Exploring the latent space distribution of a graph autoencoder trained on 3D models of modernist architecture
Building on previous research in generative graph machine learning in architecture, this paper investigates how data generation and preparation can change the distribution of a model’s latent space and thus its generative qualities. Therefore, we first present and discuss our previous approach of ap...
Saved in:
Published in | International journal of architectural computing Vol. 23; no. 3; pp. 742 - 752 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1478-0771 2048-3988 |
DOI | 10.1177/14780771251353797 |
Cover
Abstract | Building on previous research in generative graph machine learning in architecture, this paper investigates how data generation and preparation can change the distribution of a model’s latent space and thus its generative qualities. Therefore, we first present and discuss our previous approach of applying generative graph machine learning in architecture by sampling the latent space of a graph autoencoder trained with the augmentations of four examples of modernist buildings. We then present a new method of data generation for modernist buildings in the style of architect Mies van der Rohe, which produces a large range of 3D building models with great geometric variety. Trained on the new dataset, the graph autoencoder shows a more continuous latent space, confirmed by visual comparison and by three spatial analysis algorithms that quantitatively assess the spatial structure of the different latent spaces. |
---|---|
AbstractList | Building on previous research in generative graph machine learning in architecture, this paper investigates how data generation and preparation can change the distribution of a model’s latent space and thus its generative qualities. Therefore, we first present and discuss our previous approach of applying generative graph machine learning in architecture by sampling the latent space of a graph autoencoder trained with the augmentations of four examples of modernist buildings. We then present a new method of data generation for modernist buildings in the style of architect Mies van der Rohe, which produces a large range of 3D building models with great geometric variety. Trained on the new dataset, the graph autoencoder shows a more continuous latent space, confirmed by visual comparison and by three spatial analysis algorithms that quantitatively assess the spatial structure of the different latent spaces. |
Author | Bauscher, Erik Wortmann, Thomas |
Author_xml | – sequence: 1 givenname: Erik orcidid: 0009-0007-6980-0873 surname: Bauscher fullname: Bauscher, Erik email: erikbauscher5@googlemail.com organization: Computing in Architecture, Institute for Computational Design and Construction – sequence: 2 givenname: Thomas orcidid: 0000-0002-5604-1624 surname: Wortmann fullname: Wortmann, Thomas organization: Computing in Architecture, Institute for Computational Design and Construction |
BookMark | eNp9kM1qwzAQhEVJoUnaB-hNL-BUa9mWfCxp-gOBXtqzkeRV4uBIRpKhffvapLdCT7vsfjMMsyIL5x0Scg9sAyDEAxRCMiEgL4GXXNTiiixzVsiM11IuyHL-ZzNwQ1YxnhjjJYBckvPua-h96NyBpiPSXiV0icZBGaRtF1Po9Jg676i3VNFDUMORqjF5dMa3GGgKqnPY0ongT_Q83fo4s_MW3GRAVTDHLqFJY8Bbcm1VH_Hud67J5_PuY_ua7d9f3raP-8zkXKaMC62r1nBdKSNK0DYvCmAF8LaEylqGuVTS5IJXgktdVFgDlyCsrLUGK4GvCVx8TfAxBrTNELqzCt8NsGbuq_nT16TZXDRRHbA5-TG4KeI_gh-WP22u |
Cites_doi | 10.2307/1931034 10.20944/preprints202410.2397.v1 10.52842/conf.caadria.2020.2.659 10.48550/arXiv.2301.08871 10.1145/800186.810616 10.1145/3355089.3356556 10.1145/3517337 10.1109/CVPR52688.2022.01042 10.1145/3571724 10.52842/conf.caadria.2024.1.159 10.48550/arXiv.1706.02216 10.1007/978-3-031-01588-5 10.1007/978-3-030-90625-2_17 10.1016/0041-5553(67)90144-9 10.1016/j.foar.2024.10.001 10.1109/ICCVW60793.2023.00313 10.52842/conf.caadria.2021.1.081 10.1007/s10032-014-0236-5 10.52842/conf.caadria.2024.1.221 10.48550/arXiv.2412.17957 10.1007/s44223-022-00013-w, |
ContentType | Journal Article |
Copyright | The Author(s) 2025 |
Copyright_xml | – notice: The Author(s) 2025 |
DBID | AFRWT AAYXX CITATION |
DOI | 10.1177/14780771251353797 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: AFRWT name: Sage Journals Online Open Access url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Architecture |
EISSN | 2048-3988 |
EndPage | 752 |
ExternalDocumentID | 10_1177_14780771251353797 10.1177_14780771251353797 |
GroupedDBID | -TM -TN .4S .DC 0R~ 29J 4.4 54M 5GY AABPG AADUE AAIKC AAJPV AAMNW AAOTM AAPII AAQXI AARIX AATAA AATZT ABAWP ABCCA ABCJG ABEIX ABFNE ABFWQ ABGWC ABIDT ABJNI ABKRH ABLUO ABPNF ABQXT ABRHV ABUBZ ABUJY ACDXX ACGFS ACOFE ACOXC ACROE ACSIQ ACUAV ACUIR ACXKE ADEBD ADGDL ADMLS ADRRZ ADVBO AEDFJ AEPTA AEQLS AESZF AEWDL AEWHI AEXNY AFEET AFKRG AFMOU AFQAA AFRWT AFUIA AGKLV AGNHF AGWFA AHDMH AJGYC AJHME AJUZI AJVBE ALMA_UNASSIGNED_HOLDINGS ARCSS ARTOV AUTPY AYAKG BBRGL BDDNI BPACV CFDXU CKLRP CS3 DH. DOPDO DV7 EBS EDO EJD FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 I-F IL9 J8X K.F MET MK~ ML~ MV1 O9- ROL SASJQ SAUOL SCNPE SFC SPV TUS ZPPRI ZRKOI AAYXX CITATION |
ID | FETCH-LOGICAL-c238t-37bb6dc3b6ac751bf24410413d516ff0e28a8c2736738b46e913817f89bb1f813 |
IEDL.DBID | AFRWT |
ISSN | 1478-0771 |
IngestDate | Wed Oct 01 05:14:04 EDT 2025 Sun Sep 21 05:41:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | graph-based architecture spatial analysis data augmentation latent space analysis graph machine learning Generative 3D architecture graph autoencoder Mies van der Rohe latent walk |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c238t-37bb6dc3b6ac751bf24410413d516ff0e28a8c2736738b46e913817f89bb1f813 |
ORCID | 0000-0002-5604-1624 0009-0007-6980-0873 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/14780771251353797?utm_source=summon&utm_medium=discovery-provider |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1177_14780771251353797 sage_journals_10_1177_14780771251353797 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250900 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 9 year: 2025 text: 20250900 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England |
PublicationTitle | International journal of architectural computing |
PublicationYear | 2025 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Rasoulzadeh, Bank, Kovacic 2024 Wu, Fu, Tang 2019; 38 de las Heras, Terrades, Robles 2015; 18 Jarrahi, Memariani, Guha 2023; 66 Clark, Evans 1954; 35 Li, Rao, Pan 2023 Li, Zhang, Du 2025; 14 Ramsey 2024; 30 Aroyo, Lease, Paritosh 2022; 29 Sobol 1967; 7 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_10_2 Alexander C (e_1_3_3_13_2) 1977 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – year: 2024 article-title: ArchComplete: autoregressive 3D architectural design generation with hierarchical diffusion-based upsampling – year: 2023 article-title: Ti-MAE: self-supervised masked time series autoencoders – volume: 30 start-page: 12 year: 2024 article-title: Deep generative models for 3D content creation: a comprehensive survey of architectures publication-title: Chall Emerg Tre – volume: 66 start-page: 84 year: 2023 end-page: 92 article-title: The principles of data-centric AI publication-title: Commun ACM – volume: 38 start-page: 1 year: 2019 end-page: 12 article-title: Data-driven interior plan generation for residential buildings publication-title: ACM Trans Graph – volume: 18 start-page: 15 year: 2015 end-page: 30 article-title: CVC-FP and SGT: a new database for structural floor plan analysis and its groundtruthing tool publication-title: Int J Doc Anal Recognit – volume: 29 start-page: 66 year: 2022 end-page: 69 article-title: Data excellence for AI: why should you care? publication-title: Interactions – volume: 35 start-page: 445 year: 1954 end-page: 453 article-title: Distance to nearest neighbor as a measure of spatial relationships in populations publication-title: Ecology – volume: 14 start-page: 759 year: 2025 end-page: 783 article-title: Generative AI models for different steps in architectural design: a literature review publication-title: Front Archit Res – volume: 7 start-page: 86 year: 1967 end-page: 112 article-title: On the distribution of points in a cube and the approximate evaluation of integrals publication-title: USSR Comput Math Math Phys – ident: e_1_3_3_25_2 doi: 10.2307/1931034 – ident: e_1_3_3_26_2 – ident: e_1_3_3_6_2 doi: 10.20944/preprints202410.2397.v1 – ident: e_1_3_3_8_2 doi: 10.52842/conf.caadria.2020.2.659 – ident: e_1_3_3_3_2 – ident: e_1_3_3_23_2 doi: 10.48550/arXiv.2301.08871 – ident: e_1_3_3_27_2 doi: 10.1145/800186.810616 – ident: e_1_3_3_21_2 doi: 10.1145/3355089.3356556 – ident: e_1_3_3_19_2 doi: 10.1145/3517337 – ident: e_1_3_3_4_2 doi: 10.1109/CVPR52688.2022.01042 – ident: e_1_3_3_18_2 doi: 10.1145/3571724 – ident: e_1_3_3_2_2 doi: 10.52842/conf.caadria.2024.1.159 – ident: e_1_3_3_14_2 – ident: e_1_3_3_17_2 doi: 10.48550/arXiv.1706.02216 – ident: e_1_3_3_15_2 doi: 10.1007/978-3-031-01588-5 – ident: e_1_3_3_9_2 doi: 10.1007/978-3-030-90625-2_17 – ident: e_1_3_3_24_2 doi: 10.1016/0041-5553(67)90144-9 – ident: e_1_3_3_5_2 doi: 10.1016/j.foar.2024.10.001 – ident: e_1_3_3_11_2 doi: 10.1109/ICCVW60793.2023.00313 – volume-title: A pattern language year: 1977 ident: e_1_3_3_13_2 – ident: e_1_3_3_22_2 doi: 10.52842/conf.caadria.2021.1.081 – ident: e_1_3_3_20_2 doi: 10.1007/s10032-014-0236-5 – ident: e_1_3_3_16_2 – ident: e_1_3_3_12_2 doi: 10.52842/conf.caadria.2024.1.221 – ident: e_1_3_3_10_2 doi: 10.48550/arXiv.2412.17957 – ident: e_1_3_3_7_2 doi: 10.1007/s44223-022-00013-w, |
SSID | ssj0035118 |
Score | 2.3236191 |
Snippet | Building on previous research in generative graph machine learning in architecture, this paper investigates how data generation and preparation can change the... |
SourceID | crossref sage |
SourceType | Index Database Publisher |
StartPage | 742 |
Title | Exploring the latent space distribution of a graph autoencoder trained on 3D models of modernist architecture |
URI | https://journals.sagepub.com/doi/full/10.1177/14780771251353797 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2048-3988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035118 issn: 1478-0771 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zexFB_MT5MfIgCEJd07RN-yRDHUOcD7rh3kqTJk-2Fdc--N97l7UyUcHXcjTtcbm75O5-P0LOY81TZb2fdI3jKy90ZCiMo4Xv8kgK7sU4Ozx9DCdz_34RLDqkbGdhGg0ur7CtCr7IOmvc3XgbPWyKjEPmi8gVAoMzD7iIxXVd5cnqurtl1cAnWJ-ucyxtK2yI_HDa8bYN0kPo8qBLeqPx08usdd5YVrPTcz4Cz8IKTSH010W_hbK1PjAbmsY7ZLvJKeloZQS7pKOLPbI1WisR7JP8q9mOQspHXyHFLCoK7kRpmiF4bsN7RUtDU2phrGlaVyXiXMKfUEsloTMKEvyWWv6cJcrmlksNXkDXSxIHZD6-m91MnIZqwVEQsytwM1KGmeIyTJUImDQQ9eGgxngWsNAYV3tRGilIdZAkVPqhjhlC-5kolpKZiPFD0i3KQh8RysEohIbzrRZw-tJBrN2UaY8pxlQmjd8nl63WkrcVokbCGtDxHyrukwvUa9Kaxd-Sx_-WPCGbHpL42kaxU9Kt3mt9BplFJQdgDbfTh-dBYxWfS17JVg |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90e1AE8RPnZx4EQag0Tdq0j0MdU7c9yIa-lSZNnlwnW_f_e8myMVHB92sod8199O5-P4DrTLNCOe8nQxNwFSWBTIQJtOAhS6VgUWZ3h_uDpDviz-_xu5-qtLswXoOzOztWhW_knPXqdts9cS7SUAgbl1nMRCY2oclj9LkNaLY7r2_DpR-2HTK3CMcthiw-4Xuavx7yLSqtjXS5KNPZg12fHpL2wp77sKGrA9hpr_3tP4Txam6OYPZGPjBbrGqCnkFpUlocXE9hRSaGFMQhUpNiXk8sZGWpp8SxQuiSoAR7II4KZ2Zlx44WDQ8g692FIxh1Hof33cCzJgQKw2-NHkPKpFRMJoUSMZUGAzjWXJSVMU2MCXWUFqnCrMXyfUqe6IxalD6TZlJSk1J2DI1qUukTIAztKzSWqlpgIaXjTIcF1RFVlKpSGt6C26XW8s8FOEZOPX74DxW34MbqNV9a-G_J039LXsFWd9jv5b2nwcsZbEeWm9fNf51Do57O9QUmDLW89F_GF2lmtS8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6gYggfuL8zIMgCNWmaZv2cTjL_BoiG-6tNOnlyXVj6_5_L1kmExV8v4ZySe4jd_f7EXKZAi-UtX7S116ogtiTsdAeiNDniRQ8SM3s8Esv7g7Cx2E0dA9uZhbGaXB2Y9qq8I-ssTa3e1LqW1djvGWhSHwhjG_mERepWCdNTGsEnupmO3t77y9tsamS2WG40ODI4heurvnrIt8800pbl_U02Q7ZdiEibS_2dJesQbVHttorL_77ZPTVO0cxgqMfGDFWNUXroICWBgvX0VjRsaYFtajUtJjXYwNbWcKUWmYIKClK8A61dDgzIzuy1Gi4AF2tMByQQXbfv-t6jjnBU-iCa7QaUsal4jIulIiY1OjEMe9ivIxYrLUPQVIkCiMXw_kpwxhSZpD6dJJKyXTC-CFpVOMKjgjluMcCMF0FgckURCn4BYOAKcZUKXXYItdLreWTBUBGzhyG-A8Vt8iV0Wu-3OW_JY__LXlBNl47Wf780Hs6IZuBoee1LWCnpFFP53CGMUMtz93B-ARf-bZI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+latent+space+distribution+of+a+graph+autoencoder+trained+on+3D+models+of+modernist+architecture&rft.jtitle=International+journal+of+architectural+computing&rft.au=Bauscher%2C+Erik&rft.au=Wortmann%2C+Thomas&rft.date=2025-09-01&rft.issn=1478-0771&rft.eissn=2048-3988&rft.volume=23&rft.issue=3&rft.spage=742&rft.epage=752&rft_id=info:doi/10.1177%2F14780771251353797&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_14780771251353797 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-0771&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-0771&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-0771&client=summon |