Runoff prediction based on a VMD-LSTM model considering the decomposition error

For increasing the forecasting accuracy of runoff, a combined prediction model composed of the variational mode decomposition (VMD) and long short-term memory network (LSTM) is investigated in our manuscript. Firstly, data from the runoff is decomposed into three modal components via the VMD algorit...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 2491; no. 1; pp. 12017 - 12025
Main Authors Ma, Ya-Rong, Yang, Jing, Li, Hao, Liao, He, Feng, Yu-Xin
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.04.2023
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
DOI10.1088/1742-6596/2491/1/012017

Cover

Abstract For increasing the forecasting accuracy of runoff, a combined prediction model composed of the variational mode decomposition (VMD) and long short-term memory network (LSTM) is investigated in our manuscript. Firstly, data from the runoff is decomposed into three modal components via the VMD algorithm, for reducing the complexity of the original data. In addition, decomposition error is also been considered in this paper, and the hidden information in the series is extracted. Three subsequences and the decomposition error are handled by the LSTM method, respectively. Superimposing the prediction results, the prediction result of the runoff is thus derived. Experimental analysis is carried out, and a comparison of the VMD-LSTM model and other algorithmic indicates that the model constructed in our manuscript is more valid for predicting the runoff.
AbstractList For increasing the forecasting accuracy of runoff, a combined prediction model composed of the variational mode decomposition (VMD) and long short-term memory network (LSTM) is investigated in our manuscript. Firstly, data from the runoff is decomposed into three modal components via the VMD algorithm, for reducing the complexity of the original data. In addition, decomposition error is also been considered in this paper, and the hidden information in the series is extracted. Three subsequences and the decomposition error are handled by the LSTM method, respectively. Superimposing the prediction results, the prediction result of the runoff is thus derived. Experimental analysis is carried out, and a comparison of the VMD-LSTM model and other algorithmic indicates that the model constructed in our manuscript is more valid for predicting the runoff.
Author Yang, Jing
Liao, He
Ma, Ya-Rong
Feng, Yu-Xin
Li, Hao
Author_xml – sequence: 1
  givenname: Ya-Rong
  surname: Ma
  fullname: Ma, Ya-Rong
  organization: Development division of state grid Gansu electric power company (Economic and technological research institute) , China
– sequence: 2
  givenname: Jing
  surname: Yang
  fullname: Yang, Jing
  organization: Development division of state grid Gansu electric power company (Economic and technological research institute) , China
– sequence: 3
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  organization: Development division of state grid Gansu electric power company (Economic and technological research institute) , China
– sequence: 4
  givenname: He
  surname: Liao
  fullname: Liao, He
  organization: Development division of state grid Gansu electric power company (Economic and technological research institute) , China
– sequence: 5
  givenname: Yu-Xin
  surname: Feng
  fullname: Feng, Yu-Xin
  organization: Development division of state grid Gansu electric power company (Economic and technological research institute) , China
BookMark eNqFkEtPwzAQhC1UJNrCb8AS5xC_YsdHVJ5Sq0pQuFqJvYFUbRzs9MC_JyGoHNnLjrQzs9I3Q5PGN4DQJSXXlOR5SpVgicy0TJnQNKUpoYxQdYKmx8vkqPP8DM1i3BLC-1FTtH4-NL6qcBvA1barfYPLIoLDvSjw2-o2Wb5sVnjvHeyw9U2sHYS6ecfdB2AH1u9bH-ufHITgwzk6rYpdhIvfPUev93ebxWOyXD88LW6WiWVcq0QpYSkUGqwQWeYkEVQBt1wyEFISsLl2GVGlrUpOmGAENNWlYhXPZEEc53N0Nfa2wX8eIHZm6w-h6V8allNCtdBycKnRZYOPMUBl2lDvi_BlKDEDPTNwMQMjM9Az1Iz0-iQfk7Vv_6r_S30DVO9xng
Cites_doi 10.1016/j.energy.2018.06.083
10.1016/j.jhydrol.2018.01.015
10.1016/j.jhydrol.2011.06.015
10.54302/mausam.v62i1.4711
10.1007/s11269-022-03091-7
10.1016/j.enconman.2018.04.099
10.1016/j.jclepro.2019.03.036
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/2491/1/012017
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2491_1_012017
JPCS_2491_1_012017
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2397-774c1ea9ec4455d60417e3c362e4660ec89d507bcfb302420e919b72f356a0d33
IEDL.DBID IOP
ISSN 1742-6588
IngestDate Fri Jul 25 06:54:50 EDT 2025
Tue Jul 01 01:35:40 EDT 2025
Wed Aug 21 03:33:41 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2397-774c1ea9ec4455d60417e3c362e4660ec89d507bcfb302420e919b72f356a0d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/2491/1/012017
PQID 2810194963
PQPubID 4998668
PageCount 9
ParticipantIDs proquest_journals_2810194963
iop_journals_10_1088_1742_6596_2491_1_012017
crossref_primary_10_1088_1742_6596_2491_1_012017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 20230401
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Zhao (JPCS_2491_1_012017bib10) 2020; 37
Liu (JPCS_2491_1_012017bib9) 2017; 24
Kumar (JPCS_2491_1_012017bib13) 2019
Li (JPCS_2491_1_012017bib1) 2022; 36
Sundermeyer (JPCS_2491_1_012017bib14) 2012
Giulia (JPCS_2491_1_012017bib8) 2011; 406
Yang (JPCS_2491_1_012017bib7) 2019; 222
Santhosh (JPCS_2491_1_012017bib12) 2018; 168
Jian-Ling (JPCS_2491_1_012017bib11) 2014; 63
Jiang (JPCS_2491_1_012017bib2) 2018; 158
Vivekanandan (JPCS_2491_1_012017bib4) 2011; 62
Liang (JPCS_2491_1_012017bib5) 2020; 51
Tan (JPCS_2491_1_012017bib6) 2018; 567
Yue (JPCS_2491_1_012017bib3) 2020; 22
References_xml – volume: 158
  start-page: 693
  year: 2018
  ident: JPCS_2491_1_012017bib2
  article-title: Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.083
– volume: 567
  start-page: 767
  year: 2018
  ident: JPCS_2491_1_012017bib6
  article-title: An adaptive middle and long-term runoff forecast model using the EEMD-ANN hybrid approach
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2018.01.015
– volume: 406
  start-page: 199
  year: 2011
  ident: JPCS_2491_1_012017bib8
  article-title: Impact of EMD decomposition and random initialization of weights in ANN hindcasting of daily stream flow series: An empirical examination[J]
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2011.06.015
– start-page: 549
  year: 2019
  ident: JPCS_2491_1_012017bib13
– volume: 62
  start-page: 11
  year: 2011
  ident: JPCS_2491_1_012017bib4
  article-title: Prediction of annual runoff using artificial neural network and regression approaches
  publication-title: Mausam
  doi: 10.54302/mausam.v62i1.4711
– volume: 36
  start-page: 1431
  year: 2022
  ident: JPCS_2491_1_012017bib1
  article-title: A Runoff Prediction Model Based on Nonhomogeneous Markov Chain
  publication-title: Water Resources Management
  doi: 10.1007/s11269-022-03091-7
– volume: 22
  start-page: 1283
  year: 2020
  ident: JPCS_2491_1_012017bib3
  article-title: Mid-to long-term runoff prediction by combining the deep belief network and partial least-squares regression
  publication-title: Journal of Hydro informatics
– volume: 63
  year: 2014
  ident: JPCS_2491_1_012017bib11
  article-title: Noise-assisted signal decomposition method based on complex empirical mode decomposition
  publication-title: Acta Physica Sinica
– volume: 168
  start-page: 482
  year: 2018
  ident: JPCS_2491_1_012017bib12
  article-title: Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction
  publication-title: Energy conversion and management
  doi: 10.1016/j.enconman.2018.04.099
– volume: 24
  start-page: 273
  year: 2017
  ident: JPCS_2491_1_012017bib9
  article-title: The EEMD-ARIMA prediction of runoff at the mountain pass of Manas River
  publication-title: Research of Soil and Water Conservation
– volume: 37
  start-page: 47
  year: 2020
  ident: JPCS_2491_1_012017bib10
  article-title: A Method of River Flow Prediction Based on VMD-BP Model
  publication-title: Journal of Yangtze River Scientific Research Institute
– volume: 51
  start-page: 112
  year: 2020
  ident: JPCS_2491_1_012017bib5
  article-title: Runoff prediction based on multiple hybrid models
  publication-title: Journal of Hydraulic Engineering
– volume: 222
  start-page: 942
  year: 2019
  ident: JPCS_2491_1_012017bib7
  article-title: Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: A case study in China
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.03.036
– year: 2012
  ident: JPCS_2491_1_012017bib14
SSID ssj0033337
Score 2.3285978
Snippet For increasing the forecasting accuracy of runoff, a combined prediction model composed of the variational mode decomposition (VMD) and long short-term memory...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 12017
SubjectTerms Algorithms
Decomposition
Errors
Physics
Prediction models
Runoff
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV05T8MwFLZ6CIkFcYpCQR4YiXLYceIBIY5WFaIFlRZ1sxLbkViSkLb_H7_EUQckyBTF8fLZed9z3vEhdOP5SaY5V05GwtihfiCdOEuhgFkplhpOSuru-tMZmyzpyypcddCsrYWBtMrWJtaGWhUS_pG7AXSi4tTsl_vy2wHVKIiuthIaiZVWUHd1i7Eu6gegqtxD_cfR7H3e2mZirqgpkQwcw71xm_FljoH2GWeumei7vgtlpbWO2Y6vul9F-cto10w0PkQH1oXED82aH6GOzo_RXp3KKdcn6G2-zYssw2UFMRjAHQNVKWxuEvw5fXZePxZTXEvgYGn1Og2BYeMKYqUhx9wmcmFdVUV1ipbj0eJp4ljZBEcGxrsw_jKVvk64lpSGoWIe9SNNpGEqTRnztIy5Ml5gKrOUAEN7mvs8jQKzWizxFCFnqJcXuT5HGJRIFAROQwUHQcJplOqEpSwhmdYxGSCvBUeUTXcMUUe141gAngLwFICn8EWD5wDdGhCF_VLW_78-bNHezdnthYu_hy_RPsjDN5k2Q9TbVFt9ZZyITXptd8YPQKW9mQ
  priority: 102
  providerName: ProQuest
Title Runoff prediction based on a VMD-LSTM model considering the decomposition error
URI https://iopscience.iop.org/article/10.1088/1742-6596/2491/1/012017
https://www.proquest.com/docview/2810194963
Volume 2491
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB51QZW4FEqLymvlA0eyG8eOYx-hZUFVl0UUWm5R_MgFaXcVdi_8embyEC9VqCKHyIfYSsbOfJ_lb2YADmJelMEYH5Ui1ZHkiYt0aSmA2XtlEZOKOrv--FydXcufN-nN01iY2bx1_QNsNomCGxO2gjg9RA6dRCo1aohbBz7kQ4r_5FkPVoXG7QUF8U0uOm8s8MqaoEjqpHWn8fr3QM8Qqodv8cpN19gzWgfXvXUjObkdLBd24O5fJHR832dtwKeWmrKjpsdn-BCmm_Cxloi6uy8wuVxOZ2XJ5hWd7dB8MoJAz7BRsD_jH9Gv31djVpfWYa6tA4rAyJBiMh9Iu94KxFioqln1Fa5HJ1ffz6K2HEPkEmQtyMOl46EwwUmZpl7FkmdBOETAIJWKg9PGI7u0rrSCkD8OhhubJbgKVBF7IbZgZTqbhm_AqMKJpwPZ1NMGUxiZ2VAoqwpRhqDFNsTdFOTzJutGXp-Wa52TnXKyU052ynne2GkbDtGyefsH3r39-F43p499Esp2ZiT6pJ3_G20X1qgMfaPo2YOVRbUM-0hWFrYPPT067cPq8cn5xWWfgCPt1ysU7xPx9wEgNNuh
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUKCMEFsYqy-gA3omZx3PiAEFvV0gUEBXEzie1IXJqSFiF-jm9jJnHUAxKcyCnKcsjzxG_sWR4hR64Xp0YI7aRBGDnM85UTpQkWMGvNE-CkuOiu3x_w9iO7eQ6fa-SrqoXBtMpqTiwmap0p3CNv-NiJSjCwl7Pxm4OqURhdrSQ0YiutoE-LFmO2sKNrPj9gCTc57VzBeB_7fut6eNl2rMqAo3wgY3AvmfJMLIxiLAw1d5nXNIGCid0wzl2jIqHBaUpUmgRIaK4RnkiaPnwcj12NG6JAAQvgdgTwVy1cXA_u7isuCOBoliWZvgNcH1UZZrDstNcEb8AKyGt4DSxjLXTTZvw495qNf5BEwXytVbJiXVZ6XtrYGqmZ0TpZLFJH1WSD3N6_j7I0peMcYz44zhSpUVM4ielT_8rpPQz7tJDcocrqgwJhUnA9qTaY024Tx6jJ8yzfJI__AuAWmR9lI7NNKCqfaAzUhhoXnoFgzcTEPOFxkBoTBXXiVuDIcdmNQxZR9CiSiKdEPCXiKT1Z4lknJwCitH_m5O_H9yq0Z-_MbG_n99uHZKk97PdkrzPo7pJllKYvs3z2yPw0fzf74MBMkwNrJZS8_LdhfgOEvvio
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BVateoLRF5dHWB45kE8eOYx8RdAWUBdRCxc2KH-mh0u4q7F766zuTB4iiqqqakw-x5cw4M58138wA7Ge8qqMxIalFoRPJc5_o2lECcwjKoU-q2ur6kwt1ciPPbovbFRjf58LM5r3pH-GwKxTcibAnxOkUMXSeqMKoFK8OPOUp5X_yMp2HehWeFaIoqYXD6eXVYJEFPmWXGEkTtR54Xn9e7JGXWsWdPDHVrf8Zb8D3Yecd7eTHaLlwI__zt6KO__9pr2C9h6jssJu1CStx-hqet1RRf_cGLr8sp7O6ZvOGYjykV0auMDAcVOzb5Dg5_3o9YW2LHeb7fqDoIBlCTRYicdh7ohiLTTNr3sLN-NP10UnSt2VIfI7oBfG49DxWJnopiyKoTPIyCo-eMEqlsui1CYgyna-dIASQRcONK3M8DarKghBbsDadTeM7YNTpJFBgtgh00RRGli5WyqlK1DFqsQ3ZoAY776pv2DZqrrUlWVmSlSVZWW47WW3DAUrX9n_i3d9f3xv0-jAnp6pnRqJt2vm31T7Ci6vjsT0_vfi8Cy-pM31H8tmDtUWzjO8Rvyzch_Zw_gKuKtyr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Runoff+prediction+based+on+a+VMD-LSTM+model+considering+the+decomposition+error&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Ma%2C+Ya-Rong&rft.au=Yang%2C+Jing&rft.au=Li%2C+Hao&rft.au=Liao%2C+He&rft.date=2023-04-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2491&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F2491%2F1%2F012017&rft.externalDocID=JPCS_2491_1_012017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon