SDF-1 Molecularly Imprinted Biomimetic Scaffold as a Potential Strategy to Repair the Infarcted Myocardium
Background: In situ cardiac tissue engineering aims to heal the infarcted myocardium by guiding tissue regeneration within the patient body. A key step in this approach is the design of a bioactive scaffold, able to stimulate tissue repair at the site of damage. In the development of bioactive scaff...
Saved in:
Published in | The open biomedical engineering journal Vol. 15; no. 1; pp. 45 - 56 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Sharjah
Bentham Open
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1874-1207 1874-1207 |
DOI | 10.2174/1874120702115010045 |
Cover
Abstract | Background: In situ cardiac tissue engineering aims to heal the infarcted myocardium by guiding tissue regeneration within the patient body. A key step in this approach is the design of a bioactive scaffold, able to stimulate tissue repair at the site of damage. In the development of bioactive scaffolds, molecular imprinting nanotechnology has been recently proposed as a new functionalization strategy. Objectives: In this work, Molecularly Imprinted Particles (MIP) with recognition properties towards the stromal-derived factor-1 (SDF-1) were synthesized, characterized and used for the functionalization of a biomimetic scaffold. MIP are expected to favor the enrichment of the SDF-1 bioactive molecule within the scaffold, thereby promoting myocardial regeneration. Methods: MIP were obtained by precipitation polymerization, using the SDF-1 molecule as a template. Alginate/gelatin/elastin sponges were fabricated by freeze-drying and functionalized by MIP deposition. Morphological, physicochemical and functional analyses were performed both on MIP and on MIP-modified scaffolds. A preliminary biological in vitro investigation was also carried out using rat cardiac progenitor cells (rCPCs). Results: Imprinted nanoparticles with an average diameter between 0.6 and 0.9 µm were obtained. Infrared analysis of MIP confirmed the expected chemical structure. Recognition and selectivity tests showed that MIP were able to selectively recognize and rebind the template, even after their deposition on the scaffold. In vitro biological tests showed that cell adhesion to the scaffold was promoted by MIP functionalization. Conclusion: Results obtained in the present study suggest that biomimetic alginate/gelatin/elastin sponges, functionalized by MIP with recognition properties towards SDF-1, could be successfully used for tissue engineering approaches to repair the infarcted heart. |
---|---|
AbstractList | Background: In situ cardiac tissue engineering aims to heal the infarcted myocardium by guiding tissue regeneration within the patient body. A key step in this approach is the design of a bioactive scaffold, able to stimulate tissue repair at the site of damage. In the development of bioactive scaffolds, molecular imprinting nanotechnology has been recently proposed as a new functionalization strategy. Objectives: In this work, Molecularly Imprinted Particles (MIP) with recognition properties towards the stromal-derived factor-1 (SDF-1) were synthesized, characterized and used for the functionalization of a biomimetic scaffold. MIP are expected to favor the enrichment of the SDF-1 bioactive molecule within the scaffold, thereby promoting myocardial regeneration. Methods: MIP were obtained by precipitation polymerization, using the SDF-1 molecule as a template. Alginate/gelatin/elastin sponges were fabricated by freeze-drying and functionalized by MIP deposition. Morphological, physicochemical and functional analyses were performed both on MIP and on MIP-modified scaffolds. A preliminary biological in vitro investigation was also carried out using rat cardiac progenitor cells (rCPCs). Results: Imprinted nanoparticles with an average diameter between 0.6 and 0.9 µm were obtained. Infrared analysis of MIP confirmed the expected chemical structure. Recognition and selectivity tests showed that MIP were able to selectively recognize and rebind the template, even after their deposition on the scaffold. In vitro biological tests showed that cell adhesion to the scaffold was promoted by MIP functionalization. Conclusion: Results obtained in the present study suggest that biomimetic alginate/gelatin/elastin sponges, functionalized by MIP with recognition properties towards SDF-1, could be successfully used for tissue engineering approaches to repair the infarcted heart. |
Author | Madeddu, Denise Barbani, Niccoletta Frati, Caterina Cascone, Maria Grazia Quaini, Federico Rosellini, Elisabetta Lagrasta, Costanza |
Author_xml | – sequence: 1 givenname: Elisabetta surname: Rosellini fullname: Rosellini, Elisabetta – sequence: 2 givenname: Denise surname: Madeddu fullname: Madeddu, Denise – sequence: 3 givenname: Niccoletta surname: Barbani fullname: Barbani, Niccoletta – sequence: 4 givenname: Caterina surname: Frati fullname: Frati, Caterina – sequence: 5 givenname: Costanza surname: Lagrasta fullname: Lagrasta, Costanza – sequence: 6 givenname: Federico surname: Quaini fullname: Quaini, Federico – sequence: 7 givenname: Maria Grazia surname: Cascone fullname: Cascone, Maria Grazia |
BookMark | eNp9kMFOwzAQRC1UJNrCF3CxxDlge-M4PkKhUIkKROEcubYDrpK4OM4hf0-ickAIcdrVaN6sdmZo0vjGInROySWjIr2iuUgpI4IwSjmhhKT8CE1HNRnlyY_9BM3adkdIBpTDFO02t8uE4rWvrO4qFaoer-p9cE20Bt84X7vaRqfxRquy9JXBqsUKP_tom-hUhTcxqGjfexw9frF75QKOHxavmlIFPWase69VMK6rT9FxqarWnn3POXpb3r0uHpLHp_vV4vox0QwET1IrIduCkVQIJiSA4RnnSqcEtjk1qbQkzzJuwAgj8xyoloaRTJt0C2BzDXN0ccjdB__Z2TYWO9-FZjhZsIyBJAQEHVzy4NLBt22wZaFdVNH5ZvjIVQUlxVht8Ue1Awu_2KGxWoX-X-oLbxd7JA |
CitedBy_id | crossref_primary_10_3389_fbioe_2023_1254739 crossref_primary_10_1007_s44174_024_00192_2 crossref_primary_10_2174_18741207_v16_e2205090 |
Cites_doi | 10.1016/0968-0004(94)90166-X 10.1016/S1381-5148(99)00024-3 10.1016/j.biomaterials.2013.08.082 10.1371/journal.pone.0017750 10.1161/CIRCRESAHA.108.186742 10.1007/3-540-58908-2_3 10.1016/S0003-2670(01)01390-3 10.1016/j.aca.2005.01.052 10.1021/bm060494d 10.1096/fj.06-6558com 10.1016/j.biomaterials.2013.12.011 10.1016/j.pharmthera.2004.10.003 10.1177/0885328219886029 10.1016/j.yjmcc.2007.11.010 10.1002/app.32622 10.1016/j.scr.2011.05.003 10.1007/s10557-015-6622-5 10.1016/j.biomaterials.2012.07.005 10.1016/0021-9673(94)00820-Y 10.1016/j.addr.2017.07.011 10.1152/ajpheart.00035.2015 10.1016/j.bios.2006.12.034 10.1002/term.409 10.1161/CIRCULATIONAHA.107.718718 10.1098/rsif.2015.0254 10.1007/s10741-020-09953-9 10.3389/fphys.2019.01182 10.1016/j.biomaterials.2011.01.007 10.1088/1748-6041/5/6/065007 10.1021/ac0006526 10.1172/JCI87491 10.1016/j.msec.2013.04.058 10.1016/j.reactfunctpolym.2007.02.006 10.1016/S0140-6736(03)14232-8 |
ContentType | Journal Article |
Copyright | Copyright Bentham Open 2021 |
Copyright_xml | – notice: Copyright Bentham Open 2021 |
DBID | AAYXX CITATION 7QO 7TB 8FD FR3 P64 |
DOI | 10.2174/1874120702115010045 |
DatabaseName | CrossRef Biotechnology Research Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1874-1207 |
EndPage | 56 |
ExternalDocumentID | 10_2174_1874120702115010045 |
GroupedDBID | --- 123 29N 2WC 5VS AAYXX ACIWK ACPRK ADBBV ADRAZ AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CITATION CS3 DIK E3Z EBS F5P GX1 JBO KQ8 M~E O5R O5S OK1 OVT PGMZT RNS RPM TR2 7QO 7TB 8FD FR3 P64 |
ID | FETCH-LOGICAL-c2375-4e936b3d917727933d5655ac403b81d49e08665d3d7d98831c9d206cd4b33e8c3 |
ISSN | 1874-1207 |
IngestDate | Mon Jun 30 12:02:12 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 Tue Jul 01 02:03:57 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2375-4e936b3d917727933d5655ac403b81d49e08665d3d7d98831c9d206cd4b33e8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://openbiomedicalengineeringjournal.com/VOLUME/15/PAGE/45/PDF/ |
PQID | 2623900371 |
PQPubID | 2048216 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2623900371 crossref_citationtrail_10_2174_1874120702115010045 crossref_primary_10_2174_1874120702115010045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Sharjah |
PublicationPlace_xml | – name: Sharjah |
PublicationTitle | The open biomedical engineering journal |
PublicationYear | 2021 |
Publisher | Bentham Open |
Publisher_xml | – name: Bentham Open |
References | Verheyen E. (ref30) 2011; 32 Mosbach K. (ref17) 1996; 14 Haider H.Kh. (ref5) 2008; 103 Hawkins D.M. (ref35) 2006; 7 Bossi A. (ref32) 2001; 73 Lee K.W. (ref36) 2013; 34 Malik A. (ref7) 2015; 29 Tallawi M. (ref2) 2015; 12 Askari A.T. (ref4) 2003; 362 Mosbach K. (ref15) 1994; 19 Frangogiannis N.G. (ref22) 2017; 127 Steinke J. (ref14) 1995; 123 Li H. (ref23) 2020 Savi M. (ref26) 2016; 310 Song M. (ref12) 2014; 35 Fu G.Q. (ref34) 2007; 67 Rosellini E. (ref19) 2010; 118 Zhang M. (ref6) 2007; 21 Frati C. (ref28) 2020; 34 Zhang T. (ref29) 2001; 450 Theiss H.D. (ref8) 2011; 7 Rosellini E. (ref21) 2010; 5 Bocchi L. (ref25) 2011; 6 Zhang D. (ref10) 2008; 44 Segers V.F. (ref13) 2007; 116 Pacelli S. (ref3) 2017; 120 Purcell B.P. (ref11) 2012; 33 Premer C. (ref9) 2019; 10 Cormack P.A.G. (ref18) 1999; 41 Leor J. (ref1) 2005; 105 Hawkins D.M. (ref31) 2005; 542 Bonini F. (ref33) 2007; 22 Rosellini E. (ref20) 2020; 5, 67 Giuliani A. (ref24) 2011; 5 Rai R. (ref27) 2013; 33 Kempe M. (ref16) 1995; 691 |
References_xml | – volume: 19 start-page: 9 year: 1994 ident: ref15 publication-title: Trends Biochem. Sci. doi: 10.1016/0968-0004(94)90166-X – volume: 41 start-page: 115 year: 1999 ident: ref18 publication-title: React. Funct. Polym. doi: 10.1016/S1381-5148(99)00024-3 – volume: 34 start-page: 9877 year: 2013 ident: ref36 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.08.082 – volume: 6 year: 2011 ident: ref25 publication-title: PLoS One doi: 10.1371/journal.pone.0017750 – volume: 103 start-page: 1300 year: 2008 ident: ref5 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.108.186742 – volume: 123 start-page: 80 year: 1995 ident: ref14 publication-title: Adv. Polym. Sci. doi: 10.1007/3-540-58908-2_3 – volume: 450 start-page: 53 year: 2001 ident: ref29 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(01)01390-3 – volume: 542 start-page: 61 year: 2005 ident: ref31 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2005.01.052 – volume: 7 start-page: 2560 year: 2006 ident: ref35 publication-title: Biomacromolecules doi: 10.1021/bm060494d – volume: 21 start-page: 3197 year: 2007 ident: ref6 publication-title: FASEB J. doi: 10.1096/fj.06-6558com – volume: 5, 67 start-page: 19 year: 2020 ident: ref20 publication-title: Biomimetics – volume: 35 start-page: 2436 year: 2014 ident: ref12 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.12.011 – volume: 14 start-page: 163 year: 1996 ident: ref17 publication-title: Biotechnology (N. Y.) – volume: 105 start-page: 151 year: 2005 ident: ref1 publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2004.10.003 – volume: 34 start-page: 975 year: 2020 ident: ref28 publication-title: J. Biomater. Appl. doi: 10.1177/0885328219886029 – volume: 44 start-page: 281 year: 2008 ident: ref10 publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2007.11.010 – volume: 118 start-page: 3236 year: 2010 ident: ref19 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.32622 – volume: 7 start-page: 244 year: 2011 ident: ref8 publication-title: Stem Cell Res. (Amst.) doi: 10.1016/j.scr.2011.05.003 – volume: 29 start-page: 589 year: 2015 ident: ref7 publication-title: Cardiovasc. Drugs Ther. doi: 10.1007/s10557-015-6622-5 – volume: 33 start-page: 7849 year: 2012 ident: ref11 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.07.005 – volume: 691 start-page: 317 year: 1995 ident: ref16 publication-title: J. Chromatogr. A doi: 10.1016/0021-9673(94)00820-Y – volume: 120 start-page: 50 year: 2017 ident: ref3 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2017.07.011 – volume: 310 start-page: H1622 year: 2016 ident: ref26 publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00035.2015 – volume: 22 start-page: 2322 year: 2007 ident: ref33 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2006.12.034 – volume: 5 start-page: e168 year: 2011 ident: ref24 publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.409 – volume: 116 start-page: 1683 year: 2007 ident: ref13 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.718718 – volume: 12 start-page: 24 year: 2015 ident: ref2 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2015.0254 – year: 2020 ident: ref23 publication-title: Heart Fail. Rev. doi: 10.1007/s10741-020-09953-9 – volume: 10 start-page: 11 year: 2019 ident: ref9 publication-title: Front. Physiol doi: 10.3389/fphys.2019.01182 – volume: 32 start-page: 3008 year: 2011 ident: ref30 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.01.007 – volume: 5 year: 2010 ident: ref21 publication-title: Biomed. Mater. doi: 10.1088/1748-6041/5/6/065007 – volume: 73 start-page: 5281 year: 2001 ident: ref32 publication-title: Anal. Chem. doi: 10.1021/ac0006526 – volume: 127 start-page: 1600 year: 2017 ident: ref22 publication-title: J. Clin. Invest. doi: 10.1172/JCI87491 – volume: 33 start-page: 3677 year: 2013 ident: ref27 publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2013.04.058 – volume: 67 start-page: 442 year: 2007 ident: ref34 publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2007.02.006 – volume: 362 start-page: 697 year: 2003 ident: ref4 publication-title: Lancet doi: 10.1016/S0140-6736(03)14232-8 |
SSID | ssj0063153 |
Score | 2.1890593 |
Snippet | Background: In situ cardiac tissue engineering aims to heal the infarcted myocardium by guiding tissue regeneration within the patient body. A key step in this... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 45 |
SubjectTerms | Alginates Alginic acid Biological activity Biomimetics Cell adhesion Chemical precipitation Deposition Elastin Freeze drying Gelatin Heart Infrared analysis Molecular imprinting Myocardium Nanoparticles Nanotechnology Progenitor cells Recognition Regeneration Scaffolds SDF-1 protein Selectivity Sponges Stem cells Tissue engineering |
Title | SDF-1 Molecularly Imprinted Biomimetic Scaffold as a Potential Strategy to Repair the Infarcted Myocardium |
URI | https://www.proquest.com/docview/2623900371 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBay7rIdhj2xrt2gw26Zt9iSbem4R4KiaLoBS4DcDFmSsRR5DIkDrD30t5e05EeLoNh2MQzHlB3xs0iJ1EdC3mN0Cew8D5ROdMBVYQJVyCQwWgtjikjkVRLN-Dw5mfLTWTzr9f50spZ2Zf5RX-3dV_I_WoVroFfcJfsPmm0ahQtwDvqFI2gYjn-l45_fRkEIn6WvcLu4RLLfDTJAGCwyuZwvcYsifL-qKNYLgzVlVP_HusQMIVVFpJEnovI_wRFX843PpSwA_djG-BIsHSDI0zVctMjColt9t3W_0rJtaQ373Vf3tRuR-Hvus8i2uNhbNtZgrIw1ZufGvtW8jRVVkRAnBXAFvHalRghcv4MRn6q6qxdRu27xBf7qL7XsY96Ms0VuABYp8ii6SrjNCB13hljHPnl35MeZFS5CgDhKw5PA00U2vLg1dHVw__x7NpqenWWT4WzygDyM0jTEqgvj62FtwxMGhsBxVGHDn_Y0e9uPuW3GK99k8pQ88ZMK-tkh5Bnp2dVz8rhDNfmCXFRYoR2s0AYrtMUKrbFC1ZYq2mCF1lih5Zo6rFDACm2wQlusvCTT0XDy9STwdTYCHbE0DriVLMmZgZk7eLOSMQNefqw0H7AcpjNc2gGyIhpmUiOFYKGWJhok2vCcMSs0e0UOVuuVfU2oSsM8lUWap0JwqbTQkluk-A-ZHdhIHpKo7rVMexJ6rIWyyGAyil2d7enqQ_KhEfrtOFjuv_24VkfmEb_NInDzZcVP-eb-n4_II8SpW2U7JgflZmffgt9Z5u8qiNwA4AOEpA |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SDF-1+Molecularly+Imprinted+Biomimetic+Scaffold+as+a+Potential+Strategy+to+Repair+the+Infarcted+Myocardium&rft.jtitle=The+open+biomedical+engineering+journal&rft.au=Rosellini%2C+Elisabetta&rft.au=Madeddu%2C+Denise&rft.au=Barbani%2C+Niccoletta&rft.au=Frati%2C+Caterina&rft.date=2021&rft.pub=Bentham+Open&rft.eissn=1874-1207&rft.volume=15&rft.spage=45&rft_id=info:doi/10.2174%2F1874120702115010045&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-1207&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-1207&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-1207&client=summon |