Visual Classification of Wood Knots Using k-Nearest Neighbor and Convolutional Neural Network

Various wood defects occur during tree growing or wood processing. Thus, to use wood practically, it is necessary to objectively assess their quality based on the usage requirement by accurately classifying their defects. However, manual visual grading and species classification may result in differ...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Korean Wood Science and Technology Vol. 47; no. 2; pp. 229 - 238
Main Authors Kim, Hyunbin, Kim, Mingyu, Park, Yonggun, Yang, Sang-Yun, Chung, Hyunwoo, Kwon, Ohkyung, Yeo, Hwanmyeong
Format Journal Article
LanguageEnglish
Published 한국목재공학회 01.03.2019
Subjects
Online AccessGet full text
ISSN1017-0715
2233-7180
2233-7180
DOI10.5658/WOOD.2019.47.2.229

Cover

Abstract Various wood defects occur during tree growing or wood processing. Thus, to use wood practically, it is necessary to objectively assess their quality based on the usage requirement by accurately classifying their defects. However, manual visual grading and species classification may result in differences due to subjective decisions; therefore, computer-vision-based image analysis is required for the objective evaluation of wood quality and the speeding up of wood production. In this study, the SIFT+k-NN and CNN models were used to implement a model that automatically classifies knots and analyze its accuracy. Toward this end, a total of 1,172 knot images in various shapes from five domestic conifers were used for learning and validation. For the SIFT+k-NN model, SIFT technology was used to extract properties from the knot images and k-NN was used for the classification, resulting in the classification with an accuracy of up to 60.53% when k-index was 17. The CNN model comprised 8 convolution layers and 3 hidden layers, and its maximum accuracy was 88.09% after 1205 epoch, which was higher than that of the SIFT+k-NN model. Moreover, if there is a large difference in the number of images by knot types, the SIFT+k-NN tended to show a learning biased toward the knot type with a higher number of images, whereas the CNN model did not show a drastic bias regardless of the difference in the number of images. Therefore, the CNN model showed better performance in knot classification. It is determined that the wood knot classification by the CNN model will show a sufficient accuracy in its practical applicability. KCI Citation Count: 0
AbstractList Various wood defects occur during tree growing or wood processing. Thus, to use wood practically, it is necessary to objectively assess their quality based on the usage requirement by accurately classifying their defects. However, manual visual grading and species classification may result in differences due to subjective decisions; therefore, computer-vision-based image analysis is required for the objective evaluation of wood quality and the speeding up of wood production. In this study, the SIFT+k-NN and CNN models were used to implement a model that automatically classifies knots and analyze its accuracy. Toward this end, a total of 1,172 knot images in various shapes from five domestic conifers were used for learning and validation. For the SIFT+k-NN model, SIFT technology was used to extract properties from the knot images and k-NN was used for the classification, resulting in the classification with an accuracy of up to 60.53% when k-index was 17. The CNN model comprised 8 convolution layers and 3 hidden layers, and its maximum accuracy was 88.09% after 1205 epoch, which was higher than that of the SIFT+k-NN model. Moreover, if there is a large difference in the number of images by knot types, the SIFT+k-NN tended to show a learning biased toward the knot type with a higher number of images, whereas the CNN model did not show a drastic bias regardless of the difference in the number of images. Therefore, the CNN model showed better performance in knot classification. It is determined that the wood knot classification by the CNN model will show a sufficient accuracy in its practical applicability. KCI Citation Count: 0
Author Chung, Hyunwoo
Kwon, Ohkyung
Park, Yonggun
Yeo, Hwanmyeong
Kim, Mingyu
Yang, Sang-Yun
Kim, Hyunbin
Author_xml – sequence: 1
  givenname: Hyunbin
  surname: Kim
  fullname: Kim, Hyunbin
– sequence: 2
  givenname: Mingyu
  surname: Kim
  fullname: Kim, Mingyu
– sequence: 3
  givenname: Yonggun
  surname: Park
  fullname: Park, Yonggun
– sequence: 4
  givenname: Sang-Yun
  surname: Yang
  fullname: Yang, Sang-Yun
– sequence: 5
  givenname: Hyunwoo
  surname: Chung
  fullname: Chung, Hyunwoo
– sequence: 6
  givenname: Ohkyung
  surname: Kwon
  fullname: Kwon, Ohkyung
– sequence: 7
  givenname: Hwanmyeong
  surname: Yeo
  fullname: Yeo, Hwanmyeong
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002449461$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNptkUtPwzAQhC0EEgX6Bzj5yiHBzzg-VuUpqlZCPE7IchK7WA12ZadU_fekLeIAnOaw8-1qZk_AoQ_eAHCOUc4LXl6-zmZXOUFY5kzkJCdEHoABIZRmApfoEAwwwiJDAvNjMEzJVYjiknBS0gF4e3FppVs4bnU_sa7WnQseBgtfQ2jggw9dgs_J-TlcZFOjo0kdnBo3f69ChNo3cBz8Z2hXW6zfMzWruJNuHeLiDBxZ3SYz_NZT8Hxz_TS-yyaz2_vxaJLVhCGZ4aoSRhpGZGGsNQXmBWswlg1DrKJcV9b04z6QxcgUomasIVRqLjmTRjYFPQUX-70-WrWonQra7XQe1CKq0ePTvWJclKKgvZfuvSu_1Ju1blu1jO5Dx43CSG0LVes-utoWqphQRPWF9lS5p-oYUorGqtp1u666qF37g25_8Qclv9Df9_6BvgBHs44M
CitedBy_id crossref_primary_10_1515_hf_2021_0051
Cites_doi 10.1016/j.compag.2016.11.018
10.5658/WOOD.2016.44.6.897
10.5658/WOOD.2017.45.2.202
10.5658/WOOD.2018.46.3.241
10.5658/WOOD.2018.46.3.270
10.5658/WOOD.2018.46.3.278
10.1038/nature14539
10.1142/9789812816955_0005
10.5658/WOOD.2017.45.6.797
10.5120/8146-1937
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
ACYCR
DOI 10.5658/WOOD.2019.47.2.229
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2233-7180
EndPage 238
ExternalDocumentID oai_kci_go_kr_ARTI_4578763
10.5658/wood.2019.47.2.229
10_5658_WOOD_2019_47_2_229
GroupedDBID .UV
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
ADTOC
UNPAY
ACYCR
ID FETCH-LOGICAL-c2409-1bb7e9e4296effe61564d119d404b35abfee9e233f10e67c44d239a59549e9d63
IEDL.DBID UNPAY
ISSN 1017-0715
2233-7180
IngestDate Wed Apr 16 06:39:24 EDT 2025
Tue Aug 19 16:59:59 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
Tue Jul 01 00:37:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2409-1bb7e9e4296effe61564d119d404b35abfee9e233f10e67c44d239a59549e9d63
Notes http://www.jwst.or.kr/past/xml_view.asp?a_key=3664691&n_key=2&v_key=47
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.woodj.org/download/download_pdf?pid=wood-47-2-229
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_4578763
unpaywall_primary_10_5658_wood_2019_47_2_229
crossref_citationtrail_10_5658_WOOD_2019_47_2_229
crossref_primary_10_5658_WOOD_2019_47_2_229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03
PublicationDecade 2010
PublicationTitle Journal of the Korean Wood Science and Technology
PublicationYear 2019
Publisher 한국목재공학회
Publisher_xml – name: 한국목재공학회
References Lee (key2.0220127101403e+13_R8) 2018; 46
Park (key2.0220127101403e+13_R12) 2017; 45
Park (key2.0220127101403e+13_R11) 2018; 46
KS F 2151 (key2.0220127101403e+13_R5) 2014
Tong (key2.0220127101403e+13_R15) 2017; 12
Putri (key2.0220127101403e+13_R13) 2018
Thomas (key2.0220127101403e+13_R14) 2017; 132
Norlander (key2.0220127101403e+13_R10) 2015
Kwon (key2.0220127101403e+13_R4) 2017; 45
Eom (key2.0220127101403e+13_R1) 2018; 46
Kim (key2.0220127101403e+13_R3) 2016; 44
Lampinen (key2.0220127101403e+13_R6) 1998
Mohan (key2.0220127101403e+13_R9) 2012; 51
Hu (key2.0220127101403e+13_R2) 2015
LeCun (key2.0220127101403e+13_R7) 2015; 521
References_xml – volume: 132
  start-page: 71
  year: 2017
  ident: key2.0220127101403e+13_R14
  article-title: An artificial neural network for real-time hardwood lumber grading
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2016.11.018
– volume: 44
  start-page: 897
  issue: 6
  year: 2016
  ident: key2.0220127101403e+13_R3
  article-title: Study on Wood Species Identification for Daeungjeon Hall of Jeonghyesa Temple, Suncheon
  publication-title: Journal of the Korean Wood Science and Technology
  doi: 10.5658/WOOD.2016.44.6.897
– volume: 45
  start-page: 202
  issue: 2
  year: 2017
  ident: key2.0220127101403e+13_R12
  article-title: Possibility of Wood Classification in Korean Softwood Species Using Near-infrared Spectroscopy Based on Their Chemical Compositions
  publication-title: Journal of the Korean Wood Science and Technology
  doi: 10.5658/WOOD.2017.45.2.202
– volume: 46
  start-page: 241
  issue: 3
  year: 2018
  ident: key2.0220127101403e+13_R8
  article-title: Dating Wooden Artifacts Excavated at Imdang-dong Site, Gyeongsan, Korea and Interpreting the Paleoenvironment according to the Wood Identification
  publication-title: Journal of the Korean Wood Science and Technology
  doi: 10.5658/WOOD.2018.46.3.241
– volume: 46
  start-page: 270
  issue: 3
  year: 2018
  ident: key2.0220127101403e+13_R1
  article-title: Wood Species Identification of Documentary Woodblocks of Songok Clan of the Milseong Park, Gyeongju, Korea
  publication-title: Journal of the Korean Wood Science and Technology
  doi: 10.5658/WOOD.2018.46.3.270
– start-page: 702
  volume-title: Wood species recognition based on SIFT keypoint histogram, Image and Signal Processing (CISP)
  year: 2015
  ident: key2.0220127101403e+13_R2
– volume: 46
  start-page: 278
  issue: 3
  year: 2018
  ident: key2.0220127101403e+13_R11
  article-title: Study on Species Identification for Pungnammun Gate (Treasure 308) in Jeonju, Korea
  publication-title: Journal of the Korean Wood Science and Technology
  doi: 10.5658/WOOD.2018.46.3.278
– volume: 12
  start-page: 602
  issue: 3
  year: 2017
  ident: key2.0220127101403e+13_R15
  article-title: Evaluation of feature extraction and selection techniques for the classification of wood defect images
  publication-title: Journal of Engineering and Applied Science
– volume: 521
  start-page: 436
  year: 2015
  ident: key2.0220127101403e+13_R7
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 263
  volume-title: Wooden knot detection using convnet transfer learning
  year: 2015
  ident: key2.0220127101403e+13_R10
– start-page: 35
  year: 1998
  ident: key2.0220127101403e+13_R6
  article-title: Wood surface inspection system based on generic visual features
  publication-title: Industrial Applications of Neural Networks
  doi: 10.1142/9789812816955_0005
– start-page: 47
  volume-title: Object detection and tracking using SIFT-KNN classifier and Yaw-Pitch servo motor control on humanoid robot
  year: 2018
  ident: key2.0220127101403e+13_R13
– volume-title: Visual grading for softwood structural lumber
  year: 2014
  ident: key2.0220127101403e+13_R5
– volume: 45
  start-page: 797
  issue: 6
  year: 2017
  ident: key2.0220127101403e+13_R4
  article-title: Automatic Wood Species Identification of Korean Softwood Based on Convolutional Neural Networks
  publication-title: Journal of the Korean Wood Science and Technology
  doi: 10.5658/WOOD.2017.45.6.797
– volume: 51
  issue: 18
  year: 2012
  ident: key2.0220127101403e+13_R9
  article-title: Wood knot classification using bagging
  publication-title: International Journal of Computer Applications
  doi: 10.5120/8146-1937
SSID ssib031825283
ssib051641553
ssib053377229
ssib007309044
Score 2.0917938
Snippet Various wood defects occur during tree growing or wood processing. Thus, to use wood practically, it is necessary to objectively assess their quality based on...
SourceID nrf
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 229
SubjectTerms 임학
Title Visual Classification of Wood Knots Using k-Nearest Neighbor and Convolutional Neural Network
URI http://www.woodj.org/download/download_pdf?pid=wood-47-2-229
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002449461
UnpaywallVersion publishedVersion
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 목재공학, 2019, 47(2), 215, pp.229-238
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2233-7180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib051641553
  issn: 1017-0715
  databaseCode: M~E
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51twe48BAglpbKQtzAIQ8nqU-oKq0KqFsOLC2HyvIrqOwqWe1mQXDgtzPjZBdQJSS4xHmMLcUz8oztz98API2li02hHXeVr7gQJucoiVOVXFq0HyttWMo-HRcnE_HmIr_YgnVaRUJVEtbkc9jEd8QX32i3uVFzV72co7pIhhPHAE9TOYDtIsdIfAjbk_G7g49hgzOhFbiQwAAdYMZxCI67MzMYwey_oPqE65KRKKM0SkOE-csvDeoFXm-s6rn-9lXPZr-5nOPbcLk-uNMhTabRqjWR_X6dx_G__uYO3OpjUXbQGc9d2PL1Pbj8cLVc4duQLZNwREF1rKnYOdZnb-umXbIANGBTPiYG3GXLxrTAitbEdO3YYVN_6Q0a2yH2j1AEuPl9mBwfvT884X0OBm7R10ueGFN66dFrFQQwKYhbxiWJdCIWJsu1qTx-xh6uktgXpRXCpZnUOe0eeumK7AEM66b2D4GVlS69xRmRd0Qy5zTaic9dIgy6zzjbH0Gy1oCyPUE55cmYKZyokNbU-dnZK0VaU6JUqcLOGsGzTZ15R8_xV-knqFg1tVeKWLWp_NSo6ULh3OG1EjR4FdkInm_0fq1N0tSfbT76N_EduEnPHYptF4btYuUfY1jTmj0YnP442utt-CfruvfC
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wNcgKoglkdlVdzAIQ8nqU-oaqnaIrY9sLQcKsuvoLKrZLWbBcGvZ8bJLqBKSHCJ8xhbimfkGdufvwF4EUsXm0I77ipfcSFMzlESpyq5tGg_VtqwlP1-VJyMxdlVfrUBq7SKhKokrMmXsInviC--0W59o2auejNDdZEMJ44BnqZyE7aKHCPxAWyNRxcHn8IGZ0IrcCGBATrAjOMQHHdnZjCC2X9N9QnXJSNRRmmUhgjzl1_arOd4vbOsZ_r7Nz2d_uZyju_D9ergToc0mUTL1kT2x20ex__6mwdwr49F2UFnPNuw4esduP54s1ji25Atk3BEQXWsqdgl1mfv6qZdsAA0YBM-IgbcRctGtMCK1sR07dhhU3_tDRrbIfaPUAS4-UMYH7_9cHjC-xwM3KKvlzwxpvTSo9cqCGBSELeMSxLpRCxMlmtTefyMPVwlsS9KK4RLM6lz2j300hXZIxjUTe0fAysrXXqLMyLviGTOabQTn7tEGHSfcbY_hGSlAWV7gnLKkzFVOFEhranL8_MjRVpTolSpws4awst1nVlHz_FX6T1UrJrYG0Ws2lR-btRkrnDucKoEDV5FNoRXa73fapM09WebT_5N_CncpecOxfYMBu186Z9jWNOa3d56fwIhufaR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Classification+of+Wood+Knots+Using+k-Nearest+Neighbor+and+Convolutional+Neural+Network&rft.jtitle=%EB%AA%A9%EC%9E%AC%EA%B3%B5%ED%95%99%2C+47%282%29&rft.au=%EA%B9%80%ED%98%84%EB%B9%88&rft.au=%EA%B9%80%EB%AF%BC%EA%B7%9C&rft.au=%EB%B0%95%EC%9A%A9%EA%B1%B4&rft.au=%EC%96%91%EC%83%81%EC%9C%A4&rft.date=2019-03-01&rft.pub=%ED%95%9C%EA%B5%AD%EB%AA%A9%EC%9E%AC%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=1017-0715&rft.eissn=2233-7180&rft.spage=229&rft.epage=238&rft_id=info:doi/10.5658%2FWOOD.2019.47.2.229&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_4578763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-0715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-0715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-0715&client=summon