SDF-1 Molecularly Imprinted Biomimetic Scaffold as a Potential Strategy to Repair the Infarcted Myocardium

Background: In situ cardiac tissue engineering aims to heal the infarcted myocardium by guiding tissue regeneration within the patient body. A key step in this approach is the design of a bioactive scaffold, able to stimulate tissue repair at the site of damage. In the development of bioactive scaff...

Full description

Saved in:
Bibliographic Details
Published inThe open biomedical engineering journal Vol. 15; no. 1; pp. 45 - 56
Main Authors Rosellini, Elisabetta, Madeddu, Denise, Barbani, Niccoletta, Frati, Caterina, Lagrasta, Costanza, Quaini, Federico, Cascone, Maria Grazia
Format Journal Article
LanguageEnglish
Published Sharjah Bentham Open 2021
Subjects
Online AccessGet full text
ISSN1874-1207
1874-1207
DOI10.2174/1874120702115010045

Cover

Abstract Background: In situ cardiac tissue engineering aims to heal the infarcted myocardium by guiding tissue regeneration within the patient body. A key step in this approach is the design of a bioactive scaffold, able to stimulate tissue repair at the site of damage. In the development of bioactive scaffolds, molecular imprinting nanotechnology has been recently proposed as a new functionalization strategy. Objectives: In this work, Molecularly Imprinted Particles (MIP) with recognition properties towards the stromal-derived factor-1 (SDF-1) were synthesized, characterized and used for the functionalization of a biomimetic scaffold. MIP are expected to favor the enrichment of the SDF-1 bioactive molecule within the scaffold, thereby promoting myocardial regeneration. Methods: MIP were obtained by precipitation polymerization, using the SDF-1 molecule as a template. Alginate/gelatin/elastin sponges were fabricated by freeze-drying and functionalized by MIP deposition. Morphological, physicochemical and functional analyses were performed both on MIP and on MIP-modified scaffolds. A preliminary biological in vitro investigation was also carried out using rat cardiac progenitor cells (rCPCs). Results: Imprinted nanoparticles with an average diameter between 0.6 and 0.9 µm were obtained. Infrared analysis of MIP confirmed the expected chemical structure. Recognition and selectivity tests showed that MIP were able to selectively recognize and rebind the template, even after their deposition on the scaffold. In vitro biological tests showed that cell adhesion to the scaffold was promoted by MIP functionalization. Conclusion: Results obtained in the present study suggest that biomimetic alginate/gelatin/elastin sponges, functionalized by MIP with recognition properties towards SDF-1, could be successfully used for tissue engineering approaches to repair the infarcted heart.
AbstractList Background: In situ cardiac tissue engineering aims to heal the infarcted myocardium by guiding tissue regeneration within the patient body. A key step in this approach is the design of a bioactive scaffold, able to stimulate tissue repair at the site of damage. In the development of bioactive scaffolds, molecular imprinting nanotechnology has been recently proposed as a new functionalization strategy. Objectives: In this work, Molecularly Imprinted Particles (MIP) with recognition properties towards the stromal-derived factor-1 (SDF-1) were synthesized, characterized and used for the functionalization of a biomimetic scaffold. MIP are expected to favor the enrichment of the SDF-1 bioactive molecule within the scaffold, thereby promoting myocardial regeneration. Methods: MIP were obtained by precipitation polymerization, using the SDF-1 molecule as a template. Alginate/gelatin/elastin sponges were fabricated by freeze-drying and functionalized by MIP deposition. Morphological, physicochemical and functional analyses were performed both on MIP and on MIP-modified scaffolds. A preliminary biological in vitro investigation was also carried out using rat cardiac progenitor cells (rCPCs). Results: Imprinted nanoparticles with an average diameter between 0.6 and 0.9 µm were obtained. Infrared analysis of MIP confirmed the expected chemical structure. Recognition and selectivity tests showed that MIP were able to selectively recognize and rebind the template, even after their deposition on the scaffold. In vitro biological tests showed that cell adhesion to the scaffold was promoted by MIP functionalization. Conclusion: Results obtained in the present study suggest that biomimetic alginate/gelatin/elastin sponges, functionalized by MIP with recognition properties towards SDF-1, could be successfully used for tissue engineering approaches to repair the infarcted heart.
Author Madeddu, Denise
Barbani, Niccoletta
Frati, Caterina
Cascone, Maria Grazia
Quaini, Federico
Rosellini, Elisabetta
Lagrasta, Costanza
Author_xml – sequence: 1
  givenname: Elisabetta
  surname: Rosellini
  fullname: Rosellini, Elisabetta
– sequence: 2
  givenname: Denise
  surname: Madeddu
  fullname: Madeddu, Denise
– sequence: 3
  givenname: Niccoletta
  surname: Barbani
  fullname: Barbani, Niccoletta
– sequence: 4
  givenname: Caterina
  surname: Frati
  fullname: Frati, Caterina
– sequence: 5
  givenname: Costanza
  surname: Lagrasta
  fullname: Lagrasta, Costanza
– sequence: 6
  givenname: Federico
  surname: Quaini
  fullname: Quaini, Federico
– sequence: 7
  givenname: Maria Grazia
  surname: Cascone
  fullname: Cascone, Maria Grazia
BookMark eNp9kMFOwzAQRC1UJNrCF3CxxDlge-M4PkKhUIkKROEcubYDrpK4OM4hf0-ickAIcdrVaN6sdmZo0vjGInROySWjIr2iuUgpI4IwSjmhhKT8CE1HNRnlyY_9BM3adkdIBpTDFO02t8uE4rWvrO4qFaoer-p9cE20Bt84X7vaRqfxRquy9JXBqsUKP_tom-hUhTcxqGjfexw9frF75QKOHxavmlIFPWase69VMK6rT9FxqarWnn3POXpb3r0uHpLHp_vV4vox0QwET1IrIduCkVQIJiSA4RnnSqcEtjk1qbQkzzJuwAgj8xyoloaRTJt0C2BzDXN0ccjdB__Z2TYWO9-FZjhZsIyBJAQEHVzy4NLBt22wZaFdVNH5ZvjIVQUlxVht8Ue1Awu_2KGxWoX-X-oLbxd7JA
CitedBy_id crossref_primary_10_3389_fbioe_2023_1254739
crossref_primary_10_1007_s44174_024_00192_2
crossref_primary_10_2174_18741207_v16_e2205090
Cites_doi 10.1016/0968-0004(94)90166-X
10.1016/S1381-5148(99)00024-3
10.1016/j.biomaterials.2013.08.082
10.1371/journal.pone.0017750
10.1161/CIRCRESAHA.108.186742
10.1007/3-540-58908-2_3
10.1016/S0003-2670(01)01390-3
10.1016/j.aca.2005.01.052
10.1021/bm060494d
10.1096/fj.06-6558com
10.1016/j.biomaterials.2013.12.011
10.1016/j.pharmthera.2004.10.003
10.1177/0885328219886029
10.1016/j.yjmcc.2007.11.010
10.1002/app.32622
10.1016/j.scr.2011.05.003
10.1007/s10557-015-6622-5
10.1016/j.biomaterials.2012.07.005
10.1016/0021-9673(94)00820-Y
10.1016/j.addr.2017.07.011
10.1152/ajpheart.00035.2015
10.1016/j.bios.2006.12.034
10.1002/term.409
10.1161/CIRCULATIONAHA.107.718718
10.1098/rsif.2015.0254
10.1007/s10741-020-09953-9
10.3389/fphys.2019.01182
10.1016/j.biomaterials.2011.01.007
10.1088/1748-6041/5/6/065007
10.1021/ac0006526
10.1172/JCI87491
10.1016/j.msec.2013.04.058
10.1016/j.reactfunctpolym.2007.02.006
10.1016/S0140-6736(03)14232-8
ContentType Journal Article
Copyright Copyright Bentham Open 2021
Copyright_xml – notice: Copyright Bentham Open 2021
DBID AAYXX
CITATION
7QO
7TB
8FD
FR3
P64
DOI 10.2174/1874120702115010045
DatabaseName CrossRef
Biotechnology Research Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1874-1207
EndPage 56
ExternalDocumentID 10_2174_1874120702115010045
GroupedDBID ---
123
29N
2WC
5VS
AAYXX
ACIWK
ACPRK
ADBBV
ADRAZ
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CITATION
CS3
DIK
E3Z
EBS
F5P
GX1
JBO
KQ8
M~E
O5R
O5S
OK1
OVT
PGMZT
RNS
RPM
TR2
7QO
7TB
8FD
FR3
P64
ID FETCH-LOGICAL-c2375-4e936b3d917727933d5655ac403b81d49e08665d3d7d98831c9d206cd4b33e8c3
ISSN 1874-1207
IngestDate Mon Jun 30 12:02:12 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Tue Jul 01 02:03:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2375-4e936b3d917727933d5655ac403b81d49e08665d3d7d98831c9d206cd4b33e8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://openbiomedicalengineeringjournal.com/VOLUME/15/PAGE/45/PDF/
PQID 2623900371
PQPubID 2048216
PageCount 12
ParticipantIDs proquest_journals_2623900371
crossref_citationtrail_10_2174_1874120702115010045
crossref_primary_10_2174_1874120702115010045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Sharjah
PublicationPlace_xml – name: Sharjah
PublicationTitle The open biomedical engineering journal
PublicationYear 2021
Publisher Bentham Open
Publisher_xml – name: Bentham Open
References Verheyen E. (ref30) 2011; 32
Mosbach K. (ref17) 1996; 14
Haider H.Kh. (ref5) 2008; 103
Hawkins D.M. (ref35) 2006; 7
Bossi A. (ref32) 2001; 73
Lee K.W. (ref36) 2013; 34
Malik A. (ref7) 2015; 29
Tallawi M. (ref2) 2015; 12
Askari A.T. (ref4) 2003; 362
Mosbach K. (ref15) 1994; 19
Frangogiannis N.G. (ref22) 2017; 127
Steinke J. (ref14) 1995; 123
Li H. (ref23) 2020
Savi M. (ref26) 2016; 310
Song M. (ref12) 2014; 35
Fu G.Q. (ref34) 2007; 67
Rosellini E. (ref19) 2010; 118
Zhang M. (ref6) 2007; 21
Frati C. (ref28) 2020; 34
Zhang T. (ref29) 2001; 450
Theiss H.D. (ref8) 2011; 7
Rosellini E. (ref21) 2010; 5
Bocchi L. (ref25) 2011; 6
Zhang D. (ref10) 2008; 44
Segers V.F. (ref13) 2007; 116
Pacelli S. (ref3) 2017; 120
Purcell B.P. (ref11) 2012; 33
Premer C. (ref9) 2019; 10
Cormack P.A.G. (ref18) 1999; 41
Leor J. (ref1) 2005; 105
Hawkins D.M. (ref31) 2005; 542
Bonini F. (ref33) 2007; 22
Rosellini E. (ref20) 2020; 5, 67
Giuliani A. (ref24) 2011; 5
Rai R. (ref27) 2013; 33
Kempe M. (ref16) 1995; 691
References_xml – volume: 19
  start-page: 9
  year: 1994
  ident: ref15
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/0968-0004(94)90166-X
– volume: 41
  start-page: 115
  year: 1999
  ident: ref18
  publication-title: React. Funct. Polym.
  doi: 10.1016/S1381-5148(99)00024-3
– volume: 34
  start-page: 9877
  year: 2013
  ident: ref36
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.08.082
– volume: 6
  year: 2011
  ident: ref25
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017750
– volume: 103
  start-page: 1300
  year: 2008
  ident: ref5
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.108.186742
– volume: 123
  start-page: 80
  year: 1995
  ident: ref14
  publication-title: Adv. Polym. Sci.
  doi: 10.1007/3-540-58908-2_3
– volume: 450
  start-page: 53
  year: 2001
  ident: ref29
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)01390-3
– volume: 542
  start-page: 61
  year: 2005
  ident: ref31
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2005.01.052
– volume: 7
  start-page: 2560
  year: 2006
  ident: ref35
  publication-title: Biomacromolecules
  doi: 10.1021/bm060494d
– volume: 21
  start-page: 3197
  year: 2007
  ident: ref6
  publication-title: FASEB J.
  doi: 10.1096/fj.06-6558com
– volume: 5, 67
  start-page: 19
  year: 2020
  ident: ref20
  publication-title: Biomimetics
– volume: 35
  start-page: 2436
  year: 2014
  ident: ref12
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.12.011
– volume: 14
  start-page: 163
  year: 1996
  ident: ref17
  publication-title: Biotechnology (N. Y.)
– volume: 105
  start-page: 151
  year: 2005
  ident: ref1
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2004.10.003
– volume: 34
  start-page: 975
  year: 2020
  ident: ref28
  publication-title: J. Biomater. Appl.
  doi: 10.1177/0885328219886029
– volume: 44
  start-page: 281
  year: 2008
  ident: ref10
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2007.11.010
– volume: 118
  start-page: 3236
  year: 2010
  ident: ref19
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.32622
– volume: 7
  start-page: 244
  year: 2011
  ident: ref8
  publication-title: Stem Cell Res. (Amst.)
  doi: 10.1016/j.scr.2011.05.003
– volume: 29
  start-page: 589
  year: 2015
  ident: ref7
  publication-title: Cardiovasc. Drugs Ther.
  doi: 10.1007/s10557-015-6622-5
– volume: 33
  start-page: 7849
  year: 2012
  ident: ref11
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.07.005
– volume: 691
  start-page: 317
  year: 1995
  ident: ref16
  publication-title: J. Chromatogr. A
  doi: 10.1016/0021-9673(94)00820-Y
– volume: 120
  start-page: 50
  year: 2017
  ident: ref3
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2017.07.011
– volume: 310
  start-page: H1622
  year: 2016
  ident: ref26
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00035.2015
– volume: 22
  start-page: 2322
  year: 2007
  ident: ref33
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2006.12.034
– volume: 5
  start-page: e168
  year: 2011
  ident: ref24
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.409
– volume: 116
  start-page: 1683
  year: 2007
  ident: ref13
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.718718
– volume: 12
  start-page: 24
  year: 2015
  ident: ref2
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2015.0254
– year: 2020
  ident: ref23
  publication-title: Heart Fail. Rev.
  doi: 10.1007/s10741-020-09953-9
– volume: 10
  start-page: 11
  year: 2019
  ident: ref9
  publication-title: Front. Physiol
  doi: 10.3389/fphys.2019.01182
– volume: 32
  start-page: 3008
  year: 2011
  ident: ref30
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.01.007
– volume: 5
  year: 2010
  ident: ref21
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/5/6/065007
– volume: 73
  start-page: 5281
  year: 2001
  ident: ref32
  publication-title: Anal. Chem.
  doi: 10.1021/ac0006526
– volume: 127
  start-page: 1600
  year: 2017
  ident: ref22
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI87491
– volume: 33
  start-page: 3677
  year: 2013
  ident: ref27
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2013.04.058
– volume: 67
  start-page: 442
  year: 2007
  ident: ref34
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2007.02.006
– volume: 362
  start-page: 697
  year: 2003
  ident: ref4
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)14232-8
SSID ssj0063153
Score 2.1890593
Snippet Background: In situ cardiac tissue engineering aims to heal the infarcted myocardium by guiding tissue regeneration within the patient body. A key step in this...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 45
SubjectTerms Alginates
Alginic acid
Biological activity
Biomimetics
Cell adhesion
Chemical precipitation
Deposition
Elastin
Freeze drying
Gelatin
Heart
Infrared analysis
Molecular imprinting
Myocardium
Nanoparticles
Nanotechnology
Progenitor cells
Recognition
Regeneration
Scaffolds
SDF-1 protein
Selectivity
Sponges
Stem cells
Tissue engineering
Title SDF-1 Molecularly Imprinted Biomimetic Scaffold as a Potential Strategy to Repair the Infarcted Myocardium
URI https://www.proquest.com/docview/2623900371
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBay7rIdhj2xrt2gw26Zt9iSbem4R4KiaLoBS4DcDFmSsRR5DIkDrD30t5e05EeLoNh2MQzHlB3xs0iJ1EdC3mN0Cew8D5ROdMBVYQJVyCQwWgtjikjkVRLN-Dw5mfLTWTzr9f50spZ2Zf5RX-3dV_I_WoVroFfcJfsPmm0ahQtwDvqFI2gYjn-l45_fRkEIn6WvcLu4RLLfDTJAGCwyuZwvcYsifL-qKNYLgzVlVP_HusQMIVVFpJEnovI_wRFX843PpSwA_djG-BIsHSDI0zVctMjColt9t3W_0rJtaQ373Vf3tRuR-Hvus8i2uNhbNtZgrIw1ZufGvtW8jRVVkRAnBXAFvHalRghcv4MRn6q6qxdRu27xBf7qL7XsY96Ms0VuABYp8ii6SrjNCB13hljHPnl35MeZFS5CgDhKw5PA00U2vLg1dHVw__x7NpqenWWT4WzygDyM0jTEqgvj62FtwxMGhsBxVGHDn_Y0e9uPuW3GK99k8pQ88ZMK-tkh5Bnp2dVz8rhDNfmCXFRYoR2s0AYrtMUKrbFC1ZYq2mCF1lih5Zo6rFDACm2wQlusvCTT0XDy9STwdTYCHbE0DriVLMmZgZk7eLOSMQNefqw0H7AcpjNc2gGyIhpmUiOFYKGWJhok2vCcMSs0e0UOVuuVfU2oSsM8lUWap0JwqbTQkluk-A-ZHdhIHpKo7rVMexJ6rIWyyGAyil2d7enqQ_KhEfrtOFjuv_24VkfmEb_NInDzZcVP-eb-n4_II8SpW2U7JgflZmffgt9Z5u8qiNwA4AOEpA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SDF-1+Molecularly+Imprinted+Biomimetic+Scaffold+as+a+Potential+Strategy+to+Repair+the+Infarcted+Myocardium&rft.jtitle=The+open+biomedical+engineering+journal&rft.au=Rosellini%2C+Elisabetta&rft.au=Madeddu%2C+Denise&rft.au=Barbani%2C+Niccoletta&rft.au=Frati%2C+Caterina&rft.date=2021&rft.pub=Bentham+Open&rft.eissn=1874-1207&rft.volume=15&rft.spage=45&rft_id=info:doi/10.2174%2F1874120702115010045&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-1207&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-1207&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-1207&client=summon