Ultrastable 2D material-wrapped copper nanowires for high-performance flexible and transparent energy devices

Wrapping metallic nanomaterials with two-dimensional (2D) materials can significantly improve the physical properties required for various electronic and catalytic applications. However, synthesizing 2D material-wrapped metal nanowires with highly organized shell morphology is still difficult becaus...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 106; p. 108067
Main Authors Kim, Jongyoun, Kim, Minkyoung, Jung, Hyeonwoo, Park, Jaehyoung, Lee, Youngu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2023
Subjects
Online AccessGet full text
ISSN2211-2855
DOI10.1016/j.nanoen.2022.108067

Cover

Abstract Wrapping metallic nanomaterials with two-dimensional (2D) materials can significantly improve the physical properties required for various electronic and catalytic applications. However, synthesizing 2D material-wrapped metal nanowires with highly organized shell morphology is still difficult because of their large surface area and high aspect ratio. We propose a simple and practical method for synthesizing 2D material-wrapped copper nanowires (CuNWs) with highly organized shell morphology by using 2D quantum dot (QD) assembly and flash light irradiation under low temperature and non-vacuum conditions. A uniform and thin layer of QDs comprising 2D material such as graphene or hexagonal boron nitride is constructed on the CuNW by using a solution process. The 2D QD-wrapped CuNW is then subjected to flash light irradiation to realize highly organized shell morphology. Microstructural observations showed that the flash light irradiation reconstructs the shell structure and improves crystal quality without structural deformation. The 2D material-wrapped CuNWs were used to fabricate transparent conducting electrodes (TCEs) exhibited outstanding oxidation stability, chemical stability, and mechanical durability. These TCEs were applied to realize high-performance transparent supercapacitors and heaters. In particular, the transparent supercapacitors based on the graphene-wrapped CuNW TCE demonstrated excellent capacitive behavior under acidic electrolyte conditions. They showed the highest areal capacitance (18.97 mF cm−2) compared to other metal nanowire-based transparent supercapacitors. Finally, a novel method for fabricating carbon and boron nitride nanotubes by wet-etching the core CuNW of the 2D material-wrapped CuNWs was successfully developed. [Display omitted] •2D material-wrapped copper nanowires were successfully synthesized.•TCEs based on the 2D material-wrapped CuNW exhibited outstanding stability.•Transparent supercapacitors based on the graphene-wrapped CuNW TCE showed the highest areal capacitance (18.97 mF cm−2).•2D material nanotubes were fabricated by wet-etching the core CuNW.
AbstractList Wrapping metallic nanomaterials with two-dimensional (2D) materials can significantly improve the physical properties required for various electronic and catalytic applications. However, synthesizing 2D material-wrapped metal nanowires with highly organized shell morphology is still difficult because of their large surface area and high aspect ratio. We propose a simple and practical method for synthesizing 2D material-wrapped copper nanowires (CuNWs) with highly organized shell morphology by using 2D quantum dot (QD) assembly and flash light irradiation under low temperature and non-vacuum conditions. A uniform and thin layer of QDs comprising 2D material such as graphene or hexagonal boron nitride is constructed on the CuNW by using a solution process. The 2D QD-wrapped CuNW is then subjected to flash light irradiation to realize highly organized shell morphology. Microstructural observations showed that the flash light irradiation reconstructs the shell structure and improves crystal quality without structural deformation. The 2D material-wrapped CuNWs were used to fabricate transparent conducting electrodes (TCEs) exhibited outstanding oxidation stability, chemical stability, and mechanical durability. These TCEs were applied to realize high-performance transparent supercapacitors and heaters. In particular, the transparent supercapacitors based on the graphene-wrapped CuNW TCE demonstrated excellent capacitive behavior under acidic electrolyte conditions. They showed the highest areal capacitance (18.97 mF cm−2) compared to other metal nanowire-based transparent supercapacitors. Finally, a novel method for fabricating carbon and boron nitride nanotubes by wet-etching the core CuNW of the 2D material-wrapped CuNWs was successfully developed. [Display omitted] •2D material-wrapped copper nanowires were successfully synthesized.•TCEs based on the 2D material-wrapped CuNW exhibited outstanding stability.•Transparent supercapacitors based on the graphene-wrapped CuNW TCE showed the highest areal capacitance (18.97 mF cm−2).•2D material nanotubes were fabricated by wet-etching the core CuNW.
ArticleNumber 108067
Author Jung, Hyeonwoo
Kim, Jongyoun
Park, Jaehyoung
Kim, Minkyoung
Lee, Youngu
Author_xml – sequence: 1
  givenname: Jongyoun
  surname: Kim
  fullname: Kim, Jongyoun
– sequence: 2
  givenname: Minkyoung
  surname: Kim
  fullname: Kim, Minkyoung
– sequence: 3
  givenname: Hyeonwoo
  surname: Jung
  fullname: Jung, Hyeonwoo
– sequence: 4
  givenname: Jaehyoung
  surname: Park
  fullname: Park, Jaehyoung
– sequence: 5
  givenname: Youngu
  orcidid: 0000-0001-5014-1117
  surname: Lee
  fullname: Lee, Youngu
  email: youngulee@dgist.ac.kr
BookMark eNqFkM9OwzAMh3MYEgP2BhzyAh1JurYpByQ0_kqTuLBz5CXulqlNqyTa2NuTqZw4gC-2LP0-2d8VmbjeISG3nM054-Xdfu7A9ejmggmRVpKV1YRMheA8E7IoLskshD1LVRa84mJKunUbPYQImxapeKIdRPQW2uzoYRjQUN2n5umZe7QeA216T3d2u8vSOs0dOI20afHLnhHgDE1AFwbw6CJFh357ogYPVmO4IRcNtAFnP_2arF-eP5dv2erj9X35uMq0yMuYNbJsUJaFMJoLI2HBGQNRLDZSVBvQRkhEzXVdGJ7zStayygvW6DrnNVSAkF-T-5GrfR-Cx0ZpGyHa3qXbbKs4U2dfaq9GX-rsS42-UnjxKzx424E__Rd7GGOYHjtY9Cpoi0mOSdp0VKa3fwO-ARUtjUk
CitedBy_id crossref_primary_10_1016_j_cej_2024_154001
crossref_primary_10_1016_j_snb_2024_135730
crossref_primary_10_1021_acsami_3c13443
crossref_primary_10_1007_s40820_024_01483_5
crossref_primary_10_1021_acsomega_4c09165
crossref_primary_10_1016_j_aca_2024_343537
crossref_primary_10_1039_D4CP03242J
crossref_primary_10_1002_adfm_202300686
crossref_primary_10_1002_admt_202300972
crossref_primary_10_1002_smtd_202300908
crossref_primary_10_1016_j_jmrt_2023_11_286
crossref_primary_10_1038_s41467_023_44586_0
Cites_doi 10.1021/jacs.7b02884
10.1021/acsnano.0c00109
10.1021/acsnano.5b07651
10.1039/C9RA04404C
10.1039/c2jm15944a
10.1021/acsnano.5b00053
10.1021/acs.chemmater.8b01333
10.1021/acscatal.9b00726
10.1007/s13233-021-9076-6
10.1021/acsami.9b00838
10.1021/jacs.5b12715
10.1007/s12274-017-1512-8
10.1007/s13233-021-9005-8
10.1002/adfm.201201824
10.1016/j.electacta.2016.01.003
10.1021/acsami.9b13417
10.1002/smtd.202100900
10.1039/C5EE03694A
10.1007/s12274-018-2029-5
10.1016/j.carbon.2014.09.076
10.1021/acsnano.6b03626
10.1021/nl034765r
10.1002/adfm.201300124
10.1038/s41598-018-31903-7
10.1038/s41929-020-0440-2
10.1007/s13233-021-9075-7
10.1039/C9EE01000A
10.1021/acsami.1c21223
10.1007/s13233-021-9017-4
10.1021/acs.nanolett.1c00197
10.1088/0957-4484/22/36/365306
10.1021/acs.jpcc.7b00239
10.1038/s41929-020-00504-x
10.1021/ja902348k
10.1021/acs.nanolett.6b05287
10.1002/aenm.201600813
10.1021/acs.nanolett.7b02357
10.1039/C8TA11599K
10.1021/cr100449n
10.1002/anie.202011956
10.1016/j.nanoen.2020.104638
10.1021/acs.chemrev.8b00745
10.1039/c3nr02320f
10.1002/adma.202001291
10.1038/srep16736
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2022.108067
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2022_108067
S2211285522011454
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c236t-f86fe8652dc12d8a4100a254b827bacd28eec1c95d13178987350fc9319a7aea3
IEDL.DBID AIKHN
ISSN 2211-2855
IngestDate Thu Apr 24 22:57:24 EDT 2025
Tue Jul 01 00:57:00 EDT 2025
Fri Feb 23 02:39:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Supercapacitor
2D material-wrapped copper nanowire
Transparent electronic device
Flash light irradiation
2D quantum dot assembly
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-f86fe8652dc12d8a4100a254b827bacd28eec1c95d13178987350fc9319a7aea3
ORCID 0000-0001-5014-1117
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2022_108067
crossref_primary_10_1016_j_nanoen_2022_108067
elsevier_sciencedirect_doi_10_1016_j_nanoen_2022_108067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sun, Fu, Gao, Zheng, Li, Chen, Bao (bib28) 2017; 10
Zhong, Lee, Kang, Kwon, Choi, Kim, Kim, Lee, Woo, Moon (bib38) 2016; 8
Zhang, Han, Zhu, Zhang, Li, Gao, Wu, Yang, Liu, Baaziz, Ersen, Gu, Miller, Liu (bib6) 2020; 3
Dou, Cui, Yu, Khanarian, Eaton, Yang, Resasco, Schildknecht, Schierle-Arndt, Yang (bib31) 2016; 10
Lee, Lee, Ahn, Jeong, Lee, Lee (bib24) 2013; 5
Shen, Li, Yi, Zhang, Ma (bib40) 2011; 22
Liu, Cui, Yu, Becknell, Sun, Khanarian, Kim, Dou, Dehestani, Schierle-Arndt, Yang (bib4) 2017; 139
Lee, Lee, Ahn, Lee (bib25) 2015; 81
Tang, Yuan, Cai, Fu, Ma (bib45) 2016; 6
Liu, Wang, Ge, Wang, Lu, Zhao, Tang, Soomro, Hong, Yang, Xu, Li, Chen, Cai, Kang (bib1) 2020; 14
Kim, Park, Nhan, Hoang, Cho, Choi (bib44) 2021; 29
Ho, Lin (bib3) 2019; 7
Xie, Xia, Li, Yang, Sun, Chan, Fisher, Wang (bib19) 2016; 9
Ahn, Jeong, Lee, Lee (bib16) 2015; 9
Chen, Chen, Qin, Wang, Deng, Feng (bib48) 2021; 29
Tan, Shu, Abbott, Zhao, Liu, Qu, Chen, Zhu, Liu, Wu (bib15) 2019; 9
Strickler, Escudero-Escribano, Jaramillo (bib14) 2017; 17
Zhu, Hartel, Yu, Garrido, Kim, Lee, Bandaru, Guan, Lin, Emaminejad, Barros, Ahadian, Kim, Sun, Jucaud, Dokmeci, Weiss, Yan, Khademhosseini (bib2) 2022; 6
Wang, Zhang, Wang, Zhang, Guo, Cheng, Gu, Liu, Chen (bib34) 2020; 71
Huang, Liu, Jafari, Siaj, Wang, Xiao, Ma (bib9) 2021; 31
Kim, Hwang, Kim, Jung, Bae, Lee (bib36) 2022; 14
Huang, Zhi, Jiang, Golberg, Bando, Tanaka (bib49) 2013; 23
Fan, Luo, Huang, Li, Chen, Wang, Hu, Zhang (bib22) 2016; 138
Lee, Han, Cho, Cho, Jeong (bib37) 2021; 29
Zhang, Zhao, Qu, Liu, Wu, Chen, Huang (bib5) 2021; 17
Tang, Li, Ji, Teng, Tai, Ye, Wei, Lau (bib41) 2012; 22
Huo, Kim, Lyu, Shi, Wiley, Xia (bib20) 2019; 119
Chen, Das, Jeong, Khan, Janes, Alam (bib23) 2013; 23
Ding, Tian (bib32) 2019; 9
Park, Woo, Kim, Lee, Ahn, Song, Kim, Oh, Kwon, Lee (bib35) 2019; 11
Lyu, Zhu, Xie, Zhang, Chen, Chen, Tian, Chi, Shao, Xia (bib17) 2021; 60
Sun, Xia (bib21) 2003; 3
Huang, liu, Fan, Qiu (bib29) 2015; 5
Chaudhuri, Paria (bib13) 2012; 112
Cote, Cruz-Silva, Huang (bib43) 2009; 131
Li, Cui, Ross, Kim, Sun, Yang (bib18) 2017; 17
Sun, Dong, Lv, Zhao, Meng, Song, Wang, Li, Fu, Tian, Bao (bib30) 2018; 11
Ma, Li, Hussain, Shen, Yang, Zhang (bib10) 2020; 32
Zhang, Ke, Wang, Zhang, Niu, Mao, Song, Jin, Tian (bib26) 2016; 118
Zhang, Radjenovic, Zhou, Zhang, Yao, Li (bib8) 2021; 33
D’Angelo, Bongiorno, Amato, Deretzis, La Magna, Fazio, Scalese (bib42) 2017; 121
Zhang, Wang, Su, Ge, Ye, Zhao, He, Yang, Song, Duan (bib12) 2021; 21
Wang, Zhao, Luo, Yu (bib46) 2021; 29
Wang, Sun, Hu, Wang, Chou, Zhang, Zhang, Ren, Wang (bib11) 2020; 32
Karuppannan, Kim, Gok, Lee, Hwang, Jang, Cho, Lim, Sung, Kwon (bib7) 2019; 12
Huang, Huang, Zhong, Yang, Hong, Wang, Huang, Gao, Chen, Cai, kang (bib33) 2020; 8
Wang, Wang, Lee, Zhang (bib47) 2019; 11
DiStefano, Li, Jung, Hao, Murthy, Zhang, Wolverton, Dravid (bib27) 2018; 30
Choi, Kwon, Cheng, Xu, Tieu, Lee, Cai, Lee, Pan, Duan, Goddard, Huang (bib39) 2020; 3
Sun (10.1016/j.nanoen.2022.108067_bib28) 2017; 10
D’Angelo (10.1016/j.nanoen.2022.108067_bib42) 2017; 121
Zhu (10.1016/j.nanoen.2022.108067_bib2) 2022; 6
Tang (10.1016/j.nanoen.2022.108067_bib45) 2016; 6
Ma (10.1016/j.nanoen.2022.108067_bib10) 2020; 32
Li (10.1016/j.nanoen.2022.108067_bib18) 2017; 17
Strickler (10.1016/j.nanoen.2022.108067_bib14) 2017; 17
Sun (10.1016/j.nanoen.2022.108067_bib21) 2003; 3
Ahn (10.1016/j.nanoen.2022.108067_bib16) 2015; 9
Wang (10.1016/j.nanoen.2022.108067_bib46) 2021; 29
Zhang (10.1016/j.nanoen.2022.108067_bib6) 2020; 3
Shen (10.1016/j.nanoen.2022.108067_bib40) 2011; 22
DiStefano (10.1016/j.nanoen.2022.108067_bib27) 2018; 30
Chen (10.1016/j.nanoen.2022.108067_bib48) 2021; 29
Huang (10.1016/j.nanoen.2022.108067_bib33) 2020; 8
Park (10.1016/j.nanoen.2022.108067_bib35) 2019; 11
Huo (10.1016/j.nanoen.2022.108067_bib20) 2019; 119
Ding (10.1016/j.nanoen.2022.108067_bib32) 2019; 9
Zhang (10.1016/j.nanoen.2022.108067_bib26) 2016; 118
Huang (10.1016/j.nanoen.2022.108067_bib29) 2015; 5
Fan (10.1016/j.nanoen.2022.108067_bib22) 2016; 138
Lee (10.1016/j.nanoen.2022.108067_bib25) 2015; 81
Chaudhuri (10.1016/j.nanoen.2022.108067_bib13) 2012; 112
Liu (10.1016/j.nanoen.2022.108067_bib4) 2017; 139
Karuppannan (10.1016/j.nanoen.2022.108067_bib7) 2019; 12
Zhang (10.1016/j.nanoen.2022.108067_bib8) 2021; 33
Tang (10.1016/j.nanoen.2022.108067_bib41) 2012; 22
Sun (10.1016/j.nanoen.2022.108067_bib30) 2018; 11
Chen (10.1016/j.nanoen.2022.108067_bib23) 2013; 23
Tan (10.1016/j.nanoen.2022.108067_bib15) 2019; 9
Liu (10.1016/j.nanoen.2022.108067_bib1) 2020; 14
Lyu (10.1016/j.nanoen.2022.108067_bib17) 2021; 60
Wang (10.1016/j.nanoen.2022.108067_bib11) 2020; 32
Huang (10.1016/j.nanoen.2022.108067_bib9) 2021; 31
Zhang (10.1016/j.nanoen.2022.108067_bib5) 2021; 17
Cote (10.1016/j.nanoen.2022.108067_bib43) 2009; 131
Zhong (10.1016/j.nanoen.2022.108067_bib38) 2016; 8
Dou (10.1016/j.nanoen.2022.108067_bib31) 2016; 10
Kim (10.1016/j.nanoen.2022.108067_bib36) 2022; 14
Zhang (10.1016/j.nanoen.2022.108067_bib12) 2021; 21
Xie (10.1016/j.nanoen.2022.108067_bib19) 2016; 9
Choi (10.1016/j.nanoen.2022.108067_bib39) 2020; 3
Huang (10.1016/j.nanoen.2022.108067_bib49) 2013; 23
Ho (10.1016/j.nanoen.2022.108067_bib3) 2019; 7
Lee (10.1016/j.nanoen.2022.108067_bib37) 2021; 29
Wang (10.1016/j.nanoen.2022.108067_bib47) 2019; 11
Lee (10.1016/j.nanoen.2022.108067_bib24) 2013; 5
Wang (10.1016/j.nanoen.2022.108067_bib34) 2020; 71
Kim (10.1016/j.nanoen.2022.108067_bib44) 2021; 29
References_xml – volume: 71
  year: 2020
  ident: bib34
  article-title: Superstable copper nanowire network electrodes by single-crystal graphene covering and their applications in flexible nanogenerator and light-emitting diode
  publication-title: Nano Energy
– volume: 7
  start-page: 3516
  year: 2019
  end-page: 3530
  ident: bib3
  article-title: A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 3125
  year: 2015
  end-page: 3133
  ident: bib16
  article-title: Copper nanowire−graphene core−shell nanostructure for highly stable transparent conducting electrodes
  publication-title: ACS Nano
– volume: 6
  year: 2022
  ident: bib2
  article-title: Epidermis-inspired wearable piezoresistive pressure sensors using reduced graphene oxide self-wrapped copper nanowire networks
  publication-title: Small Methods
– volume: 11
  start-page: 40481
  year: 2019
  end-page: 40489
  ident: bib47
  article-title: Enhanced performance of an electric double layer microsupercapacitor based on novel carbon-encapsulated Cu nanowire network structure as the electrode
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 6761
  year: 2020
  end-page: 6773
  ident: bib1
  article-title: Cu nanowires passivated with hexagonal boron nitride: an ultrastable, selectively transparent conductor
  publication-title: ACS Nano
– volume: 3
  start-page: 411
  year: 2020
  end-page: 417
  ident: bib6
  article-title: Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO
  publication-title: Nat. Catal.
– volume: 12
  start-page: 2820
  year: 2019
  end-page: 2829
  ident: bib7
  article-title: A highly durable carbon-nanofiber-supported Pt–C core–shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: facile carbon encapsulation
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 13721
  year: 2020
  ident: bib33
  article-title: Highly transparent light emitting diodes on graphene encapsulated Cu nanowires network
  publication-title: Sci. Rep.
– volume: 23
  start-page: 1824
  year: 2013
  end-page: 1831
  ident: bib49
  article-title: Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  ident: bib8
  article-title: Plasmonic core–shell nanomaterials and their applications in spectroscopies
  publication-title: Adv. Mater.
– volume: 10
  start-page: 2600
  year: 2016
  end-page: 2606
  ident: bib31
  article-title: Solution-processed copper/reduced- graphene-oxide core/shell nanowire transparent conductors
  publication-title: ACS Nano
– volume: 60
  start-page: 1909
  year: 2021
  end-page: 1915
  ident: bib17
  article-title: Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C
  publication-title: Angew. Chem. Int. Ed.
– volume: 119
  start-page: 8972
  year: 2019
  end-page: 9073
  ident: bib20
  article-title: One-dimensional metal nanostructures: from colloidal syntheses to applications
  publication-title: Chem. Rev.
– volume: 139
  start-page: 7348
  year: 2017
  end-page: 7354
  ident: bib4
  article-title: Ultrathin epitaxial Cu@Au core−shell nanowires for stable transparent conductors
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 7847
  year: 2016
  end-page: 7854
  ident: bib38
  article-title: Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications
  publication-title: ACS Nano
– volume: 11
  start-page: 3490
  year: 2018
  end-page: 3498
  ident: bib30
  article-title: Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells
  publication-title: Nano Res.
– volume: 23
  start-page: 5150
  year: 2013
  end-page: 5158
  ident: bib23
  article-title: Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 26961
  year: 2019
  end-page: 26980
  ident: bib32
  article-title: Recent progress of solution-processed Cu nanowires transparent electrodes and their applications
  publication-title: RSC Adv.
– volume: 17
  year: 2021
  ident: bib5
  article-title: Electrochemical reduction of CO
  publication-title: Small
– volume: 11
  start-page: 14882
  year: 2019
  end-page: 14891
  ident: bib35
  article-title: High-resolution and large-area patterning of highly conductive silver nanowire electrodes by reverse offset printing and intense pulsed light irradiation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 121
  start-page: 5408
  year: 2017
  end-page: 5414
  ident: bib42
  article-title: Oxygen functionalities evolution in thermally treated graphene oxide featured by EELS and DFT calculations
  publication-title: J. Phys. Chem. C
– volume: 29
  start-page: 75
  year: 2021
  end-page: 81
  ident: bib44
  article-title: Optimal design of PEDOT:PSS polymer-based silver nanowire electrodes for realization of flexible polymer solar cells
  publication-title: Macromol. Res.
– volume: 6
  year: 2016
  ident: bib45
  article-title: Combining nature-inspired, graphene-wrapped flexible electrodes with nanocomposite polymer electrolyte for asymmetric capacitive energy storage
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 5807
  year: 2022
  end-page: 5814
  ident: bib36
  article-title: Simple, fast, and scalable reverse-offset printing of micropatterned copper nanowire electrodes with sub-10 μm resolution
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 582
  year: 2021
  end-page: 588
  ident: bib46
  article-title: Improved pseudocapacitive performance of graphene architectures modulating by nitrogen/phosphorus dual-doping and steam-activation
  publication-title: Macromol. Res.
– volume: 81
  start-page: 439
  year: 2015
  end-page: 446
  ident: bib25
  article-title: High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure
  publication-title: Carbon
– volume: 31
  year: 2021
  ident: bib9
  article-title: Highly stable Ag–Au core–shell nanowire network for ITO-free flexible organic electrochromic device
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1403
  year: 2017
  end-page: 1412
  ident: bib28
  article-title: Catalysis under shell: improved CO oxidation reaction confined in Pt@h-BN core–shell nanoreactors
  publication-title: Nano Res.
– volume: 29
  start-page: 172
  year: 2021
  end-page: 177
  ident: bib37
  article-title: Large-scale and high-resolution patterning based on the intense pulsed light transfer of inkjet-printed light-emitting materials
  publication-title: Macromol. Res.
– volume: 17
  start-page: 6040
  year: 2017
  end-page: 6046
  ident: bib14
  article-title: Core−shell Au@metal-oxide nanoparticle electrocatalysts for enhanced oxygen evolution
  publication-title: Nano Lett.
– volume: 131
  start-page: 11027
  year: 2009
  end-page: 11032
  ident: bib43
  article-title: Flash reduction and patterning of graphite oxide and its polymer composite
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 2373
  year: 2012
  end-page: 2433
  ident: bib13
  article-title: Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications
  publication-title: Chem. Rev.
– volume: 17
  start-page: 1312
  year: 2017
  end-page: 1317
  ident: bib18
  article-title: Structure-sensitive CO
  publication-title: Nano Lett.
– volume: 9
  start-page: 1687
  year: 2016
  end-page: 1695
  ident: bib19
  article-title: Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons
  publication-title: Energy Environ. Sci.
– volume: 138
  start-page: 1414
  year: 2016
  end-page: 1419
  ident: bib22
  article-title: Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 804
  year: 2020
  end-page: 812
  ident: bib39
  article-title: Highly active and stable stepped Cu surface for enhanced electrochemical CO
  publication-title: Nat. Catal.
– volume: 21
  start-page: 2625
  year: 2021
  end-page: 2633
  ident: bib12
  article-title: Plasmonic-fluorescent Janus Ag/Ag
  publication-title: Nano Lett.
– volume: 30
  start-page: 4675
  year: 2018
  end-page: 4682
  ident: bib27
  article-title: Nanoparticle@MoS
  publication-title: Chem. Mater.
– volume: 22
  year: 2011
  ident: bib40
  article-title: Preparation of graphene by jet cavitation
  publication-title: Nanotechnology
– volume: 32
  year: 2020
  ident: bib10
  article-title: Core–shell structured nanoenergetic materials: preparation and fundamental properties
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1569
  year: 2003
  end-page: 1572
  ident: bib21
  article-title: Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction
  publication-title: Nano Lett.
– volume: 32
  year: 2020
  ident: bib11
  article-title: A porous Au@Rh bimetallic core–shell nanostructure as an H
  publication-title: Adv. Mater.
– volume: 5
  start-page: 7750
  year: 2013
  end-page: 7755
  ident: bib24
  article-title: Highly stable and flexible silver nanowire–graphene hybrid transparent conducting electrodes for emerging optoelectronic devices
  publication-title: Nanoscale
– volume: 22
  start-page: 5676
  year: 2012
  end-page: 5683
  ident: bib41
  article-title: Bottom-up synthesis of large-scale graphene oxide nanosheets
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 16736
  year: 2015
  ident: bib29
  article-title: Boron nitride encapsulated copper nanoparticles: a facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate
  publication-title: Sci. Rep.
– volume: 29
  start-page: 589
  year: 2021
  end-page: 596
  ident: bib48
  article-title: Lowering dielectric loss and AC conductivity of polymer/HfC composite dielectric films via insulating montmorillonite barrier
  publication-title: Macromol. Res.
– volume: 118
  start-page: 917
  year: 2016
  end-page: 926
  ident: bib26
  article-title: Facile electrosynthesis and photoelectric conversion of Ag nanodendrites wrapped with MoS
  publication-title: Electrochim. Acta
– volume: 9
  start-page: 6362
  year: 2019
  end-page: 6371
  ident: bib15
  article-title: Highly dispersed Pd-CeO
  publication-title: ACS Catal.
– volume: 139
  start-page: 7348
  year: 2017
  ident: 10.1016/j.nanoen.2022.108067_bib4
  article-title: Ultrathin epitaxial Cu@Au core−shell nanowires for stable transparent conductors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02884
– volume: 14
  start-page: 6761
  year: 2020
  ident: 10.1016/j.nanoen.2022.108067_bib1
  article-title: Cu nanowires passivated with hexagonal boron nitride: an ultrastable, selectively transparent conductor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00109
– volume: 10
  start-page: 2600
  year: 2016
  ident: 10.1016/j.nanoen.2022.108067_bib31
  article-title: Solution-processed copper/reduced- graphene-oxide core/shell nanowire transparent conductors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07651
– volume: 9
  start-page: 26961
  year: 2019
  ident: 10.1016/j.nanoen.2022.108067_bib32
  article-title: Recent progress of solution-processed Cu nanowires transparent electrodes and their applications
  publication-title: RSC Adv.
  doi: 10.1039/C9RA04404C
– volume: 22
  start-page: 5676
  year: 2012
  ident: 10.1016/j.nanoen.2022.108067_bib41
  article-title: Bottom-up synthesis of large-scale graphene oxide nanosheets
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15944a
– volume: 9
  start-page: 3125
  year: 2015
  ident: 10.1016/j.nanoen.2022.108067_bib16
  article-title: Copper nanowire−graphene core−shell nanostructure for highly stable transparent conducting electrodes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00053
– volume: 30
  start-page: 4675
  year: 2018
  ident: 10.1016/j.nanoen.2022.108067_bib27
  article-title: Nanoparticle@MoS2 core−shell architecture: role of the core material
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01333
– volume: 31
  year: 2021
  ident: 10.1016/j.nanoen.2022.108067_bib9
  article-title: Highly stable Ag–Au core–shell nanowire network for ITO-free flexible organic electrochromic device
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 6362
  year: 2019
  ident: 10.1016/j.nanoen.2022.108067_bib15
  article-title: Highly dispersed Pd-CeO2 nanoparticles supported on N‑doped core−shell structured mesoporous carbon for methanol oxidation in alkaline media
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00726
– volume: 29
  start-page: 589
  year: 2021
  ident: 10.1016/j.nanoen.2022.108067_bib48
  article-title: Lowering dielectric loss and AC conductivity of polymer/HfC composite dielectric films via insulating montmorillonite barrier
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-021-9076-6
– volume: 11
  start-page: 14882
  year: 2019
  ident: 10.1016/j.nanoen.2022.108067_bib35
  article-title: High-resolution and large-area patterning of highly conductive silver nanowire electrodes by reverse offset printing and intense pulsed light irradiation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00838
– volume: 138
  start-page: 1414
  year: 2016
  ident: 10.1016/j.nanoen.2022.108067_bib22
  article-title: Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12715
– volume: 10
  start-page: 1403
  year: 2017
  ident: 10.1016/j.nanoen.2022.108067_bib28
  article-title: Catalysis under shell: improved CO oxidation reaction confined in Pt@h-BN core–shell nanoreactors
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1512-8
– volume: 29
  start-page: 75
  year: 2021
  ident: 10.1016/j.nanoen.2022.108067_bib44
  article-title: Optimal design of PEDOT:PSS polymer-based silver nanowire electrodes for realization of flexible polymer solar cells
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-021-9005-8
– volume: 23
  start-page: 1824
  year: 2013
  ident: 10.1016/j.nanoen.2022.108067_bib49
  article-title: Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201824
– volume: 17
  year: 2021
  ident: 10.1016/j.nanoen.2022.108067_bib5
  article-title: Electrochemical reduction of CO2 toward C2 valuables on Cu@Ag core-shell tandem catalyst with tunable shell thickness
  publication-title: Small
– volume: 118
  start-page: 917
  year: 2016
  ident: 10.1016/j.nanoen.2022.108067_bib26
  article-title: Facile electrosynthesis and photoelectric conversion of Ag nanodendrites wrapped with MoS2 nanosheets
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.01.003
– volume: 11
  start-page: 40481
  year: 2019
  ident: 10.1016/j.nanoen.2022.108067_bib47
  article-title: Enhanced performance of an electric double layer microsupercapacitor based on novel carbon-encapsulated Cu nanowire network structure as the electrode
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13417
– volume: 6
  year: 2022
  ident: 10.1016/j.nanoen.2022.108067_bib2
  article-title: Epidermis-inspired wearable piezoresistive pressure sensors using reduced graphene oxide self-wrapped copper nanowire networks
  publication-title: Small Methods
  doi: 10.1002/smtd.202100900
– volume: 9
  start-page: 1687
  year: 2016
  ident: 10.1016/j.nanoen.2022.108067_bib19
  article-title: Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03694A
– volume: 11
  start-page: 3490
  year: 2018
  ident: 10.1016/j.nanoen.2022.108067_bib30
  article-title: Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2029-5
– volume: 81
  start-page: 439
  year: 2015
  ident: 10.1016/j.nanoen.2022.108067_bib25
  article-title: High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.09.076
– volume: 8
  start-page: 7847
  year: 2016
  ident: 10.1016/j.nanoen.2022.108067_bib38
  article-title: Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03626
– volume: 3
  start-page: 1569
  year: 2003
  ident: 10.1016/j.nanoen.2022.108067_bib21
  article-title: Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction
  publication-title: Nano Lett.
  doi: 10.1021/nl034765r
– volume: 23
  start-page: 5150
  year: 2013
  ident: 10.1016/j.nanoen.2022.108067_bib23
  article-title: Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300124
– volume: 8
  start-page: 13721
  year: 2020
  ident: 10.1016/j.nanoen.2022.108067_bib33
  article-title: Highly transparent light emitting diodes on graphene encapsulated Cu nanowires network
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-31903-7
– volume: 3
  start-page: 411
  year: 2020
  ident: 10.1016/j.nanoen.2022.108067_bib6
  article-title: Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0440-2
– volume: 29
  start-page: 582
  year: 2021
  ident: 10.1016/j.nanoen.2022.108067_bib46
  article-title: Improved pseudocapacitive performance of graphene architectures modulating by nitrogen/phosphorus dual-doping and steam-activation
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-021-9075-7
– volume: 12
  start-page: 2820
  year: 2019
  ident: 10.1016/j.nanoen.2022.108067_bib7
  article-title: A highly durable carbon-nanofiber-supported Pt–C core–shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: facile carbon encapsulation
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01000A
– volume: 14
  start-page: 5807
  year: 2022
  ident: 10.1016/j.nanoen.2022.108067_bib36
  article-title: Simple, fast, and scalable reverse-offset printing of micropatterned copper nanowire electrodes with sub-10 μm resolution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c21223
– volume: 29
  start-page: 172
  year: 2021
  ident: 10.1016/j.nanoen.2022.108067_bib37
  article-title: Large-scale and high-resolution patterning based on the intense pulsed light transfer of inkjet-printed light-emitting materials
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-021-9017-4
– volume: 21
  start-page: 2625
  year: 2021
  ident: 10.1016/j.nanoen.2022.108067_bib12
  article-title: Plasmonic-fluorescent Janus Ag/Ag2S nanoparticles for in situ H2O2‑activated NIR-II fluorescence imaging
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00197
– volume: 22
  year: 2011
  ident: 10.1016/j.nanoen.2022.108067_bib40
  article-title: Preparation of graphene by jet cavitation
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/36/365306
– volume: 121
  start-page: 5408
  year: 2017
  ident: 10.1016/j.nanoen.2022.108067_bib42
  article-title: Oxygen functionalities evolution in thermally treated graphene oxide featured by EELS and DFT calculations
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b00239
– volume: 3
  start-page: 804
  year: 2020
  ident: 10.1016/j.nanoen.2022.108067_bib39
  article-title: Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00504-x
– volume: 131
  start-page: 11027
  year: 2009
  ident: 10.1016/j.nanoen.2022.108067_bib43
  article-title: Flash reduction and patterning of graphite oxide and its polymer composite
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902348k
– volume: 17
  start-page: 1312
  year: 2017
  ident: 10.1016/j.nanoen.2022.108067_bib18
  article-title: Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5–fold twinned copper nanowires
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05287
– volume: 6
  year: 2016
  ident: 10.1016/j.nanoen.2022.108067_bib45
  article-title: Combining nature-inspired, graphene-wrapped flexible electrodes with nanocomposite polymer electrolyte for asymmetric capacitive energy storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600813
– volume: 17
  start-page: 6040
  year: 2017
  ident: 10.1016/j.nanoen.2022.108067_bib14
  article-title: Core−shell Au@metal-oxide nanoparticle electrocatalysts for enhanced oxygen evolution
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02357
– volume: 7
  start-page: 3516
  year: 2019
  ident: 10.1016/j.nanoen.2022.108067_bib3
  article-title: A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11599K
– volume: 33
  year: 2021
  ident: 10.1016/j.nanoen.2022.108067_bib8
  article-title: Plasmonic core–shell nanomaterials and their applications in spectroscopies
  publication-title: Adv. Mater.
– volume: 112
  start-page: 2373
  year: 2012
  ident: 10.1016/j.nanoen.2022.108067_bib13
  article-title: Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr100449n
– volume: 60
  start-page: 1909
  year: 2021
  ident: 10.1016/j.nanoen.2022.108067_bib17
  article-title: Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202011956
– volume: 71
  year: 2020
  ident: 10.1016/j.nanoen.2022.108067_bib34
  article-title: Superstable copper nanowire network electrodes by single-crystal graphene covering and their applications in flexible nanogenerator and light-emitting diode
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104638
– volume: 119
  start-page: 8972
  year: 2019
  ident: 10.1016/j.nanoen.2022.108067_bib20
  article-title: One-dimensional metal nanostructures: from colloidal syntheses to applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00745
– volume: 5
  start-page: 7750
  year: 2013
  ident: 10.1016/j.nanoen.2022.108067_bib24
  article-title: Highly stable and flexible silver nanowire–graphene hybrid transparent conducting electrodes for emerging optoelectronic devices
  publication-title: Nanoscale
  doi: 10.1039/c3nr02320f
– volume: 32
  year: 2020
  ident: 10.1016/j.nanoen.2022.108067_bib10
  article-title: Core–shell structured nanoenergetic materials: preparation and fundamental properties
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001291
– volume: 32
  year: 2020
  ident: 10.1016/j.nanoen.2022.108067_bib11
  article-title: A porous Au@Rh bimetallic core–shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy
  publication-title: Adv. Mater.
– volume: 5
  start-page: 16736
  year: 2015
  ident: 10.1016/j.nanoen.2022.108067_bib29
  article-title: Boron nitride encapsulated copper nanoparticles: a facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate
  publication-title: Sci. Rep.
  doi: 10.1038/srep16736
SSID ssj0000651712
Score 2.434088
Snippet Wrapping metallic nanomaterials with two-dimensional (2D) materials can significantly improve the physical properties required for various electronic and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108067
SubjectTerms 2D material-wrapped copper nanowire
2D quantum dot assembly
Flash light irradiation
Supercapacitor
Transparent electronic device
Title Ultrastable 2D material-wrapped copper nanowires for high-performance flexible and transparent energy devices
URI https://dx.doi.org/10.1016/j.nanoen.2022.108067
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uOhBfGJ9lD14XZtsks32WKqlKvSihd7CZh9QqWmIEW_-dnc3Sa0gCp4CSyYsk83Mt9lvvgG4irWnzPbfw1HEKA4Jl3goCMWCpZY37stUOrbFjE7n4f0iWrRg3NTCWFplHfurmO6idT0yqL05yJfLwSMxexfCIgMgLKiPwjZ0icn2rAPd0d3DdLb51WKyrB-7c09rgq1NU0TnmF4Zz9bKaqES4ih3ruf8D0lqK_FM9mGvRoxoVE3qAFoqO4TdLR3BI3iZr8qCG5yXrhQiN8igULew8HvB81xJJNbmUiA7BatN_IoMVEVWqRjnX4UDSFtxTPsInklUOtVzWypWIuUKBJFULqwcw3xy-zSe4rqPAhYkoCXWjGrFaESk8IlkPPQ9j5uNYcpInHIhCVNK-GIYSd-gCTZkcRB5WgzN18ljrnhwAp1snalTQJRqQQNNhR-qUITc5Dfl8ZRpwrgZpD0IGsclohYZt70uVknDJntOKncn1t1J5e4e4I1VXols_HF_3LyT5NtiSUwe-NXy7N-W57BjO81XhO0L6JTFm7o0eKRM-9C-_vD79ar7BPWO4Hk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7M7aAexJ84f-bgNaxN2zQ7junY3NzFDXYraZLCZHalVvz3TdJ2ThAFT4XQV8Jr-t6X5nvfA7gLE0fp7b-Dg4BR7BMucVcQigWLDW_clbG0bIspHc79x0WwaEC_roUxtMoq9pcx3UbraqRTebOTLZedZ6L3LoQFGkAYUB_4O9DyTVPrJrR6o_FwuvnVorOsG9pzT2OCjU1dRGeZXilP18pooRJiKXe25_wPSWor8QwO4aBCjKhXTuoIGio9hv0tHcETeJ2vipxrnBevFCL3SKNQu7DwR86zTEkk1vqSIzMFo038hjRURUapGGdfhQMoMeKY5hE8laiwquemVKxAyhYIIqlsWDmF-eBh1h_iqo8CFsSjBU4YTRSjAZHCJZJx33UcrjeGMSNhzIUkTCnhim4gXY0mWJeFXuAkoqu_Th5yxb0zaKbrVJ0DojQR1EuocH3lC5_r_KYcHrOEMK4HaRu82nGRqETGTa-LVVSzyV6i0t2RcXdUursNeGOVlSIbf9wf1u8k-rZYIp0HfrW8-LflLewOZ0-TaDKaji9hz3SdL8nbV9As8nd1rbFJEd9Ua-8TQr7iXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastable+2D+material-wrapped+copper+nanowires+for+high-performance+flexible+and+transparent+energy+devices&rft.jtitle=Nano+energy&rft.au=Kim%2C+Jongyoun&rft.au=Kim%2C+Minkyoung&rft.au=Jung%2C+Hyeonwoo&rft.au=Park%2C+Jaehyoung&rft.date=2023-02-01&rft.issn=2211-2855&rft.volume=106&rft.spage=108067&rft_id=info:doi/10.1016%2Fj.nanoen.2022.108067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2022_108067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon