0125
  article-title: Quantum chemistry structures and properties of 134 kilo molecules
  publication-title: Sci. Data
– start-page: 10764
  year: 2019
  end-page: 10773
  ident: b0550
  article-title: Explainability methods for graph convolutional Neural Networks
  publication-title: In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 129
  start-page: 482
  year: 2014
  end-page: 493
  ident: b0480
  article-title: Multi-step-ahead time series prediction using multiple-output support vector regression
  publication-title: Neurocomputing
– volume: 27
  start-page: 692
  year: 2022
  end-page: 708
  ident: b0100
  article-title: Graph neural architecture search: A survey, Tsinghua
  publication-title: Sci. Technol.
– reference: Kyoto Encyclopedia of Genes and Genomes, (n.d.).
– reference: Y. Gao, H. Yang, P. Zhang, C. Zhou, Y. Hu, Graph neural architecture search, in: International Joint Conference on Artificial Intelligence, 2021.
– volume: 47
  start-page: 2977
  year: 2004
  end-page: 2980
  ident: b0315
  article-title: The PDBbind database: Collection of binding affinities for protein−ligand complexes with known three-dimensional structures
  publication-title: J. Med. Chem.
– year: 2017
  ident: b0060
  publication-title: Networks
– volume: 44
  start-page: 1000
  year: 2004
  end-page: 1005
  ident: b0175
  article-title: ESOL: Estimating aqueous solubility directly from molecular structure
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 108
  year: 2012
  ident: b0145
  article-title: Fast and accurate modeling of molecular atomization energies with machine learning
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 9318
  year: 2023
  end-page: 9328
  ident: b0635
  article-title: Boosting graph Neural Networks with molecular mechanics: A case study of sigma profile prediction
  publication-title: J. Chem. Theory Comput.
– volume: 59
  start-page: 3370
  year: 2019
  end-page: 3388
  ident: b0510
  article-title: Analyzing learned molecular representations for property prediction
  publication-title: J. Chem. Inf. Model.
– reference: Y.-X. Wu, X. Wang, A. Zhang, X. He, T.-S. Chua, Discovering Invariant Rationales for Graph Neural Networks, (2022).
– reference: Y. Yuan, W. Wang, W. Pang, Which hyperparameters to optimise?, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, ACM, New York, NY, USA, 2021: pp. 1403–1404.
– volume: 56
  start-page: 1936
  year: 2016
  end-page: 1949
  ident: b0185
  article-title: Computational Modeling of β-Secretase 1 (BACE-1) Inhibitors Using Ligand Based Approaches
  publication-title: J. Chem. Inf. Model.
– volume: 11
  year: 2020
  ident: b0355
  article-title: Molecular sets (MOSES): A benchmarking platform for molecular generation models
  publication-title: Front. Pharmacol.
– start-page: 171
  year: 2021
  end-page: 176
  ident: b0685
  article-title: Multi-label metabolic pathway prediction with auto molecular structure representation learning
  publication-title: In: 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– reference: E. Lindelöf, Deep learning for drug discovery, property prediction with neural networks on raw molecular graphs, (2019).
– volume: 14
  year: 2023
  ident: b0030
  article-title: Navigating bioactivity space in anti-tubercular drug discovery through the deployment of advanced machine learning models and cheminformatics tools: a molecular modeling based retrospective study
  publication-title: Front. Pharmacol.
– volume: 20
  start-page: 8583
  year: 2024
  end-page: 8593
  ident: b0160
  article-title: Nutmeg and SPICE: Models and data for biomolecular machine learning
  publication-title: J. Chem. Theory Comput.
– reference: I. Batatia, D.P. Kovacs, G. Simm, C. Ortner, G. Csanyi, MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields, in: S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh (Eds.), Adv Neural Inf Process Syst, Curran Associates, Inc., 2022: pp. 11423–11436.
– volume: 52
  start-page: 1757
  year: 2012
  end-page: 1768
  ident: b0350
  article-title: ZINC: A free tool to discover chemistry for biology
  publication-title: J. Chem. Inf. Model.
– reference: D. Khan, A. Benali, S.Y.H. Kim, G.F. von Rudorff, O.A. von Lilienfeld, Quantum mechanical dataset of 836k neutral closed shell molecules with upto 5 heavy atoms from CNOFSiPSClBr, (2024).
– reference: (accessed October 28, 2024).
– volume: 44
  start-page: D1075
  year: 2016
  end-page: D1079
  ident: b0215
  article-title: The SIDER database of drugs and side effects
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 1566
  year: 2020
  ident: b0005
  article-title: Cheminformatics to characterize pharmacologically active natural products
  publication-title: Biomolecules
– start-page: 18083
  year: 2022
  end-page: 18095
  ident: b0710
  article-title: Graph neural architecture search under distribution shifts
  publication-title: Proceedings of the 39th International Conference on Machine Learning
– volume: 34
  start-page: 786
  year: 1991
  end-page: 797
  ident: b0280
  article-title: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds correlation with molecular orbital energies and hydrophobicity,
  publication-title: J. Med. Chem.
– volume: 43
  start-page: W612
  year: 2015
  end-page: W620
  ident: b0225
  article-title: ChEMBL web services: streamlining access to drug discovery data and utilities
  publication-title: Nucleic Acids Res.
– year: 2017
  ident: b0615
  article-title: Gate-variants of gated recurrent unit (GRU)
  publication-title: Neural Netw.
– reference: .
– volume: 3
  start-page: 93
  year: 2022
  ident: b0045
  article-title: Graph neural networks for materials science and chemistry
  publication-title: Commun. Mater
– volume: 9
  start-page: 513
  year: 2018
  end-page: 530
  ident: b0135
  article-title: MoleculeNet: a benchmark for molecular machine learning
  publication-title: Chem. Sci.
– reference: O. Vinyals, S. Bengio, M. Kudlur, Order Matters: Sequence to sequence for sets, (2015).
– volume: 4
  start-page: 719
  year: 2001
  end-page: 725
  ident: b0250
  article-title: BindingDB: A web-accessible molecular recognition database
  publication-title: Comb. Chem. High Throughput Screen.
– year: 2017
  ident: 10.1016/j.commatsci.2025.113904_b0060
  publication-title: Networks
– start-page: 1189
  year: 2001
  ident: 10.1016/j.commatsci.2025.113904_b0560
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 45
  start-page: 2825
  year: 2024
  ident: 10.1016/j.commatsci.2025.113904_b0460
  article-title: GNN ‐ DDAS : Drug discovery for identifying anti‐schistosome small molecules based on graph neural network
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.27490
– ident: 10.1016/j.commatsci.2025.113904_b0015
  doi: 10.1039/b719311b
– year: 2017
  ident: 10.1016/j.commatsci.2025.113904_b0615
  article-title: Gate-variants of gated recurrent unit (GRU)
  publication-title: Neural Netw.
– volume: 68
  start-page: 6303
  year: 2020
  ident: 10.1016/j.commatsci.2025.113904_b0475
  article-title: Gated graph recurrent Neural Networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.3033962
– volume: 26
  start-page: 1382
  year: 2021
  ident: 10.1016/j.commatsci.2025.113904_b0075
  article-title: Graph neural networks for automated de novo drug design
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2021.02.011
– ident: 10.1016/j.commatsci.2025.113904_b0150
– volume: 12
  year: 2020
  ident: 10.1016/j.commatsci.2025.113904_b0650
  article-title: MOBOpt — multi-objective Bayesian optimization
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2020.100520
– start-page: 18083
  year: 2022
  ident: 10.1016/j.commatsci.2025.113904_b0710
  article-title: Graph neural architecture search under distribution shifts
– volume: 49
  start-page: D545
  year: 2021
  ident: 10.1016/j.commatsci.2025.113904_b0360
  article-title: KEGG: integrating viruses and cellular organisms
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa970
– volume: 63
  start-page: 8749
  year: 2020
  ident: 10.1016/j.commatsci.2025.113904_b0570
  article-title: Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.9b00959
– volume: 19
  start-page: 9318
  year: 2023
  ident: 10.1016/j.commatsci.2025.113904_b0635
  article-title: Boosting graph Neural Networks with molecular mechanics: A case study of sigma profile prediction
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.3c01003
– ident: 10.1016/j.commatsci.2025.113904_b0725
– volume: 30
  year: 2017
  ident: 10.1016/j.commatsci.2025.113904_b0575
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process Syst.
– ident: 10.1016/j.commatsci.2025.113904_b0660
– volume: 108
  year: 2012
  ident: 10.1016/j.commatsci.2025.113904_b0145
  article-title: Fast and accurate modeling of molecular atomization energies with machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.058301
– volume: 18
  start-page: 130
  year: 2002
  ident: 10.1016/j.commatsci.2025.113904_b0245
  article-title: The Binding Database: data management and interface design
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.1.130
– volume: 14
  start-page: 16
  year: 2022
  ident: 10.1016/j.commatsci.2025.113904_b0565
  article-title: A multitask GNN-based interpretable model for discovery of selective JAK inhibitors
  publication-title: J. Cheminform
  doi: 10.1186/s13321-022-00593-9
– volume: 22
  year: 2021
  ident: 10.1016/j.commatsci.2025.113904_b0595
  article-title: Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbab112
– volume: 45
  start-page: 4389
  year: 2006
  ident: 10.1016/j.commatsci.2025.113904_b0305
  article-title: Sigma-profile database for using COSMO-based thermodynamic methods
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie060370h
– volume: 14
  year: 2023
  ident: 10.1016/j.commatsci.2025.113904_b0030
  article-title: Navigating bioactivity space in anti-tubercular drug discovery through the deployment of advanced machine learning models and cheminformatics tools: a molecular modeling based retrospective study
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2023.1265573
– volume: 5
  year: 2024
  ident: 10.1016/j.commatsci.2025.113904_b0140
  article-title: Molecular quantum chemical data sets and databases for machine learning potentials
  publication-title: Mach. Learn.: Sci. Technol.
– start-page: 12298
  year: 2021
  ident: 10.1016/j.commatsci.2025.113904_b0470
  article-title: Learning Binary Decision Trees by Argmin Differentiation
– volume: 52
  start-page: 1686
  year: 2012
  ident: 10.1016/j.commatsci.2025.113904_b0205
  article-title: A bayesian approach to in silico blood-brain barrier penetration modeling
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci300124c
– volume: 34
  start-page: 786
  year: 1991
  ident: 10.1016/j.commatsci.2025.113904_b0280
  article-title: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds correlation with molecular orbital energies and hydrophobicity,
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00106a046
– ident: 10.1016/j.commatsci.2025.113904_b0690
  doi: 10.1145/3404835.3463007
– volume: 10
  start-page: 11
  year: 2023
  ident: 10.1016/j.commatsci.2025.113904_b0155
  article-title: SPICE A dataset of drug-like molecules and peptides for training machine learning potentials,
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01882-6
– start-page: 4602
  year: 2019
  ident: 10.1016/j.commatsci.2025.113904_b0735
  article-title: Weisfeiler and leman go neural: Higher-order graph Neural Networks
– ident: 10.1016/j.commatsci.2025.113904_b0535
  doi: 10.1109/CVPR.2017.576
– start-page: 1591
  year: 2022
  ident: 10.1016/j.commatsci.2025.113904_b0645
  article-title: Molecular representations in deep-learning models for chemical property prediction
  publication-title: In
– volume: 49
  year: 2021
  ident: 10.1016/j.commatsci.2025.113904_b0035
  article-title: Using machine learning approaches for multi-omics data analysis: A review
  publication-title: Biotechnol. Adv..
  doi: 10.1016/j.biotechadv.2021.107739
– volume: 47
  start-page: 2408
  year: 2007
  ident: 10.1016/j.commatsci.2025.113904_b0375
  article-title: ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci7002076
– volume: 129
  start-page: 482
  year: 2014
  ident: 10.1016/j.commatsci.2025.113904_b0480
  article-title: Multi-step-ahead time series prediction using multiple-output support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.010
– volume: 1244
  year: 2023
  ident: 10.1016/j.commatsci.2025.113904_b0465
  article-title: Graph Neural Tree: A novel and interpretable deep learning-based framework for accurate molecular property predictions
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.340558
– ident: 10.1016/j.commatsci.2025.113904_b0445
– ident: 10.1016/j.commatsci.2025.113904_b0720
– ident: 10.1016/j.commatsci.2025.113904_b0620
  doi: 10.1145/3292500.3330701
– volume: 43
  start-page: W612
  year: 2015
  ident: 10.1016/j.commatsci.2025.113904_b0225
  article-title: ChEMBL web services: streamlining access to drug discovery data and utilities
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv352
– volume: 54
  start-page: 1717
  year: 2014
  ident: 10.1016/j.commatsci.2025.113904_b0330
  article-title: Comparative assessment of scoring functions on an updated benchmark: 2 Evaluation methods and general results,
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci500081m
– ident: 10.1016/j.commatsci.2025.113904_b0190
– year: 2020
  ident: 10.1016/j.commatsci.2025.113904_b0270
  article-title: TUDataset: A collection of benchmark datasets for learning with graphs, in
– volume: 52
  start-page: D1265
  year: 2024
  ident: 10.1016/j.commatsci.2025.113904_b0260
  article-title: DrugBank 6.0: the DrugBank knowledgebase for 2024
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad976
– volume: 47
  start-page: 2977
  year: 2004
  ident: 10.1016/j.commatsci.2025.113904_b0315
  article-title: The PDBbind database: Collection of binding affinities for protein−ligand complexes with known three-dimensional structures
  publication-title: J. Med. Chem.
  doi: 10.1021/jm030580l
– volume: 4
  start-page: 127
  year: 2022
  ident: 10.1016/j.commatsci.2025.113904_b0440
  article-title: Geometry-enhanced molecular representation learning for property prediction
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00438-4
– start-page: 171
  year: 2021
  ident: 10.1016/j.commatsci.2025.113904_b0685
  article-title: Multi-label metabolic pathway prediction with auto molecular structure representation learning
– volume: 30
  year: 2017
  ident: 10.1016/j.commatsci.2025.113904_b0415
  article-title: Inductive representation learning on large graphs
  publication-title: Adv Neural Inf Process Syst
– volume: 17
  start-page: 1
  year: 2019
  ident: 10.1016/j.commatsci.2025.113904_b0395
  article-title: ACP-DL: A deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2019.04.025
– volume: 33
  start-page: 3117
  year: 2022
  ident: 10.1016/j.commatsci.2025.113904_b0750
  article-title: Auto-GNAS: A Parallel graph neural architecture search framework
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2022.3151895
– volume: 301
  year: 2024
  ident: 10.1016/j.commatsci.2025.113904_b0730
  article-title: Depth-adaptive graph neural architecture search for graph classification
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2024.112321
– volume: 13
  year: 2023
  ident: 10.1016/j.commatsci.2025.113904_b0095
  article-title: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges
  publication-title: WIREs Data Min. Knowl. Discovery
– volume: 23
  year: 2022
  ident: 10.1016/j.commatsci.2025.113904_b0585
  article-title: FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac408
– volume: 3
  start-page: 1534
  year: 2024
  ident: 10.1016/j.commatsci.2025.113904_b0695
  article-title: Uncertainty quantification for molecular property predictions with graph neural architecture search,
  publication-title: Digital Discovery
  doi: 10.1039/D4DD00088A
– volume: 44
  start-page: 1000
  year: 2004
  ident: 10.1016/j.commatsci.2025.113904_b0175
  article-title: ESOL: Estimating aqueous solubility directly from molecular structure
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci034243x
– ident: 10.1016/j.commatsci.2025.113904_b0065
– year: 2015
  ident: 10.1016/j.commatsci.2025.113904_b0705
– volume: 9
  start-page: 513
  year: 2018
  ident: 10.1016/j.commatsci.2025.113904_b0135
  article-title: MoleculeNet: a benchmark for molecular machine learning
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC02664A
– year: 2020
  ident: 10.1016/j.commatsci.2025.113904_b0740
  publication-title: Design Space for Graph Neural Networks
– ident: 10.1016/j.commatsci.2025.113904_b0170
– ident: 10.1016/j.commatsci.2025.113904_b0105
– volume: 11
  start-page: 377
  year: 2019
  ident: 10.1016/j.commatsci.2025.113904_b0400
  article-title: Comparison of target features for predicting drug-target interactions by deep neural network based on large-scale drug-induced transcriptome data
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11080377
– volume: 159
  year: 2023
  ident: 10.1016/j.commatsci.2025.113904_b0450
  article-title: Evaluation of the MACE force field architecture: From medicinal chemistry to materials science
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0155322
– volume: 23
  year: 2022
  ident: 10.1016/j.commatsci.2025.113904_b0425
  article-title: Multiphysical graph neural network (MP-GNN) for COVID-19 drug design
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac231
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.commatsci.2025.113904_b0555
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 22
  start-page: 1680
  year: 2017
  ident: 10.1016/j.commatsci.2025.113904_b0390
  article-title: From machine learning to deep learning: progress in machine intelligence for rational drug discovery
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2017.08.010
– volume: 31
  start-page: 1235
  year: 2019
  ident: 10.1016/j.commatsci.2025.113904_b0610
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– ident: 10.1016/j.commatsci.2025.113904_b0365
– year: 2020
  ident: 10.1016/j.commatsci.2025.113904_b0520
  publication-title: Simple and Deep Graph Convolutional, Networks
– ident: 10.1016/j.commatsci.2025.113904_b0675
  doi: 10.1145/3292500.3330701
– volume: 59
  start-page: 3370
  year: 2019
  ident: 10.1016/j.commatsci.2025.113904_b0510
  article-title: Analyzing learned molecular representations for property prediction
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b00237
– volume: 7
  start-page: 3713
  year: 2022
  ident: 10.1016/j.commatsci.2025.113904_b0625
  article-title: Describe molecules by a heterogeneous graph neural network with transformer-like attention for supervised property predictions
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c06389
– volume: 20
  start-page: 8583
  year: 2024
  ident: 10.1016/j.commatsci.2025.113904_b0160
  article-title: Nutmeg and SPICE: Models and data for biomolecular machine learning
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.4c00794
– volume: 56
  start-page: 1936
  year: 2016
  ident: 10.1016/j.commatsci.2025.113904_b0185
  article-title: Computational Modeling of β-Secretase 1 (BACE-1) Inhibitors Using Ligand Based Approaches
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00290
– volume: 10
  start-page: 1566
  year: 2020
  ident: 10.1016/j.commatsci.2025.113904_b0005
  article-title: Cheminformatics to characterize pharmacologically active natural products
  publication-title: Biomolecules
  doi: 10.3390/biom10111566
– volume: 25
  start-page: 1315
  year: 2021
  ident: 10.1016/j.commatsci.2025.113904_b0040
  article-title: Artificial intelligence to deep learning: machine intelligence approach for drug discovery
  publication-title: Mol. Divers
  doi: 10.1007/s11030-021-10217-3
– ident: 10.1016/j.commatsci.2025.113904_b0080
  doi: 10.24963/ijcai.2020/195
– year: 2020
  ident: 10.1016/j.commatsci.2025.113904_b0525
  publication-title: Benchmarking Graph Neural Networks
– volume: 4
  start-page: 719
  year: 2001
  ident: 10.1016/j.commatsci.2025.113904_b0250
  article-title: BindingDB: A web-accessible molecular recognition database
  publication-title: Comb. Chem. High Throughput Screen.
  doi: 10.2174/1386207013330670
– volume: 52
  start-page: 2864
  year: 2012
  ident: 10.1016/j.commatsci.2025.113904_b0130
  article-title: Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci300415d
– volume: 35
  start-page: D198
  year: 2007
  ident: 10.1016/j.commatsci.2025.113904_b0235
  article-title: BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl999
– volume: 24
  start-page: 11488
  year: 2023
  ident: 10.1016/j.commatsci.2025.113904_b0025
  article-title: Recent advances in machine-learning-based chemoinformatics: A comprehensive review
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms241411488
– start-page: 347
  year: 2018
  ident: 10.1016/j.commatsci.2025.113904_b0385
– year: 2017
  ident: 10.1016/j.commatsci.2025.113904_b0545
  publication-title: Inductive Representation Learning on Large Graphs
– volume: 16
  year: 2022
  ident: 10.1016/j.commatsci.2025.113904_b0070
  article-title: Combining neuroimaging and omics datasets for disease classification using graph Neural Networks
  publication-title: Front. Neurosci..
  doi: 10.3389/fnins.2022.866666
– volume: 48
  start-page: 4111
  year: 2005
  ident: 10.1016/j.commatsci.2025.113904_b0320
  article-title: The PDBbind Database: Methodologies and updates
  publication-title: J. Med. Chem.
  doi: 10.1021/jm048957q
– year: 2012
  ident: 10.1016/j.commatsci.2025.113904_b0275
  article-title: Subgraph matching kernels for attributed graphs
  publication-title: ArXiv Preprint ArXiv:1206.6483
– year: 2018
  ident: 10.1016/j.commatsci.2025.113904_b0745
  article-title: An end-to-end deep learning architecture for graph classification
– volume: 10
  start-page: 93
  year: 2024
  ident: 10.1016/j.commatsci.2025.113904_b0755
  article-title: JARVIS-Leaderboard: a large scale benchmark of materials design methods
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-024-01259-w
– volume: 123
  year: 2023
  ident: 10.1016/j.commatsci.2025.113904_b0410
  article-title: MD-GNN: A mechanism-data-driven graph neural network for molecular properties prediction and new material discovery
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/j.jmgm.2023.108506
– volume: 24
  year: 2011
  ident: 10.1016/j.commatsci.2025.113904_b0580
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Adv. Neural Inf. Process Syst.
– ident: 10.1016/j.commatsci.2025.113904_b0285
  doi: 10.1109/ICDM.2006.39
– ident: 10.1016/j.commatsci.2025.113904_b0630
  doi: 10.1145/3366423.3380027
– volume: 37
  start-page: 1
  year: 2020
  ident: 10.1016/j.commatsci.2025.113904_b0050
  article-title: A compact review of molecular property prediction with graph neural networks
  publication-title: Drug Discov. Today Technol.
  doi: 10.1016/j.ddtec.2020.11.009
– volume: 52
  start-page: 1757
  year: 2012
  ident: 10.1016/j.commatsci.2025.113904_b0350
  article-title: ZINC: A free tool to discover chemistry for biology
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci3001277
– ident: 10.1016/j.commatsci.2025.113904_b0435
– volume: 3
  start-page: 93
  year: 2022
  ident: 10.1016/j.commatsci.2025.113904_b0045
  article-title: Graph neural networks for materials science and chemistry
  publication-title: Commun. Mater
  doi: 10.1038/s43246-022-00315-6
– volume: 43
  start-page: 1906
  year: 2003
  ident: 10.1016/j.commatsci.2025.113904_b0265
  article-title: Spline-fitting with a genetic algorithm: A method for developing classification structure−activity relationships
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci034143r
– volume: 9
  start-page: 185
  year: 2022
  ident: 10.1016/j.commatsci.2025.113904_b0310
  article-title: GEOM, energy-annotated molecular conformations for property prediction and molecular generation
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01288-4
– ident: 10.1016/j.commatsci.2025.113904_b0715
  doi: 10.1609/aaai.v34i04.5997
– volume: 28
  start-page: 711
  year: 2014
  ident: 10.1016/j.commatsci.2025.113904_b0180
  article-title: FreeSolv: a database of experimental and calculated hydration free energies, with input files
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10822-014-9747-x
– volume: 29
  start-page: 1225
  year: 2016
  ident: 10.1016/j.commatsci.2025.113904_b0210
  article-title: ToxCast chemical landscape: paving the road to 21st century toxicology
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/acs.chemrestox.6b00135
– volume: 19
  year: 2023
  ident: 10.1016/j.commatsci.2025.113904_b0405
  article-title: A dual graph neural network for drug–drug interactions prediction based on molecular structure and interactions
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1010812
– volume: 44
  start-page: D1045
  issue: 2016
  year: 2015
  ident: 10.1016/j.commatsci.2025.113904_b0230
  article-title: BindingDB in, A public database for medicinal chemistry, computational chemistry and systems pharmacology
  publication-title: Nucleic Acids Res.
– volume: 11
  year: 2020
  ident: 10.1016/j.commatsci.2025.113904_b0355
  article-title: Molecular sets (MOSES): A benchmarking platform for molecular generation models
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.565644
– volume: 131
  start-page: 8732
  year: 2009
  ident: 10.1016/j.commatsci.2025.113904_b0110
  article-title: 970 Million druglike small molecules for virtual screening in the chemical universe database GDB-13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902302h
– volume: 31
  start-page: 405
  year: 2015
  ident: 10.1016/j.commatsci.2025.113904_b0340
  article-title: PDB-wide collection of binding data: current status of the PDBbind database
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu626
– volume: 10
  start-page: 10
  year: 2015
  ident: 10.1016/j.commatsci.2025.113904_b0380
  article-title: QSAR based model for discriminating EGFR inhibitors and non-inhibitors using Random forest
  publication-title: Biol. Direct
  doi: 10.1186/s13062-015-0046-9
– volume: 1
  year: 2014
  ident: 10.1016/j.commatsci.2025.113904_b0125
  article-title: Quantum chemistry structures and properties of 134 kilo molecules
  publication-title: Sci. Data
  doi: 10.1038/sdata.2014.22
– ident: 10.1016/j.commatsci.2025.113904_b0455
– year: 2023
  ident: 10.1016/j.commatsci.2025.113904_b0530
  publication-title: Attending to Graph Transformers
– year: 2015
  ident: 10.1016/j.commatsci.2025.113904_b0495
  publication-title: Neural Netw.
– start-page: 1
  issue: 4-2
  year: 2015
  ident: 10.1016/j.commatsci.2025.113904_b0600
  article-title: Xgboost: extreme gradient boosting
  publication-title: R Package Version
– volume: 465
  year: 2024
  ident: 10.1016/j.commatsci.2025.113904_b0605
  article-title: AI-enhanced chemical paradigm: From molecular graphs to accurate prediction and mechanism
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2023.133355
– volume: 51
  start-page: D1373
  issue: 2023
  year: 2023
  ident: 10.1016/j.commatsci.2025.113904_b0115
  article-title: PubChem, update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac956
– volume: 330
  start-page: 771
  year: 2003
  ident: 10.1016/j.commatsci.2025.113904_b0295
  article-title: Distinguishing enzyme structures from non-enzymes without alignments
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(03)00628-4
– volume: 12
  year: 2011
  ident: 10.1016/j.commatsci.2025.113904_b0290
  article-title: Weisfeiler-lehman graph kernels
  publication-title: J. Mach. Learn. Res.
– volume: 61
  start-page: 127
  year: 2001
  ident: 10.1016/j.commatsci.2025.113904_b0240
  article-title: The binding database: overview and user’s guide, Biopolymers: Original Research on
  publication-title: Biomolecules
– volume: 21
  start-page: i47
  year: 2005
  ident: 10.1016/j.commatsci.2025.113904_b0300
  article-title: Protein function prediction via graph kernels
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1007
– ident: 10.1016/j.commatsci.2025.113904_b0505
– volume: 63
  start-page: 5734
  year: 2023
  ident: 10.1016/j.commatsci.2025.113904_b0120
  article-title: PubChemQC B3LYP/6-31G*//PM6 Data Set: The electronic structures of 86 million molecules using B3LYP/6-31G* calculations
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.3c00899
– volume: 36
  start-page: 1769
  year: 2015
  ident: 10.1016/j.commatsci.2025.113904_b0640
  article-title: Universal structure conversion method for organic molecules: From atomic connectivity to three‐dimensional geometry
  publication-title: Bull. Kor. Chem. Soc.
  doi: 10.1002/bkcs.10334
– volume: 50
  start-page: 302
  year: 2017
  ident: 10.1016/j.commatsci.2025.113904_b0345
  article-title: Forging the basis for developing protein–ligand interaction scoring functions
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00491
– start-page: 1776
  year: 2024
  ident: 10.1016/j.commatsci.2025.113904_b0515
  article-title: Graph neural networks for identifying protein-reactive compounds
  publication-title: Digital Discovery 3
  doi: 10.1039/D4DD00038B
– volume: 24
  start-page: 25853
  year: 2022
  ident: 10.1016/j.commatsci.2025.113904_b0165
  article-title: nablaDFT: Large-scale conformational energy and hamiltonian prediction benchmark and dataset
  publication-title: PCCP
  doi: 10.1039/D2CP03966D
– ident: 10.1016/j.commatsci.2025.113904_b0090
  doi: 10.1145/3449639.3459370
– volume: 49
  start-page: D1122
  year: 2021
  ident: 10.1016/j.commatsci.2025.113904_b0255
  article-title: CovalentInDB: a comprehensive database facilitating the discovery of covalent inhibitors
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa876
– volume: 54
  start-page: 1700
  year: 2014
  ident: 10.1016/j.commatsci.2025.113904_b0335
  article-title: Comparative assessment of scoring functions on an updated benchmark: 1 Compilation of the test set,
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci500080q
– ident: 10.1016/j.commatsci.2025.113904_b0680
  doi: 10.1145/3638529.3654055
– year: 2016
  ident: 10.1016/j.commatsci.2025.113904_b0665
  article-title: The CMA evolution strategy
  publication-title: A Tutorial
– volume: 49
  start-page: 1079
  year: 2009
  ident: 10.1016/j.commatsci.2025.113904_b0325
  article-title: Comparative assessment of scoring functions on a diverse test set
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci9000053
– year: 2021
  ident: 10.1016/j.commatsci.2025.113904_b0490
  article-title: Jannik bjerrum, graph networks for molecular design
  publication-title: Mach Learn Sci. Technol.
  doi: 10.1088/2632-2153/abcf91
– ident: 10.1016/j.commatsci.2025.113904_b0500
– volume: 148
  year: 2018
  ident: 10.1016/j.commatsci.2025.113904_b0420
  article-title: SchNet – A deep learning architecture for molecules and materials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019779
– ident: 10.1016/j.commatsci.2025.113904_b0055
– ident: 10.1016/j.commatsci.2025.113904_b0200
– ident: 10.1016/j.commatsci.2025.113904_b0485
– volume: 7
  start-page: 84
  year: 2021
  ident: 10.1016/j.commatsci.2025.113904_b0085
  article-title: Benchmarking graph neural networks for materials chemistry
  publication-title: NPJ. Comput. Mater
  doi: 10.1038/s41524-021-00554-0
– volume: 49
  start-page: 169
  year: 2009
  ident: 10.1016/j.commatsci.2025.113904_b0195
  article-title: Maximum unbiased validation (MUV) data sets for virtual screening based on pubchem bioactivity data
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci8002649
– year: 2021
  ident: 10.1016/j.commatsci.2025.113904_b0540
  publication-title: How Attentive Are Graph Attention Networks?
– volume: 27
  start-page: 692
  year: 2022
  ident: 10.1016/j.commatsci.2025.113904_b0100
  article-title: Graph neural architecture search: A survey, Tsinghua
  publication-title: Sci. Technol.
– volume: 207
  start-page: 81
  year: 2022
  ident: 10.1016/j.commatsci.2025.113904_b0430
  article-title: Toward drug-miRNA resistance association prediction by positional encoding graph neural network and multi-channel neural network
  publication-title: Methods
  doi: 10.1016/j.ymeth.2022.09.005
– start-page: 4780
  year: 2019
  ident: 10.1016/j.commatsci.2025.113904_b0700
  article-title: Regularized Evolution for image classifier architecture search
– volume: 52
  start-page: D1180
  issue: 2024
  year: 2023
  ident: 10.1016/j.commatsci.2025.113904_b0220
  article-title: The ChEMBL Database in, a drug discovery platform spanning multiple bioactivity data types and time periods
  publication-title: Nucleic Acids Res.
– ident: 10.1016/j.commatsci.2025.113904_b0655
– volume: 50
  start-page: 1034
  year: 2010
  ident: 10.1016/j.commatsci.2025.113904_b0370
  article-title: Estimation of ADME properties with substructure pattern recognition
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci100104j
– volume: 115
  start-page: 2315
  year: 2017
  ident: 10.1016/j.commatsci.2025.113904_b0020
  article-title: Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2017.1333644
– volume: 11
  year: 2019
  ident: 10.1016/j.commatsci.2025.113904_b0010
  article-title: Integration of target discovery, drug discovery and drug delivery: A review on computational strategies
  publication-title: WIREs Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1554
– volume: 6
  start-page: 138
  year: 2020
  ident: 10.1016/j.commatsci.2025.113904_b0760
  article-title: Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-020-00406-3
– start-page: 10764
  year: 2019
  ident: 10.1016/j.commatsci.2025.113904_b0550
  article-title: Explainability methods for graph convolutional Neural Networks
– ident: 10.1016/j.commatsci.2025.113904_b0590
– ident: 10.1016/j.commatsci.2025.113904_b0670
  doi: 10.1145/3449726.3463192
– volume: 44
  start-page: D1075
  year: 2016
  ident: 10.1016/j.commatsci.2025.113904_b0215
  article-title: The SIDER database of drugs and side effects
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1075
SSID ssj0016982
Score 2.4427993
Snippet [Display omitted] •Comprehensive review of cheminformatics datasets for molecular property prediction.•Survey of optimization techniques for Graph Neural...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 113904
SubjectTerms Cheminformatics
Deep learning (DL)
Graph neural networks (GNN)
Hyperparameter optimization (HPO)
Machine learning (ML)
Neural architecture search (NAS)
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KL-pBfGJ9sQevsUma3XS9SbEUD71oobewO9lopE1LmiJe_O3O5FEqCApCICRMZsNkmPmGfDvD2I3SnmviXuDoUEgnCAPhKBACax4_lELFQkDJ8h3L0SR4nIppiw2avTBEq6xjfxXTy2hd3-nW1uwu07T75CraS0UAnhJNSHE4wBP69O3nhubhSVUOjCJhh6S_cbxQN-JC1I6Foi9ovomqJ7b9kKF21tlSf7zr2WwrAw0P2H4NHfl99XaHrGWzI7a31VDwmOUjLCtzauc9J5oLX2BAmNc7LbnOYk7tK1HH9u8DXjk717OXRZ4Wr_MVRyDLy07WfFzJjyuy-IqnGQdqMZDVWBdWJ2wyfHgejJx6qoIDmL0LJzCh8KkSETFYCBQdbh8MhBKExaSmE-MaLXquMf1YgtS-MghkkjCwWM4kvVPWzhaZPWPcgjHgQyJAYlVirTJSJdYYzwB4FtwOcxtLRsuqeUbUsMreoo3xIzJ-VBm_w-4ai0ff_CDCEP_7w97mG_11wfP_LHjBdumK2AS-e8naRb62VwhSCnNdeuEXGMLprg
  priority: 102
  providerName: Elsevier
Title Hyperparameter optimization and neural architecture search algorithms for graph Neural Networks in cheminformatics
URI https://dx.doi.org/10.1016/j.commatsci.2025.113904
https://doi.org/10.1016/j.commatsci.2025.113904
UnpaywallVersion publishedVersion
Volume 254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1879-0801
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016982
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1879-0801
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016982
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 1879-0801
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016982
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 1879-0801
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016982
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1879-0801
  databaseCode: AKRWK
  dateStart: 19930301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016982
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6C9jA4DDaYYLDKh11TkjR26t0qBMo2KeJApe4U2S_OgLUpSlMhOPC37zk_UIuG2CblEil2kvecvO-TP38G-CyV5-p0EDgq5MIJwoA7EjknzuOHgsuUc6xUvrGIxsG3CZ9swEm7FmZt_r7SYVHgCbtRPSAy53O7B4m0_p9d6km4HeiO44vRj8pRzw8dW8EtxRqG0iEs5K0puv7Y00v16M0yv1X3d2o6Xak35ztw0T5pLTP51V-Wuo8Pz0wc_-FVduFtgz3ZqB4s72DD5O9he8WRcA-KiHhpYf3AZ1Ynw-b0R5k1SzWZylNm_S-pj9X5B1Z_LUxNf86L6_JqtmCEhFllhc3i-vq4Vpsv2HXO0HoU5A1YxsU-jM_PLk8jp9mWwUEq_6UT6JD7lsrwFA0G0h7uEDWGArmhqqgy7WrFB67Ww1SgUL7UhISyMDDEh7LBB-jk89wcADOoNfqYcRREa4yRWsjMaO1pRM-gewhum5zktnbfSFpZ2k3yFM7EhjOpw3kIX9okJg2IqMFBQvl4vbH3lPa_veHH_2hzBFv2zKoQfPcYOmWxNJ8I3JS6B5v9R68H3dHX71Hca4b3b29Q-2E
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5ED-pBfGJ97sFrbJJmN643KZb66kULvYXdyUYrbVrSiHjxtzuTR6kgKAg5JZPdMFlmvo_9doaxM6U918StwNGhkE4QBsJRIARyHj-UQsVCQKHy7cluP7gdiMESa9dnYUhWWcX-MqYX0bq606y82ZwOh81HV9FZKgLwlGhCjMMrgfBDYmDnn3OdhydV0TGKrB0y_ybywsERGOLwyBR9QQ1OVNWy7YcUtfqWTvXHux6NFlJQZ5NtVNiRX5Wft8WWbLrN1hcqCu6wrIu8MqN63mPSufAJRoRxddSS6zTmVL8Sx1jcP-Dlaud69DzJhvnLeMYRyfKilDXvlfa9Ui0-48OUA9UYSCuwC7Nd1u9cP7W7TtVWwQFM37kTmFD4REVEDBYCRZd7AQZCCcJiVtOJcY0WLdeYi1iC1L4yiGSSMLDIZ5LWHltOJ6ndZ9yCMeBDIkAiLbFWGakSa4xnADwLboO5tSejaVk9I6plZa_R3PkROT8qnd9gl7XHo28LIcIY__vL3vwf_XXCg_9MeMpWu08P99H9Te_ukK3RE5IW-O4RW86zN3uMiCU3J8WK_ALlfuzR
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4IPKgP3o14Sx98HW5j7ahvxEiID4QHSfBpac86RWGQMWL013u6CwGj8ZLsZcnabed0O9-Xfv1KyKWQjq3CpmdJn3HL8z1mCWAMOY_rcyZCxiBT-fZ4d-DdDdmwQq7KtTBr8_eZDgsDj9gN6wGSOZeZPUiE8f-sYU_crpLaoNdvP2SOeq5vmQpuKFbLFxZiIWdN0fVlT9_Vo41FPJNvr3I8Xqk3nR3SL580l5m8NBapasD7JxPHP7zKLtkusCdt54Nlj1R0vE-2VhwJD0jSRV6aGD_widHJ0Cn-USbFUk0q45Aa_0vsY3X-geZfC5Xjx2kySp8mc4pImGZW2LSXX9_L1eZzOoopGI-CuADLMD8kg87t_U3XKrZlsADLf2p5ymeuoTIsBA2eMIfdAgU-B6axKspI2Uqypq1UK-TApSsUIqHI9zTyoah5RKrxNNbHhGpQClyIGHCkNVoLxUWklXIUgKPBrhO7TE4wy903glKW9hwswxmYcAZ5OOvkukxiUICIHBwEmI-fGzvLtP_2hif_aHNKNs2ZUSG49hmppslCnyO4SdVFMaA_AMZ7-NU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperparameter+optimization+and+neural+architecture+search+algorithms+for+graph+Neural+Networks+in+cheminformatics&rft.jtitle=Computational+materials+science&rft.au=Ebadi%2C+Ali&rft.au=Kaur%2C+Manpreet&rft.au=Liu%2C+Qian&rft.date=2025-05-20&rft.issn=0927-0256&rft.volume=254&rft.spage=113904&rft_id=info:doi/10.1016%2Fj.commatsci.2025.113904&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_commatsci_2025_113904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon