Ab initio potential energy surface and anharmonic vibration spectrum of NF3
Potential energy surfaces (PESs), vibrational frequencies, and infrared spectra are calculated for NF 3 + using ab initio calculations, based on UCCSD(T)/cc-pVTZ combined with vibrational configuration interaction (VCI). Based on an iterative algorithm, the surfaces (SURF) program adds automatic poi...
Saved in:
Published in | Chinese physics B Vol. 33; no. 1; pp. 13101 - 366 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/ad04c6 |
Cover
Abstract | Potential energy surfaces (PESs), vibrational frequencies, and infrared spectra are calculated for
NF
3
+
using
ab initio
calculations, based on UCCSD(T)/cc-pVTZ combined with vibrational configuration interaction (VCI). Based on an iterative algorithm, the surfaces (SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode
q
6
symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of
NF
3
+
are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra. Modal antisymmetric stretching
ν
5
and symmetric stretching
ν
6
exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory. |
---|---|
AbstractList | Potential energy surfaces (PESs), vibrational frequencies, and infrared spectra are calculated for
NF
3
+
using
ab initio
calculations, based on UCCSD(T)/cc-pVTZ combined with vibrational configuration interaction (VCI). Based on an iterative algorithm, the surfaces (SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode
q
6
symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of
NF
3
+
are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra. Modal antisymmetric stretching
ν
5
and symmetric stretching
ν
6
exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory. Potential energy surfaces(PESs),vibrational frequencies,and infrared spectra are calculated for NF3+using ab initio calculations,based on UCCSD(T)/cc-pVTZ combined with vibrational configuration interaction(VCI).Based on an itera-tive algorithm,the surfaces(SURF)program adds automatic points to the lattice representation of the potential function,the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold,finally the smooth image of the potential energy surface is fitted.The PESs accurately account for the interaction between the different modes,with the mode q6 symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift.The anharmonic frequencies are obtained when the VCI matrix is diagonal-ized.Fundamental frequencies,overtones,and combination bands of NF3+are calculated,which generate the degenerate phenomenon between their frequencies.Finally,the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching v5 and symmetric stretching v6 exhibit a phenomenon of large-intensity borrowing.This study can provide data to support the characterization in the laboratory. |
Author | Guo, Tian Zhang, Yun-Guang Xu, Jian-Gang Fan, Jiang-Peng Ma, Shuang-Xiong Chen, Yan-Nan |
Author_xml | – sequence: 1 givenname: Yan-Nan surname: Chen fullname: Chen, Yan-Nan organization: School of Science, Xi’an University of Posts and Telecommunications , China – sequence: 2 givenname: Jian-Gang surname: Xu fullname: Xu, Jian-Gang organization: School of Science, Xi’an University of Posts and Telecommunications , China – sequence: 3 givenname: Jiang-Peng surname: Fan fullname: Fan, Jiang-Peng organization: School of Science, Xi’an University of Posts and Telecommunications , China – sequence: 4 givenname: Shuang-Xiong surname: Ma fullname: Ma, Shuang-Xiong organization: School of Science, Xi’an University of Posts and Telecommunications , China – sequence: 5 givenname: Tian surname: Guo fullname: Guo, Tian organization: School of Science, Xi’an University of Posts and Telecommunications , China – sequence: 6 givenname: Yun-Guang surname: Zhang fullname: Zhang, Yun-Guang organization: School of Science, Xi’an University of Posts and Telecommunications , China |
BookMark | eNp1kD1PwzAQhi1UJNrCzuiNhVB_xXXGqqKAqGDpbl0cu7hq7chJqcqvJ1EQTAynG-5535OeCRqFGCxCt5Q8UKLUjMq5yCjJ5QwqIoy8QGNGcpVxxcUIjX_PV2jSNDtCJCWMj9HrosQ--NZHXMfWhtbDHttg0_aMm2NyYCyGUHXzAekQgzf405cJukDATW1Nm44HHB1-W_FrdOlg39ibnz1Fm9XjZvmcrd-fXpaLdWYYn7eZZFQwZYSyOQVbCpmbws6F4JUBLssCGKuUM4ViLmclOFoIKxgXRVWwigCforuh9gTBQdjqXTym0D3UX9vTXltGmCCU8LwjyUCaFJsmWafr5A-QzpoS3VvTvRbda9GDtS5yP0R8rP-K_8W_AT8Wbyo |
Cites_doi | 10.1029/2008GL035913 10.1007/s002140050379 10.1063/1.1601593 10.1063/1.1824881 10.1063/1.448858 10.1016/S0301-0104(99)00344-4 10.1016/0009-2614(86)80058-6 10.1016/S0009-2614(01)01381-1 10.1016/S1386-1425(97)00010-3 10.1063/1.435782 10.1016/0009-2614(79)80099-8 10.1063/1.3243862 10.1021/jp070327n 10.1063/1.475852 10.1063/1.448088 10.1021/j100471a005 10.1002/(ISSN)1096-987X 10.1149/1.2430036 10.1063/1.4811653 10.1016/j.jqsrt.2019.106668 10.1063/1.472922 10.1155/2013/813249 10.1063/1.443164 10.1021/ar00127a002 10.1063/5.0005081 10.1063/1.1804174 10.1016/j.chemphys.2008.01.039 10.1002/jcc.26951 10.1063/1.1637578 10.1063/1.3551513 10.1002/anie.200390043 10.1016/0009-2614(80)80470-2 10.1016/0009-2614(87)80519-5 10.1016/j.cplett.2010.07.012 10.1021/acs.jctc.8b00679 10.1063/1.1384870 10.1080/0026897031000068532 10.1063/1.2718951 10.1016/j.chemphys.2005.01.012 10.1063/1.1742735 10.1021/ic50181a055 10.1016/0009-2614(82)80335-7 10.1021/ct9004454 10.1016/0009-2614(85)85237-4 10.1063/1.1637579 |
ContentType | Journal Article |
Copyright | 2024 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-1056/ad04c6 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
EndPage | 366 |
ExternalDocumentID | zgwl_e202401035 10_1088_1674_1056_ad04c6 cpb_33_1_013101 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE Q-- RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c237t-621428c48e51aeb465c9e7443dca36b9a22d8fc982f52baf194e42349d92d0a3 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu May 29 04:07:18 EDT 2025 Tue Jul 01 02:13:12 EDT 2025 Sun Aug 18 15:30:26 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | coupled resonance potential energy surfaces vibration frequencies ab initio methods infrared spectra |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c237t-621428c48e51aeb465c9e7443dca36b9a22d8fc982f52baf194e42349d92d0a3 |
OpenAccessLink | https://doi.org/10.1088/1674-1056/ad04c6 |
PageCount | 7 |
ParticipantIDs | wanfang_journals_zgwl_e202401035 crossref_primary_10_1088_1674_1056_ad04c6 iop_journals_10_1088_1674_1056_ad04c6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240101 2024-01-01 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 20240101 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2024 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Jelski (cpb_33_1_013101bib21) 1996; 17 Neff (cpb_33_1_013101bib40) 2011; 134 Bowman (cpb_33_1_013101bib26) 1979; 83 Nguyen (cpb_33_1_013101bib10) 1986; 123 Christe (cpb_33_1_013101bib6) 1978; 17 Berkowitz (cpb_33_1_013101bib8) 1984; 81 Čársky (cpb_33_1_013101bib15) 1980 Werner (cpb_33_1_013101bib47) 2020; 152 Carvalho (cpb_33_1_013101bib43) 2022; 43 Weiss (cpb_33_1_013101bib1) 2008; 35 Pouchan (cpb_33_1_013101bib11) 1985; 117 Rauhut (cpb_33_1_013101bib42) 2008; 346 Paukku (cpb_33_1_013101bib17) 2013; 139 cpb_33_1_013101bib55 Ricardo (cpb_33_1_013101bib14) 2006 Carter (cpb_33_1_013101bib48) 2002; 352 Aroca (cpb_33_1_013101bib13) 2015 Gerber (cpb_33_1_013101bib23) 1988 Carney (cpb_33_1_013101bib36) 1978 Seidler (cpb_33_1_013101bib44) 2007; 111 Christiansen (cpb_33_1_013101bib31) 2004; 120 Hansen (cpb_33_1_013101bib20) 2010; 6 Carvalho (cpb_33_1_013101bib45) 2021 Shimanouchi (cpb_33_1_013101bib53) 1972; 1 Barone (cpb_33_1_013101bib32) 2005; 122 Breidung (cpb_33_1_013101bib3) 2003; 101 Purvis (cpb_33_1_013101bib19) 1982; 76 Curtiss (cpb_33_1_013101bib9) 1987; 136 Christiansen (cpb_33_1_013101bib28) 2004; 120 Thompson (cpb_33_1_013101bib39) 1980; 75 Rauhut (cpb_33_1_013101bib16) 2004; 121 Christoffel (cpb_33_1_013101bib27) 1982; 85 Egorov (cpb_33_1_013101bib2) 2019; 239 Carter (cpb_33_1_013101bib50) 1998; 108 Najib (cpb_33_1_013101bib4) 2013; 2013 Bowman (cpb_33_1_013101bib22) 1986; 19 Seccombe (cpb_33_1_013101bib7) 1999; 250 Carter (cpb_33_1_013101bib49) 1997; 53 Bowman (cpb_33_1_013101bib34) 1978; 68 Mück-Lichtenfeld (cpb_33_1_013101bib37) 2003; 42 Romanowski (cpb_33_1_013101bib38) 1985; 82 Norris (cpb_33_1_013101bib30) 1996; 105 Christiansen (cpb_33_1_013101bib29) 2003; 119 Bihary (cpb_33_1_013101bib24) 2001; 115 Carter (cpb_33_1_013101bib25) 1998; 100 Barone (cpb_33_1_013101bib33) 2010; 496 Huber (cpb_33_1_013101bib54) 1979 Gerber (cpb_33_1_013101bib35) 1979; 68 Bounouar (cpb_33_1_013101bib51) 2008 Neff (cpb_33_1_013101bib41) 2009; 131 Tan (cpb_33_1_013101bib46) 2018; 14 Hrenar (cpb_33_1_013101bib18) 2007; 126 Reese (cpb_33_1_013101bib5) 2004; 24 Wilson (cpb_33_1_013101bib12) 1955; 102 Miller (cpb_33_1_013101bib52) 2005; 313 |
References_xml | – volume: 35 year: 2008 ident: cpb_33_1_013101bib1 publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL035913 – volume: 100 start-page: 191 year: 1998 ident: cpb_33_1_013101bib25 publication-title: Theor. Chem. Acc. doi: 10.1007/s002140050379 – volume: 119 start-page: 5773 year: 2003 ident: cpb_33_1_013101bib29 publication-title: J. Chem. Phys. doi: 10.1063/1.1601593 – volume: 122 year: 2005 ident: cpb_33_1_013101bib32 publication-title: J. Chem. Phys. doi: 10.1063/1.1824881 – volume: 82 start-page: 4155 year: 1985 ident: cpb_33_1_013101bib38 publication-title: J. Chem. Phys. doi: 10.1063/1.448858 – volume: 250 start-page: 335 year: 1999 ident: cpb_33_1_013101bib7 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(99)00344-4 – volume: 123 start-page: 537 year: 1986 ident: cpb_33_1_013101bib10 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(86)80058-6 – start-page: 185 year: 2006 ident: cpb_33_1_013101bib14 – start-page: 1 year: 1980 ident: cpb_33_1_013101bib15 – volume: 352 start-page: 1 year: 2002 ident: cpb_33_1_013101bib48 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(01)01381-1 – volume: 53 start-page: 1179 year: 1997 ident: cpb_33_1_013101bib49 publication-title: Spectrochim. Acta A doi: 10.1016/S1386-1425(97)00010-3 – year: 2008 ident: cpb_33_1_013101bib51 – volume: 68 start-page: 608 year: 1978 ident: cpb_33_1_013101bib34 publication-title: J. Chem. Phys. doi: 10.1063/1.435782 – volume: 68 start-page: 195 year: 1979 ident: cpb_33_1_013101bib35 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(79)80099-8 – volume: 131 year: 2009 ident: cpb_33_1_013101bib41 publication-title: J. Chem. Phys. doi: 10.1063/1.3243862 – volume: 111 year: 2007 ident: cpb_33_1_013101bib44 publication-title: J. Phys. Chem. A doi: 10.1021/jp070327n – volume: 108 start-page: 4397 year: 1998 ident: cpb_33_1_013101bib50 publication-title: J. Chem. Phys. doi: 10.1063/1.475852 – volume: 81 start-page: 3383 year: 1984 ident: cpb_33_1_013101bib8 publication-title: J. Chem. Phys. doi: 10.1063/1.448088 – volume: 83 start-page: 905 year: 1979 ident: cpb_33_1_013101bib26 publication-title: J. Phys. Chem. doi: 10.1021/j100471a005 – volume: 17 start-page: 1645 year: 1996 ident: cpb_33_1_013101bib21 publication-title: Comput. Chem. doi: 10.1002/(ISSN)1096-987X – volume: 102 start-page: 235 year: 1955 ident: cpb_33_1_013101bib12 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2430036 – volume: 139 year: 2013 ident: cpb_33_1_013101bib17 publication-title: J. Chem. Phys. doi: 10.1063/1.4811653 – start-page: 305 year: 1978 ident: cpb_33_1_013101bib36 – volume: 239 year: 2019 ident: cpb_33_1_013101bib2 publication-title: J. Quant. Spectrosc. Radiat. Transfer doi: 10.1016/j.jqsrt.2019.106668 – volume: 105 year: 1996 ident: cpb_33_1_013101bib30 publication-title: J. Chem. Phys. doi: 10.1063/1.472922 – volume: 2013 year: 2013 ident: cpb_33_1_013101bib4 publication-title: Sci. World doi: 10.1155/2013/813249 – start-page: 214 year: 1979 ident: cpb_33_1_013101bib54 – volume: 76 start-page: 1910 year: 1982 ident: cpb_33_1_013101bib19 publication-title: J. Chem. Phys. doi: 10.1063/1.443164 – volume: 19 start-page: 202 year: 1986 ident: cpb_33_1_013101bib22 publication-title: Acc. Chem. Res. doi: 10.1021/ar00127a002 – volume: 152 year: 2020 ident: cpb_33_1_013101bib47 publication-title: J. Chem. Phys. doi: 10.1063/5.0005081 – volume: 121 start-page: 9313 year: 2004 ident: cpb_33_1_013101bib16 publication-title: J. Chem. Phys. doi: 10.1063/1.1804174 – volume: 346 start-page: 160 year: 2008 ident: cpb_33_1_013101bib42 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2008.01.039 – volume: 43 start-page: 1484 year: 2022 ident: cpb_33_1_013101bib43 publication-title: J. Comput. Chem. doi: 10.1002/jcc.26951 – start-page: 145 year: 2015 ident: cpb_33_1_013101bib13 – volume: 120 start-page: 2140 year: 2004 ident: cpb_33_1_013101bib31 publication-title: J. Chem. Phys. doi: 10.1063/1.1637578 – volume: 134 year: 2011 ident: cpb_33_1_013101bib40 publication-title: J. Chem. Phys. doi: 10.1063/1.3551513 – year: 2021 ident: cpb_33_1_013101bib45 – volume: 42 start-page: 21 year: 2003 ident: cpb_33_1_013101bib37 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200390043 – volume: 75 start-page: 87 year: 1980 ident: cpb_33_1_013101bib39 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(80)80470-2 – volume: 136 start-page: 566 year: 1987 ident: cpb_33_1_013101bib9 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(87)80519-5 – volume: 496 start-page: 157 year: 2010 ident: cpb_33_1_013101bib33 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.07.012 – volume: 14 start-page: 6405 year: 2018 ident: cpb_33_1_013101bib46 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b00679 – start-page: 97 year: 1988 ident: cpb_33_1_013101bib23 – volume: 115 start-page: 2695 year: 2001 ident: cpb_33_1_013101bib24 publication-title: J. Chem. Phys. doi: 10.1063/1.1384870 – volume: 101 start-page: 1113 year: 2003 ident: cpb_33_1_013101bib3 publication-title: Mol. Phys. doi: 10.1080/0026897031000068532 – volume: 126 year: 2007 ident: cpb_33_1_013101bib18 publication-title: J. Chem. Phys. doi: 10.1063/1.2718951 – volume: 313 start-page: 213 year: 2005 ident: cpb_33_1_013101bib52 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2005.01.012 – volume: 24 start-page: 1175 year: 2004 ident: cpb_33_1_013101bib5 publication-title: J. Chem. Phys. doi: 10.1063/1.1742735 – volume: 17 start-page: 759 year: 1978 ident: cpb_33_1_013101bib6 publication-title: Inorg. Chem. doi: 10.1021/ic50181a055 – volume: 85 start-page: 220 year: 1982 ident: cpb_33_1_013101bib27 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(82)80335-7 – volume: 6 start-page: 235 year: 2010 ident: cpb_33_1_013101bib20 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct9004454 – volume: 117 start-page: 326 year: 1985 ident: cpb_33_1_013101bib11 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(85)85237-4 – volume: 120 start-page: 2149 year: 2004 ident: cpb_33_1_013101bib28 publication-title: J. Chem. Phys. doi: 10.1063/1.1637579 – volume: 1 start-page: 15 year: 1972 ident: cpb_33_1_013101bib53 – ident: cpb_33_1_013101bib55 |
SSID | ssj0061023 |
Score | 2.3306353 |
Snippet | Potential energy surfaces (PESs), vibrational frequencies, and infrared spectra are calculated for
NF
3
+
using
ab initio
calculations, based on... Potential energy surfaces(PESs),vibrational frequencies,and infrared spectra are calculated for NF3+using ab initio calculations,based on UCCSD(T)/cc-pVTZ... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 13101 |
SubjectTerms | ab initio methods coupled resonance infrared spectra potential energy surfaces vibration frequencies |
Title | Ab initio potential energy surface and anharmonic vibration spectrum of NF3 |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/ad04c6 https://d.wanfangdata.com.cn/periodical/zgwl-e202401035 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7aiuDFt1hf7EEPHtImu5tkg6cilqJYPVToQQi7m90ialLaVKG_3p0k9YWIeAjkMJkk3yT7_OYbhI4lEcYQrhwZusZhQjNHeAlzFBFQAYmGtGC7X_eD3h27HPrDGjp7z4XJxlXT37KnpVBwCWFFiONt4M07UDC-LRKXqaCOlihUUoLsvZvbRTMcgCYBzLYW1tUe5U8evvRJdXvfIoMnNSIdfepsumvofvGYJcfksTXLZUvNvyk4_vM91tFqNQjFndJ0A9V0uomWCzKomm6hq47ED0AqyvA4y4FOZI11kSSIp7OJEUpjkSb2AN1r0NbFLzDrhhjjInVzMnvGmcH9Lt1Gg-7F4LznVEUXbHhomDtBocGmGNe-J7Rkga8iHTJGEyVoICNBSMKNijgxPpHCeBHTdkjGoiQiiSvoDmqkWap3EfaIcTWXEfGSiHEhJaPaU5QFxNXaOmui0wXq8biU1oiLLXHOY8AmBmziEpsmOrEwxtX_Nf3FDleB-7Cdj16fYk1AzM1zqb_3R1f7aAWuKZdbDlDDQqcP7QAkl0fFh_YGzNfR0w |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA46onhxF8c1Bz146EybpG16FLWM2-hBYW41q4jaFmdGwV9vkra4ICJ4KPTwkrbfa_bvfQ-AXY6Y1ogKj8e-9ghTxGOBJJ5AzGZAwjF2bPeLftS7IaeDcFDnOXWxMEVZd_0dc1sJBVcQ1oQ42rW8ec8mjO8y6RMRdUupJ8FUiMPYtsyTy6umK46sLoFdcTUl6nPKn2r5Mi5Nmme7KJ5cs_zu04CTzoPb5lUrnslDZzziHfH2TcXxH9-yAObqySg8qMwXwYTKl8C0I4WK4TI4O-Dw3pKLClgWI0srMsbKBQvC4fhZM6Egy6W5rP611diFL3b1bX0NXQjn8_gJFhr2U7wCrtPj68OeVydfMG7C8ciLnBabIFSFAVOcRKFIVEwIloLhiCcMIUm1SCjSIeJMBwlRZmpGEpkg6TO8Clp5kas1AAOkfUV5ggKZEMo4J1gFApMI-UqZytpgv0E-KyuJjcwdjVOaWXwyi09W4dMGewbKrG5nw1_sYO28D9u3u9fHTCEr6hb4OFz_Y1U7YObqKM3OT_pnG2DWFq92YDZBy6CotsycZMS33X_3Ds_G1z0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ab+initio+potential+energy+surface+and+anharmonic+vibration+spectrum+of+NF3&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Yan-Nan+Chen&rft.au=Jian-Gang+Xu&rft.au=Jiang-Peng+Fan&rft.au=Shuang-Xiong+Ma&rft.date=2024&rft.issn=1674-1056&rft.volume=33&rft.issue=1&rft.spage=359&rft.epage=366&rft_id=info:doi/10.1088%2F1674-1056%2Fad04c6&rft.externalDocID=zgwl_e202401035 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |