Runoff prediction based on a VMD-LSTM model considering the decomposition error
For increasing the forecasting accuracy of runoff, a combined prediction model composed of the variational mode decomposition (VMD) and long short-term memory network (LSTM) is investigated in our manuscript. Firstly, data from the runoff is decomposed into three modal components via the VMD algorit...
Saved in:
Published in | Journal of physics. Conference series Vol. 2491; no. 1; pp. 12017 - 12025 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-6588 1742-6596 |
DOI | 10.1088/1742-6596/2491/1/012017 |
Cover
Abstract | For increasing the forecasting accuracy of runoff, a combined prediction model composed of the variational mode decomposition (VMD) and long short-term memory network (LSTM) is investigated in our manuscript. Firstly, data from the runoff is decomposed into three modal components via the VMD algorithm, for reducing the complexity of the original data. In addition, decomposition error is also been considered in this paper, and the hidden information in the series is extracted. Three subsequences and the decomposition error are handled by the LSTM method, respectively. Superimposing the prediction results, the prediction result of the runoff is thus derived. Experimental analysis is carried out, and a comparison of the VMD-LSTM model and other algorithmic indicates that the model constructed in our manuscript is more valid for predicting the runoff. |
---|---|
AbstractList | For increasing the forecasting accuracy of runoff, a combined prediction model composed of the variational mode decomposition (VMD) and long short-term memory network (LSTM) is investigated in our manuscript. Firstly, data from the runoff is decomposed into three modal components via the VMD algorithm, for reducing the complexity of the original data. In addition, decomposition error is also been considered in this paper, and the hidden information in the series is extracted. Three subsequences and the decomposition error are handled by the LSTM method, respectively. Superimposing the prediction results, the prediction result of the runoff is thus derived. Experimental analysis is carried out, and a comparison of the VMD-LSTM model and other algorithmic indicates that the model constructed in our manuscript is more valid for predicting the runoff. |
Author | Yang, Jing Liao, He Ma, Ya-Rong Feng, Yu-Xin Li, Hao |
Author_xml | – sequence: 1 givenname: Ya-Rong surname: Ma fullname: Ma, Ya-Rong organization: Development division of state grid Gansu electric power company (Economic and technological research institute) , China – sequence: 2 givenname: Jing surname: Yang fullname: Yang, Jing organization: Development division of state grid Gansu electric power company (Economic and technological research institute) , China – sequence: 3 givenname: Hao surname: Li fullname: Li, Hao organization: Development division of state grid Gansu electric power company (Economic and technological research institute) , China – sequence: 4 givenname: He surname: Liao fullname: Liao, He organization: Development division of state grid Gansu electric power company (Economic and technological research institute) , China – sequence: 5 givenname: Yu-Xin surname: Feng fullname: Feng, Yu-Xin organization: Development division of state grid Gansu electric power company (Economic and technological research institute) , China |
BookMark | eNqFkEtPwzAQhC1UJNrCb8AS5xC_YsdHVJ5Sq0pQuFqJvYFUbRzs9MC_JyGoHNnLjrQzs9I3Q5PGN4DQJSXXlOR5SpVgicy0TJnQNKUpoYxQdYKmx8vkqPP8DM1i3BLC-1FTtH4-NL6qcBvA1barfYPLIoLDvSjw2-o2Wb5sVnjvHeyw9U2sHYS6ecfdB2AH1u9bH-ufHITgwzk6rYpdhIvfPUev93ebxWOyXD88LW6WiWVcq0QpYSkUGqwQWeYkEVQBt1wyEFISsLl2GVGlrUpOmGAENNWlYhXPZEEc53N0Nfa2wX8eIHZm6w-h6V8allNCtdBycKnRZYOPMUBl2lDvi_BlKDEDPTNwMQMjM9Az1Iz0-iQfk7Vv_6r_S30DVO9xng |
Cites_doi | 10.1016/j.energy.2018.06.083 10.1016/j.jhydrol.2018.01.015 10.1016/j.jhydrol.2011.06.015 10.54302/mausam.v62i1.4711 10.1007/s11269-022-03091-7 10.1016/j.enconman.2018.04.099 10.1016/j.jclepro.2019.03.036 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1088/1742-6596/2491/1/012017 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1742-6596 |
ExternalDocumentID | 10_1088_1742_6596_2491_1_012017 JPCS_2491_1_012017 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX CITATION OVT PHGZM PHGZT 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2397-774c1ea9ec4455d60417e3c362e4660ec89d507bcfb302420e919b72f356a0d33 |
IEDL.DBID | IOP |
ISSN | 1742-6588 |
IngestDate | Fri Jul 25 06:54:50 EDT 2025 Tue Jul 01 01:35:40 EDT 2025 Wed Aug 21 03:33:41 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2397-774c1ea9ec4455d60417e3c362e4660ec89d507bcfb302420e919b72f356a0d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/2491/1/012017 |
PQID | 2810194963 |
PQPubID | 4998668 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2810194963 iop_journals_10_1088_1742_6596_2491_1_012017 crossref_primary_10_1088_1742_6596_2491_1_012017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230401 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 20230401 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2023 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Zhao (JPCS_2491_1_012017bib10) 2020; 37 Liu (JPCS_2491_1_012017bib9) 2017; 24 Kumar (JPCS_2491_1_012017bib13) 2019 Li (JPCS_2491_1_012017bib1) 2022; 36 Sundermeyer (JPCS_2491_1_012017bib14) 2012 Giulia (JPCS_2491_1_012017bib8) 2011; 406 Yang (JPCS_2491_1_012017bib7) 2019; 222 Santhosh (JPCS_2491_1_012017bib12) 2018; 168 Jian-Ling (JPCS_2491_1_012017bib11) 2014; 63 Jiang (JPCS_2491_1_012017bib2) 2018; 158 Vivekanandan (JPCS_2491_1_012017bib4) 2011; 62 Liang (JPCS_2491_1_012017bib5) 2020; 51 Tan (JPCS_2491_1_012017bib6) 2018; 567 Yue (JPCS_2491_1_012017bib3) 2020; 22 |
References_xml | – volume: 158 start-page: 693 year: 2018 ident: JPCS_2491_1_012017bib2 article-title: Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application publication-title: Energy doi: 10.1016/j.energy.2018.06.083 – volume: 567 start-page: 767 year: 2018 ident: JPCS_2491_1_012017bib6 article-title: An adaptive middle and long-term runoff forecast model using the EEMD-ANN hybrid approach publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2018.01.015 – volume: 406 start-page: 199 year: 2011 ident: JPCS_2491_1_012017bib8 article-title: Impact of EMD decomposition and random initialization of weights in ANN hindcasting of daily stream flow series: An empirical examination[J] publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2011.06.015 – start-page: 549 year: 2019 ident: JPCS_2491_1_012017bib13 – volume: 62 start-page: 11 year: 2011 ident: JPCS_2491_1_012017bib4 article-title: Prediction of annual runoff using artificial neural network and regression approaches publication-title: Mausam doi: 10.54302/mausam.v62i1.4711 – volume: 36 start-page: 1431 year: 2022 ident: JPCS_2491_1_012017bib1 article-title: A Runoff Prediction Model Based on Nonhomogeneous Markov Chain publication-title: Water Resources Management doi: 10.1007/s11269-022-03091-7 – volume: 22 start-page: 1283 year: 2020 ident: JPCS_2491_1_012017bib3 article-title: Mid-to long-term runoff prediction by combining the deep belief network and partial least-squares regression publication-title: Journal of Hydro informatics – volume: 63 year: 2014 ident: JPCS_2491_1_012017bib11 article-title: Noise-assisted signal decomposition method based on complex empirical mode decomposition publication-title: Acta Physica Sinica – volume: 168 start-page: 482 year: 2018 ident: JPCS_2491_1_012017bib12 article-title: Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction publication-title: Energy conversion and management doi: 10.1016/j.enconman.2018.04.099 – volume: 24 start-page: 273 year: 2017 ident: JPCS_2491_1_012017bib9 article-title: The EEMD-ARIMA prediction of runoff at the mountain pass of Manas River publication-title: Research of Soil and Water Conservation – volume: 37 start-page: 47 year: 2020 ident: JPCS_2491_1_012017bib10 article-title: A Method of River Flow Prediction Based on VMD-BP Model publication-title: Journal of Yangtze River Scientific Research Institute – volume: 51 start-page: 112 year: 2020 ident: JPCS_2491_1_012017bib5 article-title: Runoff prediction based on multiple hybrid models publication-title: Journal of Hydraulic Engineering – volume: 222 start-page: 942 year: 2019 ident: JPCS_2491_1_012017bib7 article-title: Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2019.03.036 – year: 2012 ident: JPCS_2491_1_012017bib14 |
SSID | ssj0033337 |
Score | 2.3285978 |
Snippet | For increasing the forecasting accuracy of runoff, a combined prediction model composed of the variational mode decomposition (VMD) and long short-term memory... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 12017 |
SubjectTerms | Algorithms Decomposition Errors Physics Prediction models Runoff |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV05T8MwFLZ6CIkFcYpCQR4YiXLYceIBIY5WFaIFlRZ1sxLbkViSkLb_H7_EUQckyBTF8fLZed9z3vEhdOP5SaY5V05GwtihfiCdOEuhgFkplhpOSuru-tMZmyzpyypcddCsrYWBtMrWJtaGWhUS_pG7AXSi4tTsl_vy2wHVKIiuthIaiZVWUHd1i7Eu6gegqtxD_cfR7H3e2mZirqgpkQwcw71xm_FljoH2GWeumei7vgtlpbWO2Y6vul9F-cto10w0PkQH1oXED82aH6GOzo_RXp3KKdcn6G2-zYssw2UFMRjAHQNVKWxuEvw5fXZePxZTXEvgYGn1Og2BYeMKYqUhx9wmcmFdVUV1ipbj0eJp4ljZBEcGxrsw_jKVvk64lpSGoWIe9SNNpGEqTRnztIy5Ml5gKrOUAEN7mvs8jQKzWizxFCFnqJcXuT5HGJRIFAROQwUHQcJplOqEpSwhmdYxGSCvBUeUTXcMUUe141gAngLwFICn8EWD5wDdGhCF_VLW_78-bNHezdnthYu_hy_RPsjDN5k2Q9TbVFt9ZZyITXptd8YPQKW9mQ priority: 102 providerName: ProQuest |
Title | Runoff prediction based on a VMD-LSTM model considering the decomposition error |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/2491/1/012017 https://www.proquest.com/docview/2810194963 |
Volume | 2491 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB51QZW4FEqLymvlA0eyG8eOYx-hZUFVl0UUWm5R_MgFaXcVdi_8embyEC9VqCKHyIfYSsbOfJ_lb2YADmJelMEYH5Ui1ZHkiYt0aSmA2XtlEZOKOrv--FydXcufN-nN01iY2bx1_QNsNomCGxO2gjg9RA6dRCo1aohbBz7kQ4r_5FkPVoXG7QUF8U0uOm8s8MqaoEjqpHWn8fr3QM8Qqodv8cpN19gzWgfXvXUjObkdLBd24O5fJHR832dtwKeWmrKjpsdn-BCmm_Cxloi6uy8wuVxOZ2XJ5hWd7dB8MoJAz7BRsD_jH9Gv31djVpfWYa6tA4rAyJBiMh9Iu94KxFioqln1Fa5HJ1ffz6K2HEPkEmQtyMOl46EwwUmZpl7FkmdBOETAIJWKg9PGI7u0rrSCkD8OhhubJbgKVBF7IbZgZTqbhm_AqMKJpwPZ1NMGUxiZ2VAoqwpRhqDFNsTdFOTzJutGXp-Wa52TnXKyU052ynne2GkbDtGyefsH3r39-F43p499Esp2ZiT6pJ3_G20X1qgMfaPo2YOVRbUM-0hWFrYPPT067cPq8cn5xWWfgCPt1ysU7xPx9wEgNNuh |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUKCMEFsYqy-gA3omZx3PiAEFvV0gUEBXEzie1IXJqSFiF-jm9jJnHUAxKcyCnKcsjzxG_sWR4hR64Xp0YI7aRBGDnM85UTpQkWMGvNE-CkuOiu3x_w9iO7eQ6fa-SrqoXBtMpqTiwmap0p3CNv-NiJSjCwl7Pxm4OqURhdrSQ0YiutoE-LFmO2sKNrPj9gCTc57VzBeB_7fut6eNl2rMqAo3wgY3AvmfJMLIxiLAw1d5nXNIGCid0wzl2jIqHBaUpUmgRIaK4RnkiaPnwcj12NG6JAAQvgdgTwVy1cXA_u7isuCOBoliWZvgNcH1UZZrDstNcEb8AKyGt4DSxjLXTTZvw495qNf5BEwXytVbJiXVZ6XtrYGqmZ0TpZLFJH1WSD3N6_j7I0peMcYz44zhSpUVM4ielT_8rpPQz7tJDcocrqgwJhUnA9qTaY024Tx6jJ8yzfJI__AuAWmR9lI7NNKCqfaAzUhhoXnoFgzcTEPOFxkBoTBXXiVuDIcdmNQxZR9CiSiKdEPCXiKT1Z4lknJwCitH_m5O_H9yq0Z-_MbG_n99uHZKk97PdkrzPo7pJllKYvs3z2yPw0fzf74MBMkwNrJZS8_LdhfgOEvvio |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BVateoLRF5dHWB45kE8eOYx8RdAWUBdRCxc2KH-mh0u4q7F766zuTB4iiqqqakw-x5cw4M58138wA7Ge8qqMxIalFoRPJc5_o2lECcwjKoU-q2ur6kwt1ciPPbovbFRjf58LM5r3pH-GwKxTcibAnxOkUMXSeqMKoFK8OPOUp5X_yMp2HehWeFaIoqYXD6eXVYJEFPmWXGEkTtR54Xn9e7JGXWsWdPDHVrf8Zb8D3Yecd7eTHaLlwI__zt6KO__9pr2C9h6jssJu1CStx-hqet1RRf_cGLr8sp7O6ZvOGYjykV0auMDAcVOzb5Dg5_3o9YW2LHeb7fqDoIBlCTRYicdh7ohiLTTNr3sLN-NP10UnSt2VIfI7oBfG49DxWJnopiyKoTPIyCo-eMEqlsui1CYgyna-dIASQRcONK3M8DarKghBbsDadTeM7YNTpJFBgtgh00RRGli5WyqlK1DFqsQ3ZoAY776pv2DZqrrUlWVmSlSVZWW47WW3DAUrX9n_i3d9f3xv0-jAnp6pnRqJt2vm31T7Ci6vjsT0_vfi8Cy-pM31H8tmDtUWzjO8Rvyzch_Zw_gKuKtyr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Runoff+prediction+based+on+a+VMD-LSTM+model+considering+the+decomposition+error&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Ma%2C+Ya-Rong&rft.au=Yang%2C+Jing&rft.au=Li%2C+Hao&rft.au=Liao%2C+He&rft.date=2023-04-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2491&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F2491%2F1%2F012017&rft.externalDocID=JPCS_2491_1_012017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |