Financial Risk Early Warning System for Colleges and Universities Based on Big Data Analysis

At present, financial risk early warning systems in colleges and universities lack the ability to process real-time data flow, making it difficult to capture short-term risk fluctuations in a timely manner and limiting their accuracy in short-term forecasting. This study builds a real-time data pipe...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of grid and high performance computing Vol. 17; no. 1; pp. 1 - 22
Main Authors Yi, Zhishuai, Liu, Piao
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 25.09.2025
Subjects
Online AccessGet full text
ISSN1938-0259
1938-0267
1938-0267
DOI10.4018/IJGHPC.388950

Cover

Abstract At present, financial risk early warning systems in colleges and universities lack the ability to process real-time data flow, making it difficult to capture short-term risk fluctuations in a timely manner and limiting their accuracy in short-term forecasting. This study builds a real-time data pipeline based on Apache Kafka and Spark Streaming. Short-term financial index prediction and risk classification are realized by combining a bidirectional long short-term memory network with the XGBoost model. In addition, anomaly detection and dynamic threshold adaptive adjustment are carried out through isolated forests to improve the real-time performance and prediction accuracy of the system. Experiments show that the highest rate of misjudgment is about 2.5% under the robustness test, the cross-school accuracy of migration is over 80%, consistency with auditor hits is over 78.5%, and the average detection rate in real-time stream detection is 83.3%. The results of this study verify the efficiency and adaptability of the system.
AbstractList At present, financial risk early warning systems in colleges and universities lack the ability to process real-time data flow, making it difficult to capture short-term risk fluctuations in a timely manner and limiting their accuracy in short-term forecasting. This study builds a real-time data pipeline based on Apache Kafka and Spark Streaming. Short-term financial index prediction and risk classification are realized by combining a bidirectional long short-term memory network with the XGBoost model. In addition, anomaly detection and dynamic threshold adaptive adjustment are carried out through isolated forests to improve the real-time performance and prediction accuracy of the system. Experiments show that the highest rate of misjudgment is about 2.5% under the robustness test, the cross-school accuracy of migration is over 80%, consistency with auditor hits is over 78.5%, and the average detection rate in real-time stream detection is 83.3%. The results of this study verify the efficiency and adaptability of the system.
Author Yi, Zhishuai
Liu, Piao
AuthorAffiliation Hunan Polytechnic of Environment and Biology, China
Hunan Financial and Industrial Vocational-Technical College, China
AuthorAffiliation_xml – name: Hunan Polytechnic of Environment and Biology, China
– name: Hunan Financial and Industrial Vocational-Technical College, China
Author_xml – sequence: 1
  givenname: Zhishuai
  surname: Yi
  fullname: Yi, Zhishuai
  organization: Hunan Polytechnic of Environment and Biology, China
– sequence: 2
  givenname: Piao
  surname: Liu
  fullname: Liu, Piao
  organization: Hunan Financial and Industrial Vocational-Technical College, China
BookMark eNptkF1LwzAUhoNMcJteeh_wujMfzZJebt2nDBR1eCOE2KY1s0tn0in9927rcBd6dQ6H9304PB3QsqXVAFxj1AsRFrfzu-nsIe5RISKGzkAbR1QEiPR563dn0QXoeL9CqB8SLNrgdWKssolRBXw0_gOOlStq-KKcNTaHT7Wv9BpmpYNxWRQ61x4qm8KlNV_aeVOZ3WGovE5haeHQ5HCkKgUHVhW1N_4SnGeq8PrqOLtgORk_x7NgcT-dx4NFkBAqUBCFLM2ikCZCq_QNRYiHOsU4QhnGfRJlKiWE9zFJEOJcI8EFYQnTCcsoF4Jo2gW9hru1G1V_q6KQG2fWytUSI7l3I80qf98ksnGzK9w0hY0rP7faV3JVbt3uay8pYYxwRgXbpYImlbjSe6ezP9TG-Ik6avImNyfgQa7cy5UHufIo938I5vQHqyqKUg
ContentType Journal Article
Copyright 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.4018/IJGHPC.388950
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1938-0267
EndPage 22
ExternalDocumentID 10.4018/ijghpc.388950
10_4018_IJGHPC_388950
ncial_Risk_Early_Warning_10_4018_IJGHPC_38895017
GroupedDBID 0R~
4.4
AAYVP
ABEPT
ABJCF
ABPHS
ACOJC
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BAAKF
BENPR
BGLVJ
BTFVE
BYHXH
CBWLS
CCPQU
CDTDJ
CIGCI
CKMBR
CNQXE
COVLG
CTSEY
EBS
H13
HCIFZ
HZ~
IAO
ICD
ITC
K7-
M7S
MV1
N95
NEEBM
O9-
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
RIF
AAYXX
CITATION
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
EJD
UNPAY
ID FETCH-LOGICAL-c2380-945df943c8eadb09074ed1190f11629fad227612c0077e087825c5ec5f37882e3
IEDL.DBID BENPR
ISSN 1938-0259
1938-0267
IngestDate Sun Sep 28 05:43:09 EDT 2025
Mon Sep 29 12:41:20 EDT 2025
Thu Oct 02 04:29:48 EDT 2025
Tue Sep 30 04:10:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/3.0/deed.en_US
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2380-945df943c8eadb09074ed1190f11629fad227612c0077e087825c5ec5f37882e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-4321-8614
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.igi-global.com/ViewTitle.aspx?TitleId=388950&isxn=9798337315768
PQID 3255275385
PQPubID 2045843
PageCount 22
ParticipantIDs unpaywall_primary_10_4018_ijghpc_388950
crossref_primary_10_4018_IJGHPC_388950
proquest_journals_3255275385
igi_journals_ncial_Risk_Early_Warning_10_4018_IJGHPC_38895017
PublicationCentury 2000
PublicationDate 2025-09-25T00:00:00
PublicationDateYYYYMMDD 2025-09-25
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-25T00:00:00
  day: 25
PublicationDecade 2020
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of grid and high performance computing
PublicationYear 2025
Publisher IGI Global
Publisher_xml – name: IGI Global
SSID ssj0064218
Score 2.3247783
Snippet At present, financial risk early warning systems in colleges and universities lack the ability to process real-time data flow, making it difficult to capture...
SourceID unpaywall
proquest
crossref
igi
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Anomalies
Big Data
Colleges & universities
Data analysis
Early warning systems
Real time
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7R7QEulKdYWpAPqJyyJHGc2Ice2sJ2W4mqQl0oEpLl2N4SukpXZFd9_HrGsdMXPXDglkMyssdfPN_Yo28A3rlWNFxlKiozHkdZGauIJ9REOjfUxtQUoi2i-byfj8bZ3hE7Cu2AmlBWWWFa6OUw2q36a2XPDp3nvEht-7hrNijngsXrVXPuUiHBKS1o4tjzEiznDIl5D5bH-web3_29Mo8wuovr57zwipuYX_AP1a_jnzM98CZvRaglHMwt8vlwUc_UxZmaTm_EoeEKTLsZ-PKTk8FiXg705R1xx_80xSfwOPBVsukB9hQe2PoZrHS9IEjYGp7Dj2En3UG-VM0JaYWTyTd_7kK8LjpBgkzCSUVDVG3IVVkI5utkCwOqIac12aqOyUc1V6RTTHkB4-Gnw-1RFDo3RBopQByJjJmJyKjmCNQydgm4NQlyj0mS5KmYKJOmBXIr7dSEbMyRpjDNrGYTJ2-fWvoSevVpbV8BwQxdKyNwr7FxpspMoFFlE2PzJGeW6z6sd6slZ16gQ2Ji45ZV7u7tjA62pXdjHzbQ6zL8oo1sXSKdS2TrEhlccv_XSdGHtQ4F10Zo6hTsEO6sD--vkPHXQDy-gqnX__zmKjxKXbthdwnG1qA3_72wb5ADzcu3Adt_APi1Aps
  priority: 102
  providerName: Unpaywall
Title Financial Risk Early Warning System for Colleges and Universities Based on Big Data Analysis
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJGHPC.388950
https://www.proquest.com/docview/3255275385
https://www.igi-global.com/ViewTitle.aspx?TitleId=388950&isxn=9798337315768
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1938-0267
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064218
  issn: 1938-0259
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB2R5FAuhVIQ4Us-IHpy2e94DwglKSEgEUWoUalUyfLaTtiCNoEEof77jnftQEXFaU87Wj17Z9744z2AQ2NFw0QkaBYxj0aZJyjzQ0VlokLthaqVlodorgZJfxRd3sQ3KzBwd2HMsUqXE8tErabSrJEfh4HRCsPA8ensgRrXKLO76iw0hLVWUCelxFgNGoFRxqpDo3M2GF673GxudbJqn5lRrPZppbqJPQY7vrg87w-7X0PGUnMJ_1WVquWT_B8C-uGpmIk_z-L-_lUt6q3DR0siSbsa9U-woosNWHMGDcT-r5_hV8_paZDrfH5HSjVj8qNaDCGVWDlB1krs8sGciEKR5VkNbKJJB6ucItOCdPIJ-SYWgjgZk00Y9c6-d_vU2ilQiXXZo2kUq3EahZLh7Mk80xVr5SMhGPt-EqRjoYKghYRHGokf7THkDrGMtYzHRnM-0OEW1ItpobeBYNsshUoxAWgvElmUYlChfaUTP4k1k004cvDxWaWawbHbMDjzCmde4dyEEwSX2_9mzktIuIGEl5BwC8n_3_ZbTdhzw_IS5GWqNOHLcqjefEj-e3I7kzbUzvuBdmE1MMa_Zjsq3oP64vFJ7yMbWWQHUGO98wM70fA5GgzbP_8CHQvebQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xONBL31UXaOtDH6eUxHGCfVhVLLDd5bFCCFQOSK5je7cBlN12FyH-HL-t48QGqla98QMyij6PZ-azPd8AvHejaLhiKioYjyNWxCriSWoinZvUxqlZF_Ujmv1B3jtmOyfZyRzchF4Y96wyxMQ6UJuxdmfkayl1WmFoOPsy-Rm5qVHudjWM0FB-tIJp1xJjvrFj115fIYWbtvtbuN4fKO1uH232Ij9lINKYruJIsMwMBUs1R1CL2JFFaxLMk8MkyakYKkMpcn2qnfKNjTmm1ExnVmdDJ8VObYp252GRpUwg-VvsbA8ODkMucF2kvLnX5hFWF6JR-UROw9f6O197B5ufU86Fa_q_lxXny1H5R8G7dFlN1PWVuri4l_u6T-GxL1rJRuNlz2DOVs_hSRgIQXx8eAGn3aDfQQ7L6Tmp1ZPJt-bwhTTi6ASrZOKPK6ZEVYbcvg1B0k46mFUNGVekU47IlpopEmRTXsLxgwD7ChaqcWVfA0GarpURGHBszFTBBBpVNjE2T_LMct2CjwE-OWlUOiSyG4ezbHCWDc4taCO40u_TqawhkQ4SWUMiPST__jpZb8FqWJY7I3eu2YJPt0v114-UZ6MfE-1NLf_f0DtY6h3t78m9_mB3BR5RN3TYXYVlq7Aw-3Vp32AlNCveencj8P2hPfw33RoWug
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7R7QEulKdYWpAPqJyyJHGc2Ice2sJ2W4mqQl0oEpLl2N4SukpXZFd9_HrGsdMXPXDglkMyssdfPN_Yo28A3rlWNFxlKiozHkdZGauIJ9REOjfUxtQUoi2i-byfj8bZ3hE7Cu2AmlBWWWFa6OUw2q36a2XPDp3nvEht-7hrNijngsXrVXPuUiHBKS1o4tjzEiznDIl5D5bH-web3_29Mo8wuovr57zwipuYX_AP1a_jnzM98CZvRaglHMwt8vlwUc_UxZmaTm_EoeEKTLsZ-PKTk8FiXg705R1xx_80xSfwOPBVsukB9hQe2PoZrHS9IEjYGp7Dj2En3UG-VM0JaYWTyTd_7kK8LjpBgkzCSUVDVG3IVVkI5utkCwOqIac12aqOyUc1V6RTTHkB4-Gnw-1RFDo3RBopQByJjJmJyKjmCNQydgm4NQlyj0mS5KmYKJOmBXIr7dSEbMyRpjDNrGYTJ2-fWvoSevVpbV8BwQxdKyNwr7FxpspMoFFlE2PzJGeW6z6sd6slZ16gQ2Ji45ZV7u7tjA62pXdjHzbQ6zL8oo1sXSKdS2TrEhlccv_XSdGHtQ4F10Zo6hTsEO6sD--vkPHXQDy-gqnX__zmKjxKXbthdwnG1qA3_72wb5ADzcu3Adt_APi1Aps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Financial+Risk+Early+Warning+System+for+Colleges+and+Universities+Based+on+Big+Data+Analysis&rft.jtitle=International+journal+of+grid+and+high+performance+computing&rft.au=Yi%2C+Zhishuai&rft.au=Liu%2C+Piao&rft.date=2025-09-25&rft.pub=IGI+Global&rft.issn=1938-0259&rft.eissn=1938-0267&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.4018%2FIJGHPC.388950
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1938-0259&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1938-0259&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1938-0259&client=summon