Exploring the latent space distribution of a graph autoencoder trained on 3D models of modernist architecture

Building on previous research in generative graph machine learning in architecture, this paper investigates how data generation and preparation can change the distribution of a model’s latent space and thus its generative qualities. Therefore, we first present and discuss our previous approach of ap...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of architectural computing Vol. 23; no. 3; pp. 742 - 752
Main Authors Bauscher, Erik, Wortmann, Thomas
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.09.2025
Subjects
Online AccessGet full text
ISSN1478-0771
2048-3988
DOI10.1177/14780771251353797

Cover

Abstract Building on previous research in generative graph machine learning in architecture, this paper investigates how data generation and preparation can change the distribution of a model’s latent space and thus its generative qualities. Therefore, we first present and discuss our previous approach of applying generative graph machine learning in architecture by sampling the latent space of a graph autoencoder trained with the augmentations of four examples of modernist buildings. We then present a new method of data generation for modernist buildings in the style of architect Mies van der Rohe, which produces a large range of 3D building models with great geometric variety. Trained on the new dataset, the graph autoencoder shows a more continuous latent space, confirmed by visual comparison and by three spatial analysis algorithms that quantitatively assess the spatial structure of the different latent spaces.
AbstractList Building on previous research in generative graph machine learning in architecture, this paper investigates how data generation and preparation can change the distribution of a model’s latent space and thus its generative qualities. Therefore, we first present and discuss our previous approach of applying generative graph machine learning in architecture by sampling the latent space of a graph autoencoder trained with the augmentations of four examples of modernist buildings. We then present a new method of data generation for modernist buildings in the style of architect Mies van der Rohe, which produces a large range of 3D building models with great geometric variety. Trained on the new dataset, the graph autoencoder shows a more continuous latent space, confirmed by visual comparison and by three spatial analysis algorithms that quantitatively assess the spatial structure of the different latent spaces.
Author Bauscher, Erik
Wortmann, Thomas
Author_xml – sequence: 1
  givenname: Erik
  orcidid: 0009-0007-6980-0873
  surname: Bauscher
  fullname: Bauscher, Erik
  email: erikbauscher5@googlemail.com
  organization: Computing in Architecture, Institute for Computational Design and Construction
– sequence: 2
  givenname: Thomas
  orcidid: 0000-0002-5604-1624
  surname: Wortmann
  fullname: Wortmann, Thomas
  organization: Computing in Architecture, Institute for Computational Design and Construction
BookMark eNp9kM1qwzAQhEVJoUnaB-hNL-BUa9mWfCxp-gOBXtqzkeRV4uBIRpKhffvapLdCT7vsfjMMsyIL5x0Scg9sAyDEAxRCMiEgL4GXXNTiiixzVsiM11IuyHL-ZzNwQ1YxnhjjJYBckvPua-h96NyBpiPSXiV0icZBGaRtF1Po9Jg676i3VNFDUMORqjF5dMa3GGgKqnPY0ongT_Q83fo4s_MW3GRAVTDHLqFJY8Bbcm1VH_Hud67J5_PuY_ua7d9f3raP-8zkXKaMC62r1nBdKSNK0DYvCmAF8LaEylqGuVTS5IJXgktdVFgDlyCsrLUGK4GvCVx8TfAxBrTNELqzCt8NsGbuq_nT16TZXDRRHbA5-TG4KeI_gh-WP22u
Cites_doi 10.2307/1931034
10.20944/preprints202410.2397.v1
10.52842/conf.caadria.2020.2.659
10.48550/arXiv.2301.08871
10.1145/800186.810616
10.1145/3355089.3356556
10.1145/3517337
10.1109/CVPR52688.2022.01042
10.1145/3571724
10.52842/conf.caadria.2024.1.159
10.48550/arXiv.1706.02216
10.1007/978-3-031-01588-5
10.1007/978-3-030-90625-2_17
10.1016/0041-5553(67)90144-9
10.1016/j.foar.2024.10.001
10.1109/ICCVW60793.2023.00313
10.52842/conf.caadria.2021.1.081
10.1007/s10032-014-0236-5
10.52842/conf.caadria.2024.1.221
10.48550/arXiv.2412.17957
10.1007/s44223-022-00013-w,
ContentType Journal Article
Copyright The Author(s) 2025
Copyright_xml – notice: The Author(s) 2025
DBID AFRWT
AAYXX
CITATION
DOI 10.1177/14780771251353797
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: AFRWT
  name: Sage Journals Online Open Access
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
EISSN 2048-3988
EndPage 752
ExternalDocumentID 10_1177_14780771251353797
10.1177_14780771251353797
GroupedDBID -TM
-TN
.4S
.DC
0R~
29J
4.4
54M
5GY
AABPG
AADUE
AAIKC
AAJPV
AAMNW
AAOTM
AAPII
AAQXI
AARIX
AATAA
AATZT
ABAWP
ABCCA
ABCJG
ABEIX
ABFNE
ABFWQ
ABGWC
ABIDT
ABJNI
ABKRH
ABLUO
ABPNF
ABQXT
ABRHV
ABUBZ
ABUJY
ACDXX
ACGFS
ACOFE
ACOXC
ACROE
ACSIQ
ACUAV
ACUIR
ACXKE
ADEBD
ADGDL
ADMLS
ADRRZ
ADVBO
AEDFJ
AEPTA
AEQLS
AESZF
AEWDL
AEWHI
AEXNY
AFEET
AFKRG
AFMOU
AFQAA
AFRWT
AFUIA
AGKLV
AGNHF
AGWFA
AHDMH
AJGYC
AJHME
AJUZI
AJVBE
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ARTOV
AUTPY
AYAKG
BBRGL
BDDNI
BPACV
CFDXU
CKLRP
CS3
DH.
DOPDO
DV7
EBS
EDO
EJD
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
I-F
IL9
J8X
K.F
MET
MK~
ML~
MV1
O9-
ROL
SASJQ
SAUOL
SCNPE
SFC
SPV
TUS
ZPPRI
ZRKOI
AAYXX
CITATION
ID FETCH-LOGICAL-c238t-37bb6dc3b6ac751bf24410413d516ff0e28a8c2736738b46e913817f89bb1f813
IEDL.DBID AFRWT
ISSN 1478-0771
IngestDate Wed Oct 01 05:14:04 EDT 2025
Sun Sep 21 05:41:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords graph-based architecture
spatial analysis
data augmentation
latent space analysis
graph machine learning
Generative 3D architecture
graph autoencoder
Mies van der Rohe
latent walk
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c238t-37bb6dc3b6ac751bf24410413d516ff0e28a8c2736738b46e913817f89bb1f813
ORCID 0000-0002-5604-1624
0009-0007-6980-0873
OpenAccessLink https://journals.sagepub.com/doi/full/10.1177/14780771251353797?utm_source=summon&utm_medium=discovery-provider
PageCount 11
ParticipantIDs crossref_primary_10_1177_14780771251353797
sage_journals_10_1177_14780771251353797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250900
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
PublicationTitle International journal of architectural computing
PublicationYear 2025
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Rasoulzadeh, Bank, Kovacic 2024
Wu, Fu, Tang 2019; 38
de las Heras, Terrades, Robles 2015; 18
Jarrahi, Memariani, Guha 2023; 66
Clark, Evans 1954; 35
Li, Rao, Pan 2023
Li, Zhang, Du 2025; 14
Ramsey 2024; 30
Aroyo, Lease, Paritosh 2022; 29
Sobol 1967; 7
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_10_2
Alexander C (e_1_3_3_13_2) 1977
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – year: 2024
  article-title: ArchComplete: autoregressive 3D architectural design generation with hierarchical diffusion-based upsampling
– year: 2023
  article-title: Ti-MAE: self-supervised masked time series autoencoders
– volume: 30
  start-page: 12
  year: 2024
  article-title: Deep generative models for 3D content creation: a comprehensive survey of architectures
  publication-title: Chall Emerg Tre
– volume: 66
  start-page: 84
  year: 2023
  end-page: 92
  article-title: The principles of data-centric AI
  publication-title: Commun ACM
– volume: 38
  start-page: 1
  year: 2019
  end-page: 12
  article-title: Data-driven interior plan generation for residential buildings
  publication-title: ACM Trans Graph
– volume: 18
  start-page: 15
  year: 2015
  end-page: 30
  article-title: CVC-FP and SGT: a new database for structural floor plan analysis and its groundtruthing tool
  publication-title: Int J Doc Anal Recognit
– volume: 29
  start-page: 66
  year: 2022
  end-page: 69
  article-title: Data excellence for AI: why should you care?
  publication-title: Interactions
– volume: 35
  start-page: 445
  year: 1954
  end-page: 453
  article-title: Distance to nearest neighbor as a measure of spatial relationships in populations
  publication-title: Ecology
– volume: 14
  start-page: 759
  year: 2025
  end-page: 783
  article-title: Generative AI models for different steps in architectural design: a literature review
  publication-title: Front Archit Res
– volume: 7
  start-page: 86
  year: 1967
  end-page: 112
  article-title: On the distribution of points in a cube and the approximate evaluation of integrals
  publication-title: USSR Comput Math Math Phys
– ident: e_1_3_3_25_2
  doi: 10.2307/1931034
– ident: e_1_3_3_26_2
– ident: e_1_3_3_6_2
  doi: 10.20944/preprints202410.2397.v1
– ident: e_1_3_3_8_2
  doi: 10.52842/conf.caadria.2020.2.659
– ident: e_1_3_3_3_2
– ident: e_1_3_3_23_2
  doi: 10.48550/arXiv.2301.08871
– ident: e_1_3_3_27_2
  doi: 10.1145/800186.810616
– ident: e_1_3_3_21_2
  doi: 10.1145/3355089.3356556
– ident: e_1_3_3_19_2
  doi: 10.1145/3517337
– ident: e_1_3_3_4_2
  doi: 10.1109/CVPR52688.2022.01042
– ident: e_1_3_3_18_2
  doi: 10.1145/3571724
– ident: e_1_3_3_2_2
  doi: 10.52842/conf.caadria.2024.1.159
– ident: e_1_3_3_14_2
– ident: e_1_3_3_17_2
  doi: 10.48550/arXiv.1706.02216
– ident: e_1_3_3_15_2
  doi: 10.1007/978-3-031-01588-5
– ident: e_1_3_3_9_2
  doi: 10.1007/978-3-030-90625-2_17
– ident: e_1_3_3_24_2
  doi: 10.1016/0041-5553(67)90144-9
– ident: e_1_3_3_5_2
  doi: 10.1016/j.foar.2024.10.001
– ident: e_1_3_3_11_2
  doi: 10.1109/ICCVW60793.2023.00313
– volume-title: A pattern language
  year: 1977
  ident: e_1_3_3_13_2
– ident: e_1_3_3_22_2
  doi: 10.52842/conf.caadria.2021.1.081
– ident: e_1_3_3_20_2
  doi: 10.1007/s10032-014-0236-5
– ident: e_1_3_3_16_2
– ident: e_1_3_3_12_2
  doi: 10.52842/conf.caadria.2024.1.221
– ident: e_1_3_3_10_2
  doi: 10.48550/arXiv.2412.17957
– ident: e_1_3_3_7_2
  doi: 10.1007/s44223-022-00013-w,
SSID ssj0035118
Score 2.3236191
Snippet Building on previous research in generative graph machine learning in architecture, this paper investigates how data generation and preparation can change the...
SourceID crossref
sage
SourceType Index Database
Publisher
StartPage 742
Title Exploring the latent space distribution of a graph autoencoder trained on 3D models of modernist architecture
URI https://journals.sagepub.com/doi/full/10.1177/14780771251353797
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2048-3988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035118
  issn: 1478-0771
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zexFB_MT5MfIgCEJd07RN-yRDHUOcD7rh3kqTJk-2Fdc--N97l7UyUcHXcjTtcbm75O5-P0LOY81TZb2fdI3jKy90ZCiMo4Xv8kgK7sU4Ozx9DCdz_34RLDqkbGdhGg0ur7CtCr7IOmvc3XgbPWyKjEPmi8gVAoMzD7iIxXVd5cnqurtl1cAnWJ-ucyxtK2yI_HDa8bYN0kPo8qBLeqPx08usdd5YVrPTcz4Cz8IKTSH010W_hbK1PjAbmsY7ZLvJKeloZQS7pKOLPbI1WisR7JP8q9mOQspHXyHFLCoK7kRpmiF4bsN7RUtDU2phrGlaVyXiXMKfUEsloTMKEvyWWv6cJcrmlksNXkDXSxIHZD6-m91MnIZqwVEQsytwM1KGmeIyTJUImDQQ9eGgxngWsNAYV3tRGilIdZAkVPqhjhlC-5kolpKZiPFD0i3KQh8RysEohIbzrRZw-tJBrN2UaY8pxlQmjd8nl63WkrcVokbCGtDxHyrukwvUa9Kaxd-Sx_-WPCGbHpL42kaxU9Kt3mt9BplFJQdgDbfTh-dBYxWfS17JVg
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90e1AE8RPnZx4EQag0Tdq0j0MdU7c9yIa-lSZNnlwnW_f_e8myMVHB92sod8199O5-P4DrTLNCOe8nQxNwFSWBTIQJtOAhS6VgUWZ3h_uDpDviz-_xu5-qtLswXoOzOztWhW_knPXqdts9cS7SUAgbl1nMRCY2oclj9LkNaLY7r2_DpR-2HTK3CMcthiw-4Xuavx7yLSqtjXS5KNPZg12fHpL2wp77sKGrA9hpr_3tP4Txam6OYPZGPjBbrGqCnkFpUlocXE9hRSaGFMQhUpNiXk8sZGWpp8SxQuiSoAR7II4KZ2Zlx44WDQ8g692FIxh1Hof33cCzJgQKw2-NHkPKpFRMJoUSMZUGAzjWXJSVMU2MCXWUFqnCrMXyfUqe6IxalD6TZlJSk1J2DI1qUukTIAztKzSWqlpgIaXjTIcF1RFVlKpSGt6C26XW8s8FOEZOPX74DxW34MbqNV9a-G_J039LXsFWd9jv5b2nwcsZbEeWm9fNf51Do57O9QUmDLW89F_GF2lmtS8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6gYggfuL8zIMgCNWmaZv2cTjL_BoiG-6tNOnlyXVj6_5_L1kmExV8v4ZySe4jd_f7EXKZAi-UtX7S116ogtiTsdAeiNDniRQ8SM3s8Esv7g7Cx2E0dA9uZhbGaXB2Y9qq8I-ssTa3e1LqW1djvGWhSHwhjG_mERepWCdNTGsEnupmO3t77y9tsamS2WG40ODI4heurvnrIt8800pbl_U02Q7ZdiEibS_2dJesQbVHttorL_77ZPTVO0cxgqMfGDFWNUXroICWBgvX0VjRsaYFtajUtJjXYwNbWcKUWmYIKClK8A61dDgzIzuy1Gi4AF2tMByQQXbfv-t6jjnBU-iCa7QaUsal4jIulIiY1OjEMe9ivIxYrLUPQVIkCiMXw_kpwxhSZpD6dJJKyXTC-CFpVOMKjgjluMcCMF0FgckURCn4BYOAKcZUKXXYItdLreWTBUBGzhyG-A8Vt8iV0Wu-3OW_JY__LXlBNl47Wf780Hs6IZuBoee1LWCnpFFP53CGMUMtz93B-ARf-bZI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+latent+space+distribution+of+a+graph+autoencoder+trained+on+3D+models+of+modernist+architecture&rft.jtitle=International+journal+of+architectural+computing&rft.au=Bauscher%2C+Erik&rft.au=Wortmann%2C+Thomas&rft.date=2025-09-01&rft.issn=1478-0771&rft.eissn=2048-3988&rft.volume=23&rft.issue=3&rft.spage=742&rft.epage=752&rft_id=info:doi/10.1177%2F14780771251353797&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_14780771251353797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-0771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-0771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-0771&client=summon