Financial Risk Early Warning System for Colleges and Universities Based on Big Data Analysis
At present, financial risk early warning systems in colleges and universities lack the ability to process real-time data flow, making it difficult to capture short-term risk fluctuations in a timely manner and limiting their accuracy in short-term forecasting. This study builds a real-time data pipe...
Saved in:
| Published in | International journal of grid and high performance computing Vol. 17; no. 1; pp. 1 - 22 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Hershey
IGI Global
25.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1938-0259 1938-0267 1938-0267 |
| DOI | 10.4018/IJGHPC.388950 |
Cover
| Abstract | At present, financial risk early warning systems in colleges and universities lack the ability to process real-time data flow, making it difficult to capture short-term risk fluctuations in a timely manner and limiting their accuracy in short-term forecasting. This study builds a real-time data pipeline based on Apache Kafka and Spark Streaming. Short-term financial index prediction and risk classification are realized by combining a bidirectional long short-term memory network with the XGBoost model. In addition, anomaly detection and dynamic threshold adaptive adjustment are carried out through isolated forests to improve the real-time performance and prediction accuracy of the system. Experiments show that the highest rate of misjudgment is about 2.5% under the robustness test, the cross-school accuracy of migration is over 80%, consistency with auditor hits is over 78.5%, and the average detection rate in real-time stream detection is 83.3%. The results of this study verify the efficiency and adaptability of the system. |
|---|---|
| AbstractList | At present, financial risk early warning systems in colleges and universities lack the ability to process real-time data flow, making it difficult to capture short-term risk fluctuations in a timely manner and limiting their accuracy in short-term forecasting. This study builds a real-time data pipeline based on Apache Kafka and Spark Streaming. Short-term financial index prediction and risk classification are realized by combining a bidirectional long short-term memory network with the XGBoost model. In addition, anomaly detection and dynamic threshold adaptive adjustment are carried out through isolated forests to improve the real-time performance and prediction accuracy of the system. Experiments show that the highest rate of misjudgment is about 2.5% under the robustness test, the cross-school accuracy of migration is over 80%, consistency with auditor hits is over 78.5%, and the average detection rate in real-time stream detection is 83.3%. The results of this study verify the efficiency and adaptability of the system. |
| Author | Yi, Zhishuai Liu, Piao |
| AuthorAffiliation | Hunan Polytechnic of Environment and Biology, China Hunan Financial and Industrial Vocational-Technical College, China |
| AuthorAffiliation_xml | – name: Hunan Polytechnic of Environment and Biology, China – name: Hunan Financial and Industrial Vocational-Technical College, China |
| Author_xml | – sequence: 1 givenname: Zhishuai surname: Yi fullname: Yi, Zhishuai organization: Hunan Polytechnic of Environment and Biology, China – sequence: 2 givenname: Piao surname: Liu fullname: Liu, Piao organization: Hunan Financial and Industrial Vocational-Technical College, China |
| BookMark | eNptkF1LwzAUhoNMcJteeh_wujMfzZJebt2nDBR1eCOE2KY1s0tn0in9927rcBd6dQ6H9304PB3QsqXVAFxj1AsRFrfzu-nsIe5RISKGzkAbR1QEiPR563dn0QXoeL9CqB8SLNrgdWKssolRBXw0_gOOlStq-KKcNTaHT7Wv9BpmpYNxWRQ61x4qm8KlNV_aeVOZ3WGovE5haeHQ5HCkKgUHVhW1N_4SnGeq8PrqOLtgORk_x7NgcT-dx4NFkBAqUBCFLM2ikCZCq_QNRYiHOsU4QhnGfRJlKiWE9zFJEOJcI8EFYQnTCcsoF4Jo2gW9hru1G1V_q6KQG2fWytUSI7l3I80qf98ksnGzK9w0hY0rP7faV3JVbt3uay8pYYxwRgXbpYImlbjSe6ezP9TG-Ik6avImNyfgQa7cy5UHufIo938I5vQHqyqKUg |
| ContentType | Journal Article |
| Copyright | 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| DOI | 10.4018/IJGHPC.388950 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1938-0267 |
| EndPage | 22 |
| ExternalDocumentID | 10.4018/ijghpc.388950 10_4018_IJGHPC_388950 ncial_Risk_Early_Warning_10_4018_IJGHPC_38895017 |
| GroupedDBID | 0R~ 4.4 AAYVP ABEPT ABJCF ABPHS ACOJC AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BAAKF BENPR BGLVJ BTFVE BYHXH CBWLS CCPQU CDTDJ CIGCI CKMBR CNQXE COVLG CTSEY EBS H13 HCIFZ HZ~ IAO ICD ITC K7- M7S MV1 N95 NEEBM O9- PHGZM PHGZT PQGLB PTHSS PUEGO RIF AAYXX CITATION 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC EJD UNPAY |
| ID | FETCH-LOGICAL-c2380-945df943c8eadb09074ed1190f11629fad227612c0077e087825c5ec5f37882e3 |
| IEDL.DBID | BENPR |
| ISSN | 1938-0259 1938-0267 |
| IngestDate | Sun Sep 28 05:43:09 EDT 2025 Mon Sep 29 12:41:20 EDT 2025 Thu Oct 02 04:29:48 EDT 2025 Tue Sep 30 04:10:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by/3.0/deed.en_US cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2380-945df943c8eadb09074ed1190f11629fad227612c0077e087825c5ec5f37882e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0000-4321-8614 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.igi-global.com/ViewTitle.aspx?TitleId=388950&isxn=9798337315768 |
| PQID | 3255275385 |
| PQPubID | 2045843 |
| PageCount | 22 |
| ParticipantIDs | unpaywall_primary_10_4018_ijghpc_388950 crossref_primary_10_4018_IJGHPC_388950 proquest_journals_3255275385 igi_journals_ncial_Risk_Early_Warning_10_4018_IJGHPC_38895017 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-25T00:00:00 |
| PublicationDateYYYYMMDD | 2025-09-25 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-25T00:00:00 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Hershey |
| PublicationPlace_xml | – name: Hershey |
| PublicationTitle | International journal of grid and high performance computing |
| PublicationYear | 2025 |
| Publisher | IGI Global |
| Publisher_xml | – name: IGI Global |
| SSID | ssj0064218 |
| Score | 2.3247783 |
| Snippet | At present, financial risk early warning systems in colleges and universities lack the ability to process real-time data flow, making it difficult to capture... |
| SourceID | unpaywall proquest crossref igi |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Anomalies Big Data Colleges & universities Data analysis Early warning systems Real time |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7R7QEulKdYWpAPqJyyJHGc2Ice2sJ2W4mqQl0oEpLl2N4SukpXZFd9_HrGsdMXPXDglkMyssdfPN_Yo28A3rlWNFxlKiozHkdZGauIJ9REOjfUxtQUoi2i-byfj8bZ3hE7Cu2AmlBWWWFa6OUw2q36a2XPDp3nvEht-7hrNijngsXrVXPuUiHBKS1o4tjzEiznDIl5D5bH-web3_29Mo8wuovr57zwipuYX_AP1a_jnzM98CZvRaglHMwt8vlwUc_UxZmaTm_EoeEKTLsZ-PKTk8FiXg705R1xx_80xSfwOPBVsukB9hQe2PoZrHS9IEjYGp7Dj2En3UG-VM0JaYWTyTd_7kK8LjpBgkzCSUVDVG3IVVkI5utkCwOqIac12aqOyUc1V6RTTHkB4-Gnw-1RFDo3RBopQByJjJmJyKjmCNQydgm4NQlyj0mS5KmYKJOmBXIr7dSEbMyRpjDNrGYTJ2-fWvoSevVpbV8BwQxdKyNwr7FxpspMoFFlE2PzJGeW6z6sd6slZ16gQ2Ji45ZV7u7tjA62pXdjHzbQ6zL8oo1sXSKdS2TrEhlccv_XSdGHtQ4F10Zo6hTsEO6sD--vkPHXQDy-gqnX__zmKjxKXbthdwnG1qA3_72wb5ADzcu3Adt_APi1Aps priority: 102 providerName: Unpaywall |
| Title | Financial Risk Early Warning System for Colleges and Universities Based on Big Data Analysis |
| URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJGHPC.388950 https://www.proquest.com/docview/3255275385 https://www.igi-global.com/ViewTitle.aspx?TitleId=388950&isxn=9798337315768 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1938-0267 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064218 issn: 1938-0259 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB2R5FAuhVIQ4Us-IHpy2e94DwglKSEgEUWoUalUyfLaTtiCNoEEof77jnftQEXFaU87Wj17Z9744z2AQ2NFw0QkaBYxj0aZJyjzQ0VlokLthaqVlodorgZJfxRd3sQ3KzBwd2HMsUqXE8tErabSrJEfh4HRCsPA8ensgRrXKLO76iw0hLVWUCelxFgNGoFRxqpDo3M2GF673GxudbJqn5lRrPZppbqJPQY7vrg87w-7X0PGUnMJ_1WVquWT_B8C-uGpmIk_z-L-_lUt6q3DR0siSbsa9U-woosNWHMGDcT-r5_hV8_paZDrfH5HSjVj8qNaDCGVWDlB1krs8sGciEKR5VkNbKJJB6ucItOCdPIJ-SYWgjgZk00Y9c6-d_vU2ilQiXXZo2kUq3EahZLh7Mk80xVr5SMhGPt-EqRjoYKghYRHGokf7THkDrGMtYzHRnM-0OEW1ItpobeBYNsshUoxAWgvElmUYlChfaUTP4k1k004cvDxWaWawbHbMDjzCmde4dyEEwSX2_9mzktIuIGEl5BwC8n_3_ZbTdhzw_IS5GWqNOHLcqjefEj-e3I7kzbUzvuBdmE1MMa_Zjsq3oP64vFJ7yMbWWQHUGO98wM70fA5GgzbP_8CHQvebQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xONBL31UXaOtDH6eUxHGCfVhVLLDd5bFCCFQOSK5je7cBlN12FyH-HL-t48QGqla98QMyij6PZ-azPd8AvHejaLhiKioYjyNWxCriSWoinZvUxqlZF_Ujmv1B3jtmOyfZyRzchF4Y96wyxMQ6UJuxdmfkayl1WmFoOPsy-Rm5qVHudjWM0FB-tIJp1xJjvrFj115fIYWbtvtbuN4fKO1uH232Ij9lINKYruJIsMwMBUs1R1CL2JFFaxLMk8MkyakYKkMpcn2qnfKNjTmm1ExnVmdDJ8VObYp252GRpUwg-VvsbA8ODkMucF2kvLnX5hFWF6JR-UROw9f6O197B5ufU86Fa_q_lxXny1H5R8G7dFlN1PWVuri4l_u6T-GxL1rJRuNlz2DOVs_hSRgIQXx8eAGn3aDfQQ7L6Tmp1ZPJt-bwhTTi6ASrZOKPK6ZEVYbcvg1B0k46mFUNGVekU47IlpopEmRTXsLxgwD7ChaqcWVfA0GarpURGHBszFTBBBpVNjE2T_LMct2CjwE-OWlUOiSyG4ezbHCWDc4taCO40u_TqawhkQ4SWUMiPST__jpZb8FqWJY7I3eu2YJPt0v114-UZ6MfE-1NLf_f0DtY6h3t78m9_mB3BR5RN3TYXYVlq7Aw-3Vp32AlNCveencj8P2hPfw33RoWug |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7R7QEulKdYWpAPqJyyJHGc2Ice2sJ2W4mqQl0oEpLl2N4SukpXZFd9_HrGsdMXPXDglkMyssdfPN_Yo28A3rlWNFxlKiozHkdZGauIJ9REOjfUxtQUoi2i-byfj8bZ3hE7Cu2AmlBWWWFa6OUw2q36a2XPDp3nvEht-7hrNijngsXrVXPuUiHBKS1o4tjzEiznDIl5D5bH-web3_29Mo8wuovr57zwipuYX_AP1a_jnzM98CZvRaglHMwt8vlwUc_UxZmaTm_EoeEKTLsZ-PKTk8FiXg705R1xx_80xSfwOPBVsukB9hQe2PoZrHS9IEjYGp7Dj2En3UG-VM0JaYWTyTd_7kK8LjpBgkzCSUVDVG3IVVkI5utkCwOqIac12aqOyUc1V6RTTHkB4-Gnw-1RFDo3RBopQByJjJmJyKjmCNQydgm4NQlyj0mS5KmYKJOmBXIr7dSEbMyRpjDNrGYTJ2-fWvoSevVpbV8BwQxdKyNwr7FxpspMoFFlE2PzJGeW6z6sd6slZ16gQ2Ji45ZV7u7tjA62pXdjHzbQ6zL8oo1sXSKdS2TrEhlccv_XSdGHtQ4F10Zo6hTsEO6sD--vkPHXQDy-gqnX__zmKjxKXbthdwnG1qA3_72wb5ADzcu3Adt_APi1Aps |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Financial+Risk+Early+Warning+System+for+Colleges+and+Universities+Based+on+Big+Data+Analysis&rft.jtitle=International+journal+of+grid+and+high+performance+computing&rft.au=Yi%2C+Zhishuai&rft.au=Liu%2C+Piao&rft.date=2025-09-25&rft.pub=IGI+Global&rft.issn=1938-0259&rft.eissn=1938-0267&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.4018%2FIJGHPC.388950 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1938-0259&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1938-0259&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1938-0259&client=summon |