Ab initio potential energy surface and anharmonic vibration spectrum of NF3

Potential energy surfaces (PESs), vibrational frequencies, and infrared spectra are calculated for NF 3 + using ab initio calculations, based on UCCSD(T)/cc-pVTZ combined with vibrational configuration interaction (VCI). Based on an iterative algorithm, the surfaces (SURF) program adds automatic poi...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 33; no. 1; pp. 13101 - 366
Main Authors Chen, Yan-Nan, Xu, Jian-Gang, Fan, Jiang-Peng, Ma, Shuang-Xiong, Guo, Tian, Zhang, Yun-Guang
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.01.2024
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/ad04c6

Cover

Abstract Potential energy surfaces (PESs), vibrational frequencies, and infrared spectra are calculated for NF 3 + using ab initio calculations, based on UCCSD(T)/cc-pVTZ combined with vibrational configuration interaction (VCI). Based on an iterative algorithm, the surfaces (SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q 6 symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF 3 + are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra. Modal antisymmetric stretching ν 5 and symmetric stretching ν 6 exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory.
AbstractList Potential energy surfaces (PESs), vibrational frequencies, and infrared spectra are calculated for NF 3 + using ab initio calculations, based on UCCSD(T)/cc-pVTZ combined with vibrational configuration interaction (VCI). Based on an iterative algorithm, the surfaces (SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q 6 symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF 3 + are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra. Modal antisymmetric stretching ν 5 and symmetric stretching ν 6 exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory.
Potential energy surfaces(PESs),vibrational frequencies,and infrared spectra are calculated for NF3+using ab initio calculations,based on UCCSD(T)/cc-pVTZ combined with vibrational configuration interaction(VCI).Based on an itera-tive algorithm,the surfaces(SURF)program adds automatic points to the lattice representation of the potential function,the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold,finally the smooth image of the potential energy surface is fitted.The PESs accurately account for the interaction between the different modes,with the mode q6 symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift.The anharmonic frequencies are obtained when the VCI matrix is diagonal-ized.Fundamental frequencies,overtones,and combination bands of NF3+are calculated,which generate the degenerate phenomenon between their frequencies.Finally,the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching v5 and symmetric stretching v6 exhibit a phenomenon of large-intensity borrowing.This study can provide data to support the characterization in the laboratory.
Author Guo, Tian
Zhang, Yun-Guang
Xu, Jian-Gang
Fan, Jiang-Peng
Ma, Shuang-Xiong
Chen, Yan-Nan
Author_xml – sequence: 1
  givenname: Yan-Nan
  surname: Chen
  fullname: Chen, Yan-Nan
  organization: School of Science, Xi’an University of Posts and Telecommunications , China
– sequence: 2
  givenname: Jian-Gang
  surname: Xu
  fullname: Xu, Jian-Gang
  organization: School of Science, Xi’an University of Posts and Telecommunications , China
– sequence: 3
  givenname: Jiang-Peng
  surname: Fan
  fullname: Fan, Jiang-Peng
  organization: School of Science, Xi’an University of Posts and Telecommunications , China
– sequence: 4
  givenname: Shuang-Xiong
  surname: Ma
  fullname: Ma, Shuang-Xiong
  organization: School of Science, Xi’an University of Posts and Telecommunications , China
– sequence: 5
  givenname: Tian
  surname: Guo
  fullname: Guo, Tian
  organization: School of Science, Xi’an University of Posts and Telecommunications , China
– sequence: 6
  givenname: Yun-Guang
  surname: Zhang
  fullname: Zhang, Yun-Guang
  organization: School of Science, Xi’an University of Posts and Telecommunications , China
BookMark eNp1kD1PwzAQhi1UJNrCzuiNhVB_xXXGqqKAqGDpbl0cu7hq7chJqcqvJ1EQTAynG-5535OeCRqFGCxCt5Q8UKLUjMq5yCjJ5QwqIoy8QGNGcpVxxcUIjX_PV2jSNDtCJCWMj9HrosQ--NZHXMfWhtbDHttg0_aMm2NyYCyGUHXzAekQgzf405cJukDATW1Nm44HHB1-W_FrdOlg39ibnz1Fm9XjZvmcrd-fXpaLdWYYn7eZZFQwZYSyOQVbCpmbws6F4JUBLssCGKuUM4ViLmclOFoIKxgXRVWwigCforuh9gTBQdjqXTym0D3UX9vTXltGmCCU8LwjyUCaFJsmWafr5A-QzpoS3VvTvRbda9GDtS5yP0R8rP-K_8W_AT8Wbyo
Cites_doi 10.1029/2008GL035913
10.1007/s002140050379
10.1063/1.1601593
10.1063/1.1824881
10.1063/1.448858
10.1016/S0301-0104(99)00344-4
10.1016/0009-2614(86)80058-6
10.1016/S0009-2614(01)01381-1
10.1016/S1386-1425(97)00010-3
10.1063/1.435782
10.1016/0009-2614(79)80099-8
10.1063/1.3243862
10.1021/jp070327n
10.1063/1.475852
10.1063/1.448088
10.1021/j100471a005
10.1002/(ISSN)1096-987X
10.1149/1.2430036
10.1063/1.4811653
10.1016/j.jqsrt.2019.106668
10.1063/1.472922
10.1155/2013/813249
10.1063/1.443164
10.1021/ar00127a002
10.1063/5.0005081
10.1063/1.1804174
10.1016/j.chemphys.2008.01.039
10.1002/jcc.26951
10.1063/1.1637578
10.1063/1.3551513
10.1002/anie.200390043
10.1016/0009-2614(80)80470-2
10.1016/0009-2614(87)80519-5
10.1016/j.cplett.2010.07.012
10.1021/acs.jctc.8b00679
10.1063/1.1384870
10.1080/0026897031000068532
10.1063/1.2718951
10.1016/j.chemphys.2005.01.012
10.1063/1.1742735
10.1021/ic50181a055
10.1016/0009-2614(82)80335-7
10.1021/ct9004454
10.1016/0009-2614(85)85237-4
10.1063/1.1637579
ContentType Journal Article
Copyright 2024 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-1056/ad04c6
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
EndPage 366
ExternalDocumentID zgwl_e202401035
10_1088_1674_1056_ad04c6
cpb_33_1_013101
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
Q--
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
CITATION
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c237t-621428c48e51aeb465c9e7443dca36b9a22d8fc982f52baf194e42349d92d0a3
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu May 29 04:07:18 EDT 2025
Tue Jul 01 02:13:12 EDT 2025
Sun Aug 18 15:30:26 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords coupled resonance
potential energy surfaces
vibration frequencies
ab initio methods
infrared spectra
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c237t-621428c48e51aeb465c9e7443dca36b9a22d8fc982f52baf194e42349d92d0a3
OpenAccessLink https://doi.org/10.1088/1674-1056/ad04c6
PageCount 7
ParticipantIDs wanfang_journals_zgwl_e202401035
crossref_primary_10_1088_1674_1056_ad04c6
iop_journals_10_1088_1674_1056_ad04c6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240101
2024-01-01
2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240101
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2024
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Jelski (cpb_33_1_013101bib21) 1996; 17
Neff (cpb_33_1_013101bib40) 2011; 134
Bowman (cpb_33_1_013101bib26) 1979; 83
Nguyen (cpb_33_1_013101bib10) 1986; 123
Christe (cpb_33_1_013101bib6) 1978; 17
Berkowitz (cpb_33_1_013101bib8) 1984; 81
Čársky (cpb_33_1_013101bib15) 1980
Werner (cpb_33_1_013101bib47) 2020; 152
Carvalho (cpb_33_1_013101bib43) 2022; 43
Weiss (cpb_33_1_013101bib1) 2008; 35
Pouchan (cpb_33_1_013101bib11) 1985; 117
Rauhut (cpb_33_1_013101bib42) 2008; 346
Paukku (cpb_33_1_013101bib17) 2013; 139
cpb_33_1_013101bib55
Ricardo (cpb_33_1_013101bib14) 2006
Carter (cpb_33_1_013101bib48) 2002; 352
Aroca (cpb_33_1_013101bib13) 2015
Gerber (cpb_33_1_013101bib23) 1988
Carney (cpb_33_1_013101bib36) 1978
Seidler (cpb_33_1_013101bib44) 2007; 111
Christiansen (cpb_33_1_013101bib31) 2004; 120
Hansen (cpb_33_1_013101bib20) 2010; 6
Carvalho (cpb_33_1_013101bib45) 2021
Shimanouchi (cpb_33_1_013101bib53) 1972; 1
Barone (cpb_33_1_013101bib32) 2005; 122
Breidung (cpb_33_1_013101bib3) 2003; 101
Purvis (cpb_33_1_013101bib19) 1982; 76
Curtiss (cpb_33_1_013101bib9) 1987; 136
Christiansen (cpb_33_1_013101bib28) 2004; 120
Thompson (cpb_33_1_013101bib39) 1980; 75
Rauhut (cpb_33_1_013101bib16) 2004; 121
Christoffel (cpb_33_1_013101bib27) 1982; 85
Egorov (cpb_33_1_013101bib2) 2019; 239
Carter (cpb_33_1_013101bib50) 1998; 108
Najib (cpb_33_1_013101bib4) 2013; 2013
Bowman (cpb_33_1_013101bib22) 1986; 19
Seccombe (cpb_33_1_013101bib7) 1999; 250
Carter (cpb_33_1_013101bib49) 1997; 53
Bowman (cpb_33_1_013101bib34) 1978; 68
Mück-Lichtenfeld (cpb_33_1_013101bib37) 2003; 42
Romanowski (cpb_33_1_013101bib38) 1985; 82
Norris (cpb_33_1_013101bib30) 1996; 105
Christiansen (cpb_33_1_013101bib29) 2003; 119
Bihary (cpb_33_1_013101bib24) 2001; 115
Carter (cpb_33_1_013101bib25) 1998; 100
Barone (cpb_33_1_013101bib33) 2010; 496
Huber (cpb_33_1_013101bib54) 1979
Gerber (cpb_33_1_013101bib35) 1979; 68
Bounouar (cpb_33_1_013101bib51) 2008
Neff (cpb_33_1_013101bib41) 2009; 131
Tan (cpb_33_1_013101bib46) 2018; 14
Hrenar (cpb_33_1_013101bib18) 2007; 126
Reese (cpb_33_1_013101bib5) 2004; 24
Wilson (cpb_33_1_013101bib12) 1955; 102
Miller (cpb_33_1_013101bib52) 2005; 313
References_xml – volume: 35
  year: 2008
  ident: cpb_33_1_013101bib1
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2008GL035913
– volume: 100
  start-page: 191
  year: 1998
  ident: cpb_33_1_013101bib25
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s002140050379
– volume: 119
  start-page: 5773
  year: 2003
  ident: cpb_33_1_013101bib29
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1601593
– volume: 122
  year: 2005
  ident: cpb_33_1_013101bib32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1824881
– volume: 82
  start-page: 4155
  year: 1985
  ident: cpb_33_1_013101bib38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448858
– volume: 250
  start-page: 335
  year: 1999
  ident: cpb_33_1_013101bib7
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(99)00344-4
– volume: 123
  start-page: 537
  year: 1986
  ident: cpb_33_1_013101bib10
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(86)80058-6
– start-page: 185
  year: 2006
  ident: cpb_33_1_013101bib14
– start-page: 1
  year: 1980
  ident: cpb_33_1_013101bib15
– volume: 352
  start-page: 1
  year: 2002
  ident: cpb_33_1_013101bib48
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(01)01381-1
– volume: 53
  start-page: 1179
  year: 1997
  ident: cpb_33_1_013101bib49
  publication-title: Spectrochim. Acta A
  doi: 10.1016/S1386-1425(97)00010-3
– year: 2008
  ident: cpb_33_1_013101bib51
– volume: 68
  start-page: 608
  year: 1978
  ident: cpb_33_1_013101bib34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.435782
– volume: 68
  start-page: 195
  year: 1979
  ident: cpb_33_1_013101bib35
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(79)80099-8
– volume: 131
  year: 2009
  ident: cpb_33_1_013101bib41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3243862
– volume: 111
  year: 2007
  ident: cpb_33_1_013101bib44
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp070327n
– volume: 108
  start-page: 4397
  year: 1998
  ident: cpb_33_1_013101bib50
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.475852
– volume: 81
  start-page: 3383
  year: 1984
  ident: cpb_33_1_013101bib8
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448088
– volume: 83
  start-page: 905
  year: 1979
  ident: cpb_33_1_013101bib26
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100471a005
– volume: 17
  start-page: 1645
  year: 1996
  ident: cpb_33_1_013101bib21
  publication-title: Comput. Chem.
  doi: 10.1002/(ISSN)1096-987X
– volume: 102
  start-page: 235
  year: 1955
  ident: cpb_33_1_013101bib12
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2430036
– volume: 139
  year: 2013
  ident: cpb_33_1_013101bib17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4811653
– start-page: 305
  year: 1978
  ident: cpb_33_1_013101bib36
– volume: 239
  year: 2019
  ident: cpb_33_1_013101bib2
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2019.106668
– volume: 105
  year: 1996
  ident: cpb_33_1_013101bib30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472922
– volume: 2013
  year: 2013
  ident: cpb_33_1_013101bib4
  publication-title: Sci. World
  doi: 10.1155/2013/813249
– start-page: 214
  year: 1979
  ident: cpb_33_1_013101bib54
– volume: 76
  start-page: 1910
  year: 1982
  ident: cpb_33_1_013101bib19
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.443164
– volume: 19
  start-page: 202
  year: 1986
  ident: cpb_33_1_013101bib22
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00127a002
– volume: 152
  year: 2020
  ident: cpb_33_1_013101bib47
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0005081
– volume: 121
  start-page: 9313
  year: 2004
  ident: cpb_33_1_013101bib16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1804174
– volume: 346
  start-page: 160
  year: 2008
  ident: cpb_33_1_013101bib42
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2008.01.039
– volume: 43
  start-page: 1484
  year: 2022
  ident: cpb_33_1_013101bib43
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.26951
– start-page: 145
  year: 2015
  ident: cpb_33_1_013101bib13
– volume: 120
  start-page: 2140
  year: 2004
  ident: cpb_33_1_013101bib31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1637578
– volume: 134
  year: 2011
  ident: cpb_33_1_013101bib40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3551513
– year: 2021
  ident: cpb_33_1_013101bib45
– volume: 42
  start-page: 21
  year: 2003
  ident: cpb_33_1_013101bib37
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200390043
– volume: 75
  start-page: 87
  year: 1980
  ident: cpb_33_1_013101bib39
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(80)80470-2
– volume: 136
  start-page: 566
  year: 1987
  ident: cpb_33_1_013101bib9
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(87)80519-5
– volume: 496
  start-page: 157
  year: 2010
  ident: cpb_33_1_013101bib33
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2010.07.012
– volume: 14
  start-page: 6405
  year: 2018
  ident: cpb_33_1_013101bib46
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00679
– start-page: 97
  year: 1988
  ident: cpb_33_1_013101bib23
– volume: 115
  start-page: 2695
  year: 2001
  ident: cpb_33_1_013101bib24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1384870
– volume: 101
  start-page: 1113
  year: 2003
  ident: cpb_33_1_013101bib3
  publication-title: Mol. Phys.
  doi: 10.1080/0026897031000068532
– volume: 126
  year: 2007
  ident: cpb_33_1_013101bib18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2718951
– volume: 313
  start-page: 213
  year: 2005
  ident: cpb_33_1_013101bib52
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2005.01.012
– volume: 24
  start-page: 1175
  year: 2004
  ident: cpb_33_1_013101bib5
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1742735
– volume: 17
  start-page: 759
  year: 1978
  ident: cpb_33_1_013101bib6
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50181a055
– volume: 85
  start-page: 220
  year: 1982
  ident: cpb_33_1_013101bib27
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(82)80335-7
– volume: 6
  start-page: 235
  year: 2010
  ident: cpb_33_1_013101bib20
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct9004454
– volume: 117
  start-page: 326
  year: 1985
  ident: cpb_33_1_013101bib11
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(85)85237-4
– volume: 120
  start-page: 2149
  year: 2004
  ident: cpb_33_1_013101bib28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1637579
– volume: 1
  start-page: 15
  year: 1972
  ident: cpb_33_1_013101bib53
– ident: cpb_33_1_013101bib55
SSID ssj0061023
Score 2.3306353
Snippet Potential energy surfaces (PESs), vibrational frequencies, and infrared spectra are calculated for NF 3 + using ab initio calculations, based on...
Potential energy surfaces(PESs),vibrational frequencies,and infrared spectra are calculated for NF3+using ab initio calculations,based on UCCSD(T)/cc-pVTZ...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 13101
SubjectTerms ab initio methods
coupled resonance
infrared spectra
potential energy surfaces
vibration frequencies
Title Ab initio potential energy surface and anharmonic vibration spectrum of NF3
URI https://iopscience.iop.org/article/10.1088/1674-1056/ad04c6
https://d.wanfangdata.com.cn/periodical/zgwl-e202401035
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7aiuDFt1hf7EEPHtImu5tkg6cilqJYPVToQQi7m90ialLaVKG_3p0k9YWIeAjkMJkk3yT7_OYbhI4lEcYQrhwZusZhQjNHeAlzFBFQAYmGtGC7X_eD3h27HPrDGjp7z4XJxlXT37KnpVBwCWFFiONt4M07UDC-LRKXqaCOlihUUoLsvZvbRTMcgCYBzLYW1tUe5U8evvRJdXvfIoMnNSIdfepsumvofvGYJcfksTXLZUvNvyk4_vM91tFqNQjFndJ0A9V0uomWCzKomm6hq47ED0AqyvA4y4FOZI11kSSIp7OJEUpjkSb2AN1r0NbFLzDrhhjjInVzMnvGmcH9Lt1Gg-7F4LznVEUXbHhomDtBocGmGNe-J7Rkga8iHTJGEyVoICNBSMKNijgxPpHCeBHTdkjGoiQiiSvoDmqkWap3EfaIcTWXEfGSiHEhJaPaU5QFxNXaOmui0wXq8biU1oiLLXHOY8AmBmziEpsmOrEwxtX_Nf3FDleB-7Cdj16fYk1AzM1zqb_3R1f7aAWuKZdbDlDDQqcP7QAkl0fFh_YGzNfR0w
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA46onhxF8c1Bz146EybpG16FLWM2-hBYW41q4jaFmdGwV9vkra4ICJ4KPTwkrbfa_bvfQ-AXY6Y1ogKj8e-9ghTxGOBJJ5AzGZAwjF2bPeLftS7IaeDcFDnOXWxMEVZd_0dc1sJBVcQ1oQ42rW8ec8mjO8y6RMRdUupJ8FUiMPYtsyTy6umK46sLoFdcTUl6nPKn2r5Mi5Nmme7KJ5cs_zu04CTzoPb5lUrnslDZzziHfH2TcXxH9-yAObqySg8qMwXwYTKl8C0I4WK4TI4O-Dw3pKLClgWI0srMsbKBQvC4fhZM6Egy6W5rP611diFL3b1bX0NXQjn8_gJFhr2U7wCrtPj68OeVydfMG7C8ciLnBabIFSFAVOcRKFIVEwIloLhiCcMIUm1SCjSIeJMBwlRZmpGEpkg6TO8Clp5kas1AAOkfUV5ggKZEMo4J1gFApMI-UqZytpgv0E-KyuJjcwdjVOaWXwyi09W4dMGewbKrG5nw1_sYO28D9u3u9fHTCEr6hb4OFz_Y1U7YObqKM3OT_pnG2DWFq92YDZBy6CotsycZMS33X_3Ds_G1z0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ab+initio+potential+energy+surface+and+anharmonic+vibration+spectrum+of+NF3&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Yan-Nan+Chen&rft.au=Jian-Gang+Xu&rft.au=Jiang-Peng+Fan&rft.au=Shuang-Xiong+Ma&rft.date=2024&rft.issn=1674-1056&rft.volume=33&rft.issue=1&rft.spage=359&rft.epage=366&rft_id=info:doi/10.1088%2F1674-1056%2Fad04c6&rft.externalDocID=zgwl_e202401035
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg