SOLUTION OF MULTILAYER PROBLEMS FOR THE HEAT EQUATION BY THE FOURIER METHOD

The multilayer problems for the heat equation arise in many areas of heat and mass transfer applications. There are two main approaches to finding exact solutions to multilayer diffusion problems: separation of variables and integral transformations. The difficulty of applying the Laplace transform...

Full description

Saved in:
Bibliographic Details
Published inVestnik KazNU. Serii͡a︡ matematika, mekhanika, informatika Vol. 127; no. 3
Main Authors Barmagambetov, Sagynysh, Koilyshov, Umbetkul
Format Journal Article
LanguageEnglish
Published 30.09.2025
Online AccessGet full text
ISSN1563-0277
2617-4871
2617-4871
DOI10.26577/JMMCS202512733

Cover

Abstract The multilayer problems for the heat equation arise in many areas of heat and mass transfer applications. There are two main approaches to finding exact solutions to multilayer diffusion problems: separation of variables and integral transformations. The difficulty of applying the Laplace transform method is redoubled by the difficulty of finding the inverse transform. The inverse Laplace transform is often performed numerically. The most popular analytical approach to multilayer problems for the heat equation is the method of separation of variables. It is very important to obtain analytical solutions to such problems as they provide a higher level of understanding of the solution behavior and can be used for comparative analysis of numerical solutions. In this paper, the solution of the multilayer problem for the heat equation by the Fourier method is substantiated. The solution of the initial-boundary value problem for the heat equation with discontinuous coefficients by the method of separation of variables is reduced to the corresponding non-self-adjoint spectral Sturm-Liouville eigenvalue problem. Such eigenvalue problems do not belong to the ordinary type of Sturm-Liouville problems due to the discontinuity of the heat conductivity coefficients. In addition, the non-self-adjointness of the corresponding spectral problem also complicates the solution of the problem. Using the replacement, the problem is reduced to a self-adjoint spectral problem and the eigenfunctions of this problem forming an orthonormal basis are constructed. The considered problem models the process of heat propagation of the temperature field in a thin rod of finite length, consisting of several sections with different thermal-physical characteristics. In this problem, in addition to the boundary conditions of the Sturm type, the conditions of conjugation at the point of contact of different media are specified. The existence and uniqueness of the classical solution of the considered multilayer problem for the heat conduction equation are proved.
AbstractList The multilayer problems for the heat equation arise in many areas of heat and mass transfer applications. There are two main approaches to finding exact solutions to multilayer diffusion problems: separation of variables and integral transformations. The difficulty of applying the Laplace transform method is redoubled by the difficulty of finding the inverse transform. The inverse Laplace transform is often performed numerically. The most popular analytical approach to multilayer problems for the heat equation is the method of separation of variables. It is very important to obtain analytical solutions to such problems as they provide a higher level of understanding of the solution behavior and can be used for comparative analysis of numerical solutions. In this paper, the solution of the multilayer problem for the heat equation by the Fourier method is substantiated. The solution of the initial-boundary value problem for the heat equation with discontinuous coefficients by the method of separation of variables is reduced to the corresponding non-self-adjoint spectral Sturm-Liouville eigenvalue problem. Such eigenvalue problems do not belong to the ordinary type of Sturm-Liouville problems due to the discontinuity of the heat conductivity coefficients. In addition, the non-self-adjointness of the corresponding spectral problem also complicates the solution of the problem. Using the replacement, the problem is reduced to a self-adjoint spectral problem and the eigenfunctions of this problem forming an orthonormal basis are constructed. The considered problem models the process of heat propagation of the temperature field in a thin rod of finite length, consisting of several sections with different thermal-physical characteristics. In this problem, in addition to the boundary conditions of the Sturm type, the conditions of conjugation at the point of contact of different media are specified. The existence and uniqueness of the classical solution of the considered multilayer problem for the heat conduction equation are proved.
Author Koilyshov, Umbetkul
Barmagambetov, Sagynysh
Author_xml – sequence: 1
  givenname: Sagynysh
  orcidid: 0009-0001-9403-0205
  surname: Barmagambetov
  fullname: Barmagambetov, Sagynysh
– sequence: 2
  givenname: Umbetkul
  orcidid: 0000-0003-1752-7848
  surname: Koilyshov
  fullname: Koilyshov, Umbetkul
BookMark eNplkM9LwzAYhoNMcM6dveYfqMuXNElz7GZqq63Rrj3sVGKWgmO_aBXZf-_YRBAv3wsf7_Menms02O62HqFbIHdUcCknj0Uxm1NCOVDJ2AUaUgEyCCMJAzQELlhAqJRXaNz3K0IIVUTRKByip7nJ6yozz9gkuKjzKsvjhS7xS2mmuS7mODElrlKNUx1XWL_W8ak8XZyeianL7NgudJWa-xt02dp178c_OUJ1oqtZGuTmIZvFeeAoiz4CziNKhXKEhRyIBM-EcJaBcAS4pW1rw2UYgVVWeYho64_XgnJKeAJvYslGiJx3P7d7e_iy63Wz7943tjs0QJqTj2a12bj-18cRmZwR1-36vvPtf-KvQfYNsBVcOQ
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.26577/JMMCS202512733
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2617-4871
ExternalDocumentID 10.26577/jmmcs202512733
10_26577_JMMCS202512733
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c238t-5582269c03451071e366ca316c015a2ffa4d481a9a9e182fee18a19c96e01b6d3
IEDL.DBID UNPAY
ISSN 1563-0277
2617-4871
IngestDate Wed Oct 29 12:19:10 EDT 2025
Wed Oct 29 21:18:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c238t-5582269c03451071e366ca316c015a2ffa4d481a9a9e182fee18a19c96e01b6d3
ORCID 0009-0001-9403-0205
0000-0003-1752-7848
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.26577/jmmcs202512733
ParticipantIDs unpaywall_primary_10_26577_jmmcs202512733
crossref_primary_10_26577_JMMCS202512733
PublicationCentury 2000
PublicationDate 2025-09-30
PublicationDateYYYYMMDD 2025-09-30
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-30
  day: 30
PublicationDecade 2020
PublicationTitle Vestnik KazNU. Serii͡a︡ matematika, mekhanika, informatika
PublicationYear 2025
SSID ssj0002909284
ssib050739816
ssib036266250
ssib048817391
Score 2.3073678
Snippet The multilayer problems for the heat equation arise in many areas of heat and mass transfer applications. There are two main approaches to finding exact...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Title SOLUTION OF MULTILAYER PROBLEMS FOR THE HEAT EQUATION BY THE FOURIER METHOD
URI https://doi.org/10.26577/jmmcs202512733
UnpaywallVersion publishedVersion
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 2617-4871
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib048817391
  issn: 1563-0277
  databaseCode: AMVHM
  dateStart: 20210401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2617-4871
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050739816
  issn: 1563-0277
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LToNAFL3RdqEufBvro5mFC11QOwWmZYkKoRXEtJDYVTMzHRY-sNE2Rhd-u5eCjVUXuiGEnJDhMnDOnce5AEfcwLTBsISWaQsN_35Ma1FMVpKWjmxnZgWRso3CwRXzYqNzY94UJknZXpgv8_cNhDZPbx8e5HMjU8JItPoilJmJorsE5fjq2u5P3VCLmcisjBzysYYSnOYmPr_dYY5_libpiL--8Pv7L6TiroH32Zx8LcldbTIWNfn2zanxD-1dh9VCWBI77wkbsKDSTVgJZq6sz1tw2Qv9OBuSIqFLgtiP2r7dd7rkuhue-U7QI5gRkshziOfYEXFQ7E7BZ_3pRTeMu21EB07khRfbELtOdO5pRTEFTSIrjzXTRCnALFnXDfwMm1TpjEmuUyZREPBGknBjaLQot7ilMOdIFB45taTFVJ0KNtR3oJQ-pmoXCCYVSV0NW1JIaTSFQhg-sBImFWLIqVGB488QD0a5Z8YAc41pfAadIDjvzeJTgZPZK_iJnY_l3j-w-7CcnecLOw6gNH6aqENUD2NRhcXg3akW_ecDGWG2eA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFJ0oLNSFbyO-MgsXuigytB3osmBJwZYSaBNYkZnpdKGAREqMfr23tBBQF7ppmuakmd5Oe86dx7kI3TIN0gbN4EqiLRT4-1GlSiBZiaoqsJ2eFERKNgq7bWoHWquv9zOTpGQvzNr8fRmglYfn8VjMyokSBqJVt1Ge6iC6cygftDvmYOGGms1EJmXkgI8VkOAkNfH57Q4b_LMzn0zZxzsbjdZIpXGA7GVz0rUkL8V5zIvi85tT4x_ae4j2M2GJzbQnHKEtOTlGe-7KlXV2gp56nhMkQ1LYa2A3cPymYw6sLu50vZpjuT0MGSH2bQvbluljC8TuAlwbLC42vKDbBLRr-bb3eIqChuXXbSUrpqAIYOVY0XWQAtQQJVWDz7BCpEqpYCqhAgQBK0cR00KtSpjBDAk5RyThyIghDCpLhNNQPUO5yetEniMMSUVUkmFVcCG0CpcAgweWXCech4xoBXS3DPFwmnpmDCHXWMRn2HLdem8VnwK6X72Cn9jNWF78A3uJdpPzdGHHFcrFb3N5Deoh5jdZz_kC1xy1Rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SOLUTION+OF+MULTILAYER+PROBLEMS+FOR+THE+HEAT+EQUATION+BY+THE+FOURIER+METHOD&rft.jtitle=Vestnik+KazNU.+Serii%CD%A1a%EF%B8%A1+matematika%2C+mekhanika%2C+informatika&rft.au=Barmagambetov%2C+Sagynysh&rft.au=Koilyshov%2C+Umbetkul&rft.date=2025-09-30&rft.issn=1563-0277&rft.eissn=2617-4871&rft.volume=127&rft.issue=3&rft_id=info:doi/10.26577%2FJMMCS202512733&rft.externalDBID=n%2Fa&rft.externalDocID=10_26577_JMMCS202512733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1563-0277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1563-0277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1563-0277&client=summon