A New Run Algorithm for Solving the Continuous Linear-Quadratic Optimal Control Problem with Unseparated Boundary Conditions

A sweep method is proposed for solving the optimal control problem with unseparated boundary conditions. This model reduces the boundary conditions to the initial condition. Using the properties of the J -symmetry of the corresponding Hamiltonian matrix and Euler–Lagrange equations, it is shown that...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer & systems sciences international Vol. 60; no. 1; pp. 48 - 55
Main Authors Aliev, F. A., Guseinova, N. Sh, Maharramov, I. A., Mutallimov, M. M.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.01.2021
Subjects
Online AccessGet full text
ISSN1064-2307
1555-6530
DOI10.1134/S1064230721010020

Cover

Abstract A sweep method is proposed for solving the optimal control problem with unseparated boundary conditions. This model reduces the boundary conditions to the initial condition. Using the properties of the J -symmetry of the corresponding Hamiltonian matrix and Euler–Lagrange equations, it is shown that linear algebraic equations for determining the missing initial data of the system being solved have a symmetric matrix of coefficients. The proposed algorithm allows us to reduce the dimension of the problem of finding the fundamental matrix of the Hamiltonian system. The results are illustrated by the example of a linear-quadratic optimal control problem (stationary case) with the minimal control actions.
AbstractList A sweep method is proposed for solving the optimal control problem with unseparated boundary conditions. This model reduces the boundary conditions to the initial condition. Using the properties of the J -symmetry of the corresponding Hamiltonian matrix and Euler–Lagrange equations, it is shown that linear algebraic equations for determining the missing initial data of the system being solved have a symmetric matrix of coefficients. The proposed algorithm allows us to reduce the dimension of the problem of finding the fundamental matrix of the Hamiltonian system. The results are illustrated by the example of a linear-quadratic optimal control problem (stationary case) with the minimal control actions.
Author Mutallimov, M. M.
Maharramov, I. A.
Aliev, F. A.
Guseinova, N. Sh
Author_xml – sequence: 1
  givenname: F. A.
  surname: Aliev
  fullname: Aliev, F. A.
  email: f_aliev@yahoo.com
  organization: Institute of Applied Mathematics, Baku State University (BSU), Institute of Information Technology, Azerbaijan National Academy of Sciences (ANAS)
– sequence: 2
  givenname: N. Sh
  surname: Guseinova
  fullname: Guseinova, N. Sh
  email: nargiz_huseynova@yahoo.com
  organization: Institute of Applied Mathematics, Baku State University (BSU)
– sequence: 3
  givenname: I. A.
  surname: Maharramov
  fullname: Maharramov, I. A.
  email: ilkin_072@mail.ru
  organization: Institute of Applied Mathematics, Baku State University (BSU)
– sequence: 4
  givenname: M. M.
  surname: Mutallimov
  fullname: Mutallimov, M. M.
  email: mmutallimov@bsu.edu.az
  organization: Institute of Applied Mathematics, Baku State University (BSU)
BookMark eNp9kFtPAjEQhRuDiYD-AN_6B1ant708IvGWEFGR502324WSpSXtroTEH28R30x8mknmOydnzggNrLMaoWsCN4QwfrsgkHLKIKMECACFMzQkQogkFQwGcY_n5Hi_QKMQNgCsSIEP0dcEv-g9fu8tnrQr50233uLGebxw7aexK9ytNZ462xnbuz7gmbFa-uStl7WXnVF4vuvMVrY_jHctfvWuavUW76MTXtqgdzKCusZ3rre19IcjWZvOOBsu0Xkj26CvfucYLR_uP6ZPyWz--DydzBJFOXQJybWgOhNFLSThiqY5VRqgaCjPs7yiFJioVB5_IqTgWc0rCUxpRYuqqZWibIzIyVd5F4LXTbnzMbQ_lATKY33ln_qihp40IbJ2pX25cb23MeY_om95nnSD
Cites_doi 10.1186/s13662-016-0816-4
10.1186/s13662-015-0569-5
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2021. ISSN 1064-2307, Journal of Computer and Systems Sciences International, 2021, Vol. 60, No. 1, pp. 48–55. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2021, No. 1, pp. 52–59.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2021. ISSN 1064-2307, Journal of Computer and Systems Sciences International, 2021, Vol. 60, No. 1, pp. 48–55. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2021, No. 1, pp. 52–59.
DBID AAYXX
CITATION
DOI 10.1134/S1064230721010020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Computer Science
EISSN 1555-6530
EndPage 55
ExternalDocumentID 10_1134_S1064230721010020
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.4S
.VR
06D
0R~
0VY
1N0
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
408
40D
40E
5GY
5VS
6NX
7WY
8FE
8FG
8FL
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KOV
LLZTM
M0C
M0N
M4Y
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
TUS
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XU3
YLTOR
Z7R
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
M7S
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
ID FETCH-LOGICAL-c240t-18e52e759d5a14c2682ce009f24878b22035bc800311947d4ba03cec29bfdcc23
IEDL.DBID AGYKE
ISSN 1064-2307
IngestDate Wed Oct 01 01:06:51 EDT 2025
Fri Feb 21 02:49:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c240t-18e52e759d5a14c2682ce009f24878b22035bc800311947d4ba03cec29bfdcc23
PageCount 8
ParticipantIDs crossref_primary_10_1134_S1064230721010020
springer_journals_10_1134_S1064230721010020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210100
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 1
  year: 2021
  text: 20210100
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Journal of computer & systems sciences international
PublicationTitleAbbrev J. Comput. Syst. Sci. Int
PublicationYear 2021
Publisher Pleiades Publishing
Publisher_xml – name: Pleiades Publishing
References MutallimovM. M.Zul’fugarovaR. T.AmirovaL. I.Sweep algorithm for solving optimal control problem with multi-point boundary conditionsAdv. Differ. Equat.20152015233337370710.1186/s13662-015-0569-5
AlievF.LarinV.VelievaN.GasimovaK.FaradjovaSh.Algorithm for solving the systems of the generalized sylvester-transpose matrix equations using LMITWMS J. Pure Appl. Math.20191023924539711091431.65056
V. E. Shamanskii, Methods for the Numerical Solution of Boundary Value Problems on a Digital Computer, Part 1 (Kiev, Nauk. Dumka, 1966, 1963) [in Russian].
AshyralyevA.ErdoganA. S.TekalanS. N.An investigation on finite difference method for the first order partial differential equation with the nonlocal boundary conditionAppl. Comput. Math.20191824726039716161443.65115
AlievF. A.AlievN. A.GulievA. P.TagievR. M.DzhamalbekovM. A.A method for solving a boundary value problem for a system of hyperbolic equations describing motion in a gas-lift processPrikl. Mat. Mekh.201882512519
AbramovA. A.On the transfer of boundary conditions for systems of linear ordinary differential equations (a variant of the sweep method)Zh. Vychisl. Mat. Mat. Fiz.19611542545
AndreevYu. N.Controlling Finite-Dimensional Line Features1976MoscowNauka
M. M. Mutallimov and F. A. Aliev, Methods for Solving Optimization Problems during the Operation of Oil Wells (LAP Lambert, Saarbrücken, Deutscland, 2012).
BordyugB. A.LarinV. B.TimeshenkoA. G.Control Tasks for Walking Vehicles1985KievNauk. Dumka
SamkoS. G.KilbasA. A.MarichevO. I.Fractional Integrals and Derivatives: Theory and Applications1993AmsterdamGordon and Breach Science0818.26003
G. Ahmad, N. Omid, and Mahboubeh Molavi-Arabshahi, “Numerical approximation of time fractional advection-dispersion model arising from solute transport in rivers,” TWMS J. Pure Appl. Math. 10, 117–131 (2019).
LarinV. B.Walking Apparatus Control1980KievNauk. Dumka0702.93041
F. A. Aliev, “Optimal control problem for a linear system with nonseparated two-point boundary conditions,” Differ. Uravn., No. 2, 345–347 (1986).
HamidovR. H.MutallimovM. M.Dimension reduction of one multivariable decision making problemAppl. Comput. Math.201918626838881971427.90273
MutallimovM. M.Sweep method for the solution of optimization problem with three point boundary conditions with unseparabilities in the internal and end pointsDokl. NAN Azerb.20076324292416749
A. Bryson and Yu-Chi Ho, Applied Optimal Control: Optimization, Estimation and Control (CRC, Boca Raton, FL, 1975).
M. M. Mutallimov, R. T. Zul’fugarova, and A. P. Guliev, “A sweeping algorithm for solving optimal control problems with nonseparated boundary conditions,” Vestn. BGU, Ser. Fiz. Mat. Nauk., No. 2, 153–160 (2009).
Zakhar-ItkinM. Kh.Riccati matrix differential equation and the semigroup of linear fractional transformationsUsp. Mat. Nauk.197328831204073580293.34056
MutallimovM. M.AmirovaL. I.AlievF. A.FaradjovaSh. A.MaharramovI. A.Remarks to the paper: Sweep algorithm for solving optimal control problem with multi-point boundary conditionsTWMS J. Pure Appl. Math.2018924324638230121423.49003
AlievF. A.AlievN. A.SafarovaN. A.GasimovaK. G.VelievaN. I.Solution of linear fractional-derivative ordinary differential equations with constant matrix coefficientsAppl. Comput. Math.201817317322383947907122374
ZhangJ.ShenYu.HeJ.Some analytical methods for singular boundary value problem in a fractal space: A reviewAppl. Comput. Math.20191822523539716141440.34025
F. A. Aliev and N. A. Ismailov, “Methods for solving optimization problems with two-point boundary conditions,” Preprint No. 151 (Inst. Phys. Acad. Sci. AzSSR, Baku, 1985).
AlievF. A.Comments on 'Sweep algorithm for solving optimal control problem with multi-point boundary conditions' by M. Mutallimov, R. Zulfuqarova and L. AmirovaAdv. Differ. Equat.20162016131350048910.1186/s13662-016-0816-4
F. A. Aliev, “Optimization problem with two-point boundary conditions,” Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 6, 138–146 (1985).
F. A. Aliev, “Optimal control problem for a linear system with nonseparated two-point boundary conditions,” Izv. Akad. Nauk Az SSR, Ser. Fiz. Tekh. Mat. Nauk., No. 2, 345–347 (1986).
F. A. Aliev, Methods for Solving Applied Problems of Optimization of Dynamic Systems (Elm, Baku, 1989) [in Russian].
F. A. Aliev, N. S. Hajiyeva, N. A. Ismailov, and S. M. Mirsaabov, “Calculation algorithm defining the coefficient of hydraulic resistance on different areas of pump-compressor pipes in gas lift process by lines method,” SOCAR Proc., No. 4, 13–17 (2019).
MoszynskiK.A method of solving the boundary value problem for a system of linear ordinary differensial equationsAlgorytmy1964112543183120
Yu. N. Andreev (7182_CR15) 1976
M. M. Mutallimov (7182_CR10) 2007; 63
7182_CR16
S. G. Samko (7182_CR26) 1993
F. Aliev (7182_CR24) 2019; 10
7182_CR8
7182_CR9
A. Ashyralyev (7182_CR23) 2019; 18
7182_CR6
A. A. Abramov (7182_CR12) 1961; 1
7182_CR7
K. Moszynski (7182_CR11) 1964; 11
F. A. Aliev (7182_CR13) 2016; 2016
7182_CR4
7182_CR5
F. A. Aliev (7182_CR27) 2018; 17
7182_CR3
M. M. Mutallimov (7182_CR19) 2015; 2015
7182_CR28
7182_CR1
M. Kh. Zakhar-Itkin (7182_CR17) 1973; 28
R. H. Hamidov (7182_CR20) 2019; 18
J. Zhang (7182_CR25) 2019; 18
V. B. Larin (7182_CR18) 1980
7182_CR21
B. A. Bordyug (7182_CR2) 1985
M. M. Mutallimov (7182_CR14) 2018; 9
F. A. Aliev (7182_CR22) 2018; 82
References_xml – reference: F. A. Aliev, “Optimization problem with two-point boundary conditions,” Izv. Akad. Nauk SSSR, Tekh. Kibern., No. 6, 138–146 (1985).
– reference: AlievF. A.AlievN. A.SafarovaN. A.GasimovaK. G.VelievaN. I.Solution of linear fractional-derivative ordinary differential equations with constant matrix coefficientsAppl. Comput. Math.201817317322383947907122374
– reference: V. E. Shamanskii, Methods for the Numerical Solution of Boundary Value Problems on a Digital Computer, Part 1 (Kiev, Nauk. Dumka, 1966, 1963) [in Russian].
– reference: MutallimovM. M.Sweep method for the solution of optimization problem with three point boundary conditions with unseparabilities in the internal and end pointsDokl. NAN Azerb.20076324292416749
– reference: Zakhar-ItkinM. Kh.Riccati matrix differential equation and the semigroup of linear fractional transformationsUsp. Mat. Nauk.197328831204073580293.34056
– reference: A. Bryson and Yu-Chi Ho, Applied Optimal Control: Optimization, Estimation and Control (CRC, Boca Raton, FL, 1975).
– reference: AshyralyevA.ErdoganA. S.TekalanS. N.An investigation on finite difference method for the first order partial differential equation with the nonlocal boundary conditionAppl. Comput. Math.20191824726039716161443.65115
– reference: F. A. Aliev, N. S. Hajiyeva, N. A. Ismailov, and S. M. Mirsaabov, “Calculation algorithm defining the coefficient of hydraulic resistance on different areas of pump-compressor pipes in gas lift process by lines method,” SOCAR Proc., No. 4, 13–17 (2019).
– reference: BordyugB. A.LarinV. B.TimeshenkoA. G.Control Tasks for Walking Vehicles1985KievNauk. Dumka
– reference: MutallimovM. M.Zul’fugarovaR. T.AmirovaL. I.Sweep algorithm for solving optimal control problem with multi-point boundary conditionsAdv. Differ. Equat.20152015233337370710.1186/s13662-015-0569-5
– reference: AlievF. A.AlievN. A.GulievA. P.TagievR. M.DzhamalbekovM. A.A method for solving a boundary value problem for a system of hyperbolic equations describing motion in a gas-lift processPrikl. Mat. Mekh.201882512519
– reference: SamkoS. G.KilbasA. A.MarichevO. I.Fractional Integrals and Derivatives: Theory and Applications1993AmsterdamGordon and Breach Science0818.26003
– reference: M. M. Mutallimov and F. A. Aliev, Methods for Solving Optimization Problems during the Operation of Oil Wells (LAP Lambert, Saarbrücken, Deutscland, 2012).
– reference: HamidovR. H.MutallimovM. M.Dimension reduction of one multivariable decision making problemAppl. Comput. Math.201918626838881971427.90273
– reference: G. Ahmad, N. Omid, and Mahboubeh Molavi-Arabshahi, “Numerical approximation of time fractional advection-dispersion model arising from solute transport in rivers,” TWMS J. Pure Appl. Math. 10, 117–131 (2019).
– reference: F. A. Aliev, “Optimal control problem for a linear system with nonseparated two-point boundary conditions,” Differ. Uravn., No. 2, 345–347 (1986).
– reference: LarinV. B.Walking Apparatus Control1980KievNauk. Dumka0702.93041
– reference: F. A. Aliev and N. A. Ismailov, “Methods for solving optimization problems with two-point boundary conditions,” Preprint No. 151 (Inst. Phys. Acad. Sci. AzSSR, Baku, 1985).
– reference: F. A. Aliev, “Optimal control problem for a linear system with nonseparated two-point boundary conditions,” Izv. Akad. Nauk Az SSR, Ser. Fiz. Tekh. Mat. Nauk., No. 2, 345–347 (1986).
– reference: AndreevYu. N.Controlling Finite-Dimensional Line Features1976MoscowNauka
– reference: MoszynskiK.A method of solving the boundary value problem for a system of linear ordinary differensial equationsAlgorytmy1964112543183120
– reference: AlievF. A.Comments on 'Sweep algorithm for solving optimal control problem with multi-point boundary conditions' by M. Mutallimov, R. Zulfuqarova and L. AmirovaAdv. Differ. Equat.20162016131350048910.1186/s13662-016-0816-4
– reference: F. A. Aliev, Methods for Solving Applied Problems of Optimization of Dynamic Systems (Elm, Baku, 1989) [in Russian].
– reference: AbramovA. A.On the transfer of boundary conditions for systems of linear ordinary differential equations (a variant of the sweep method)Zh. Vychisl. Mat. Mat. Fiz.19611542545
– reference: M. M. Mutallimov, R. T. Zul’fugarova, and A. P. Guliev, “A sweeping algorithm for solving optimal control problems with nonseparated boundary conditions,” Vestn. BGU, Ser. Fiz. Mat. Nauk., No. 2, 153–160 (2009).
– reference: ZhangJ.ShenYu.HeJ.Some analytical methods for singular boundary value problem in a fractal space: A reviewAppl. Comput. Math.20191822523539716141440.34025
– reference: MutallimovM. M.AmirovaL. I.AlievF. A.FaradjovaSh. A.MaharramovI. A.Remarks to the paper: Sweep algorithm for solving optimal control problem with multi-point boundary conditionsTWMS J. Pure Appl. Math.2018924324638230121423.49003
– reference: AlievF.LarinV.VelievaN.GasimovaK.FaradjovaSh.Algorithm for solving the systems of the generalized sylvester-transpose matrix equations using LMITWMS J. Pure Appl. Math.20191023924539711091431.65056
– ident: 7182_CR7
– ident: 7182_CR28
– volume-title: Fractional Integrals and Derivatives: Theory and Applications
  year: 1993
  ident: 7182_CR26
– volume: 11
  start-page: 25
  year: 1964
  ident: 7182_CR11
  publication-title: Algorytmy
– volume: 1
  start-page: 542
  year: 1961
  ident: 7182_CR12
  publication-title: Zh. Vychisl. Mat. Mat. Fiz.
– volume-title: Control Tasks for Walking Vehicles
  year: 1985
  ident: 7182_CR2
– volume: 28
  start-page: 83
  year: 1973
  ident: 7182_CR17
  publication-title: Usp. Mat. Nauk.
– ident: 7182_CR16
– ident: 7182_CR3
– volume: 82
  start-page: 512
  year: 2018
  ident: 7182_CR22
  publication-title: Prikl. Mat. Mekh.
– ident: 7182_CR1
– volume: 9
  start-page: 243
  year: 2018
  ident: 7182_CR14
  publication-title: TWMS J. Pure Appl. Math.
– ident: 7182_CR5
– volume: 17
  start-page: 317
  year: 2018
  ident: 7182_CR27
  publication-title: Appl. Comput. Math.
– ident: 7182_CR9
– volume: 2016
  start-page: 131
  year: 2016
  ident: 7182_CR13
  publication-title: Adv. Differ. Equat.
  doi: 10.1186/s13662-016-0816-4
– volume: 18
  start-page: 247
  year: 2019
  ident: 7182_CR23
  publication-title: Appl. Comput. Math.
– ident: 7182_CR21
– volume: 10
  start-page: 239
  year: 2019
  ident: 7182_CR24
  publication-title: TWMS J. Pure Appl. Math.
– volume: 2015
  start-page: 233
  year: 2015
  ident: 7182_CR19
  publication-title: Adv. Differ. Equat.
  doi: 10.1186/s13662-015-0569-5
– volume: 18
  start-page: 225
  year: 2019
  ident: 7182_CR25
  publication-title: Appl. Comput. Math.
– volume: 18
  start-page: 62
  year: 2019
  ident: 7182_CR20
  publication-title: Appl. Comput. Math.
– volume: 63
  start-page: 24
  year: 2007
  ident: 7182_CR10
  publication-title: Dokl. NAN Azerb.
– volume-title: Walking Apparatus Control
  year: 1980
  ident: 7182_CR18
– volume-title: Controlling Finite-Dimensional Line Features
  year: 1976
  ident: 7182_CR15
– ident: 7182_CR4
– ident: 7182_CR6
– ident: 7182_CR8
SSID ssj0039604
Score 2.1845176
Snippet A sweep method is proposed for solving the optimal control problem with unseparated boundary conditions. This model reduces the boundary conditions to the...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 48
SubjectTerms Control
Engineering
Mechatronics
Optimal Control
Robotics
Title A New Run Algorithm for Solving the Continuous Linear-Quadratic Optimal Control Problem with Unseparated Boundary Conditions
URI https://link.springer.com/article/10.1134/S1064230721010020
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1555-6530
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0039604
  issn: 1064-2307
  databaseCode: ADMLS
  dateStart: 20120201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1555-6530
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0039604
  issn: 1064-2307
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2hcoEDSwFRNs2BA4sCjeOkzrEgFoHYqQSnKrEdQECKmuQA4uMZJ47EeuAaTaJRPB6_WfwGYJUwceTxwHfcqKMczmTixJpsOdIUbikzD94zt5FPToPDHj-68W_sPe6s7navS5Klp67mjvDtK9dgZc_webUNbyjF6aMl3VYDRrsHt8d7tQP2DN9IWeQMuGNesMXMXz_y9Tj6Wgstj5j9Sbiulas6Sx63ijzekm_feBv_qf0UTFjIid3KRqZhRKdNmKzHOaDd3U0Y_8RN2IRp-zzDNUtNvT4D710kr4iXRYrdp7vB8CG_f0aCvXg1eDKZCSQ4iYbw6iEtBkWGFOnSTnIuikgZS5N4Rh7qmZTZrTrk8byaZ4MmHYy9NNMlFblWuFOOexq-GklVtZXNQm9_73r30LHzGxxJOCF3XKF9pjt-qPzI5ZIFgklNmC5hFCWJmLG258dSGL_ihryjeBy1PaklC-NEScm8OWikg1TPA_oJHeaBEDzknCvBQt0RbiCTIBFtSRFYCzbqZey_VDQd_TK88Xj_x69vwWa9Rn27Y7O_pRf-Jb0IY8x0vZRJmiVo5MNCLxNsyeMVa6Yf6Zfg1Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VywE48NgWsTzKHHpoQYGN42Sd4xZBl3eBXQlOUWI7gIAs2iQHqv74jhNHKoUeuEaTyIrH4-_zjL8B-EKYOPZ44Dtu3FMOZzJ1Ek2-HGuiW8r0g_fMbeST02Aw4odX_pW9x5031e5NSrKK1HXfEb5z6Rqs7Bk9r67RDSWePsWJn7AWTPV_XB_tNQHYM3ojVZIz4I55wSYz3_zIy-3oZS602mL252HYDK6uLLnfLotkW_76R7fxnaNfgDkLObFf-8gifNBZG-abdg5oV3cbZv_SJmzDon2e41crTf3tI_zuI0VFvCgz7D_cjCd3xe0jEuzFy_GDOZlAgpNoBK_usnJc5khMl1aSc17GyniaxDOKUI80mN26Qh5_1v1s0BwH4yjLdSVFrhV-r9o9TZ6NparLyj7BaH9vuDtwbP8GRxJOKBxXaJ_pnh8qP3a5ZIFgUhOmSxmxJJEw1vX8RAoTV9yQ9xRP4q4ntWRhkiopmbcErWyc6WVAP6XNPBCCh5xzJVioe8INZBqkoiuJgXVgs5nG6KmW6YgqeuPx6NWv78BWM0eRXbH5_61X3mW9AdOD4clxdHxwerQKM8xUwFQHNmvQKialXicIUySfrcv-AXYb47Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hkBAceCxUUF5z6KGAAhvHSZzj8lhoKY-WrkRPaWI7LSpk0SY5gPjxjBNHKi09VFwjx3Li8fj7PONvAN4RJk48HviOm4TK4UxmTqrJlhNNdEuZevCeuY18ehYcD_jHK__K1jkt2mz3NiTZ3GkwKk15uXunMluDhO9eugY3e0bbq2s0RImzTxAzCcnQJ3pH304OW2fsGe2ROuAZcMe8YAObL3byfGt6Hhett5v-LHxvB9pkmfzaqcp0Rz78oeH4ii-ZgxkLRbHX2M48jOm8A7NtmQe0q74D079pFnZg3j4v8L2VrN5cgMcekrfEL1WOvZsfw9F1-fMWCQ7j5fDGnFggwUw0QljXeTWsCiQGTCvM-VwlyligxHPyXLc0mP0mcx4vmjo3aI6JcZAXupYo1wr36jJQo3vTUjXpZosw6B9-3T92bF0HRxJ-KB1XaJ_p0I-Un7hcskAwqQnrZYzYk0gZ63p-KoXxN27EQ8XTpOtJLVmUZkpK5r2B8XyY6yVAP6NNPhCCR5xzJVikQ-EGMgsy0ZXEzJZhq53S-K6R74hr2uPx-K9fvwzb7XzFdiUX_2799r9ab8DkxUE__vTh7GQFpphJjKnPcVZhvBxVeo2QTZmuW-t9AlFV7Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Run+Algorithm+for+Solving+the+Continuous+Linear-Quadratic+Optimal+Control+Problem+with+Unseparated+Boundary+Conditions&rft.jtitle=Journal+of+computer+%26+systems+sciences+international&rft.au=Aliev%2C+F.+A.&rft.au=Guseinova%2C+N.+Sh&rft.au=Maharramov%2C+I.+A.&rft.au=Mutallimov%2C+M.+M.&rft.date=2021-01-01&rft.issn=1064-2307&rft.eissn=1555-6530&rft.volume=60&rft.issue=1&rft.spage=48&rft.epage=55&rft_id=info:doi/10.1134%2FS1064230721010020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1064230721010020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-2307&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-2307&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-2307&client=summon