Ultrastable 2D material-wrapped copper nanowires for high-performance flexible and transparent energy devices
Wrapping metallic nanomaterials with two-dimensional (2D) materials can significantly improve the physical properties required for various electronic and catalytic applications. However, synthesizing 2D material-wrapped metal nanowires with highly organized shell morphology is still difficult becaus...
Saved in:
Published in | Nano energy Vol. 106; p. 108067 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2211-2855 |
DOI | 10.1016/j.nanoen.2022.108067 |
Cover
Abstract | Wrapping metallic nanomaterials with two-dimensional (2D) materials can significantly improve the physical properties required for various electronic and catalytic applications. However, synthesizing 2D material-wrapped metal nanowires with highly organized shell morphology is still difficult because of their large surface area and high aspect ratio. We propose a simple and practical method for synthesizing 2D material-wrapped copper nanowires (CuNWs) with highly organized shell morphology by using 2D quantum dot (QD) assembly and flash light irradiation under low temperature and non-vacuum conditions. A uniform and thin layer of QDs comprising 2D material such as graphene or hexagonal boron nitride is constructed on the CuNW by using a solution process. The 2D QD-wrapped CuNW is then subjected to flash light irradiation to realize highly organized shell morphology. Microstructural observations showed that the flash light irradiation reconstructs the shell structure and improves crystal quality without structural deformation. The 2D material-wrapped CuNWs were used to fabricate transparent conducting electrodes (TCEs) exhibited outstanding oxidation stability, chemical stability, and mechanical durability. These TCEs were applied to realize high-performance transparent supercapacitors and heaters. In particular, the transparent supercapacitors based on the graphene-wrapped CuNW TCE demonstrated excellent capacitive behavior under acidic electrolyte conditions. They showed the highest areal capacitance (18.97 mF cm−2) compared to other metal nanowire-based transparent supercapacitors. Finally, a novel method for fabricating carbon and boron nitride nanotubes by wet-etching the core CuNW of the 2D material-wrapped CuNWs was successfully developed.
[Display omitted]
•2D material-wrapped copper nanowires were successfully synthesized.•TCEs based on the 2D material-wrapped CuNW exhibited outstanding stability.•Transparent supercapacitors based on the graphene-wrapped CuNW TCE showed the highest areal capacitance (18.97 mF cm−2).•2D material nanotubes were fabricated by wet-etching the core CuNW. |
---|---|
AbstractList | Wrapping metallic nanomaterials with two-dimensional (2D) materials can significantly improve the physical properties required for various electronic and catalytic applications. However, synthesizing 2D material-wrapped metal nanowires with highly organized shell morphology is still difficult because of their large surface area and high aspect ratio. We propose a simple and practical method for synthesizing 2D material-wrapped copper nanowires (CuNWs) with highly organized shell morphology by using 2D quantum dot (QD) assembly and flash light irradiation under low temperature and non-vacuum conditions. A uniform and thin layer of QDs comprising 2D material such as graphene or hexagonal boron nitride is constructed on the CuNW by using a solution process. The 2D QD-wrapped CuNW is then subjected to flash light irradiation to realize highly organized shell morphology. Microstructural observations showed that the flash light irradiation reconstructs the shell structure and improves crystal quality without structural deformation. The 2D material-wrapped CuNWs were used to fabricate transparent conducting electrodes (TCEs) exhibited outstanding oxidation stability, chemical stability, and mechanical durability. These TCEs were applied to realize high-performance transparent supercapacitors and heaters. In particular, the transparent supercapacitors based on the graphene-wrapped CuNW TCE demonstrated excellent capacitive behavior under acidic electrolyte conditions. They showed the highest areal capacitance (18.97 mF cm−2) compared to other metal nanowire-based transparent supercapacitors. Finally, a novel method for fabricating carbon and boron nitride nanotubes by wet-etching the core CuNW of the 2D material-wrapped CuNWs was successfully developed.
[Display omitted]
•2D material-wrapped copper nanowires were successfully synthesized.•TCEs based on the 2D material-wrapped CuNW exhibited outstanding stability.•Transparent supercapacitors based on the graphene-wrapped CuNW TCE showed the highest areal capacitance (18.97 mF cm−2).•2D material nanotubes were fabricated by wet-etching the core CuNW. |
ArticleNumber | 108067 |
Author | Jung, Hyeonwoo Kim, Jongyoun Park, Jaehyoung Kim, Minkyoung Lee, Youngu |
Author_xml | – sequence: 1 givenname: Jongyoun surname: Kim fullname: Kim, Jongyoun – sequence: 2 givenname: Minkyoung surname: Kim fullname: Kim, Minkyoung – sequence: 3 givenname: Hyeonwoo surname: Jung fullname: Jung, Hyeonwoo – sequence: 4 givenname: Jaehyoung surname: Park fullname: Park, Jaehyoung – sequence: 5 givenname: Youngu orcidid: 0000-0001-5014-1117 surname: Lee fullname: Lee, Youngu email: youngulee@dgist.ac.kr |
BookMark | eNqFkM9OwzAMh3MYEgP2BhzyAh1JurYpByQ0_kqTuLBz5CXulqlNqyTa2NuTqZw4gC-2LP0-2d8VmbjeISG3nM054-Xdfu7A9ejmggmRVpKV1YRMheA8E7IoLskshD1LVRa84mJKunUbPYQImxapeKIdRPQW2uzoYRjQUN2n5umZe7QeA216T3d2u8vSOs0dOI20afHLnhHgDE1AFwbw6CJFh357ogYPVmO4IRcNtAFnP_2arF-eP5dv2erj9X35uMq0yMuYNbJsUJaFMJoLI2HBGQNRLDZSVBvQRkhEzXVdGJ7zStayygvW6DrnNVSAkF-T-5GrfR-Cx0ZpGyHa3qXbbKs4U2dfaq9GX-rsS42-UnjxKzx424E__Rd7GGOYHjtY9Cpoi0mOSdp0VKa3fwO-ARUtjUk |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_154001 crossref_primary_10_1016_j_snb_2024_135730 crossref_primary_10_1021_acsami_3c13443 crossref_primary_10_1007_s40820_024_01483_5 crossref_primary_10_1021_acsomega_4c09165 crossref_primary_10_1016_j_aca_2024_343537 crossref_primary_10_1039_D4CP03242J crossref_primary_10_1002_adfm_202300686 crossref_primary_10_1002_admt_202300972 crossref_primary_10_1002_smtd_202300908 crossref_primary_10_1016_j_jmrt_2023_11_286 crossref_primary_10_1038_s41467_023_44586_0 |
Cites_doi | 10.1021/jacs.7b02884 10.1021/acsnano.0c00109 10.1021/acsnano.5b07651 10.1039/C9RA04404C 10.1039/c2jm15944a 10.1021/acsnano.5b00053 10.1021/acs.chemmater.8b01333 10.1021/acscatal.9b00726 10.1007/s13233-021-9076-6 10.1021/acsami.9b00838 10.1021/jacs.5b12715 10.1007/s12274-017-1512-8 10.1007/s13233-021-9005-8 10.1002/adfm.201201824 10.1016/j.electacta.2016.01.003 10.1021/acsami.9b13417 10.1002/smtd.202100900 10.1039/C5EE03694A 10.1007/s12274-018-2029-5 10.1016/j.carbon.2014.09.076 10.1021/acsnano.6b03626 10.1021/nl034765r 10.1002/adfm.201300124 10.1038/s41598-018-31903-7 10.1038/s41929-020-0440-2 10.1007/s13233-021-9075-7 10.1039/C9EE01000A 10.1021/acsami.1c21223 10.1007/s13233-021-9017-4 10.1021/acs.nanolett.1c00197 10.1088/0957-4484/22/36/365306 10.1021/acs.jpcc.7b00239 10.1038/s41929-020-00504-x 10.1021/ja902348k 10.1021/acs.nanolett.6b05287 10.1002/aenm.201600813 10.1021/acs.nanolett.7b02357 10.1039/C8TA11599K 10.1021/cr100449n 10.1002/anie.202011956 10.1016/j.nanoen.2020.104638 10.1021/acs.chemrev.8b00745 10.1039/c3nr02320f 10.1002/adma.202001291 10.1038/srep16736 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2022.108067 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2022_108067 S2211285522011454 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c236t-f86fe8652dc12d8a4100a254b827bacd28eec1c95d13178987350fc9319a7aea3 |
IEDL.DBID | AIKHN |
ISSN | 2211-2855 |
IngestDate | Thu Apr 24 22:57:24 EDT 2025 Tue Jul 01 00:57:00 EDT 2025 Fri Feb 23 02:39:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Supercapacitor 2D material-wrapped copper nanowire Transparent electronic device Flash light irradiation 2D quantum dot assembly |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c236t-f86fe8652dc12d8a4100a254b827bacd28eec1c95d13178987350fc9319a7aea3 |
ORCID | 0000-0001-5014-1117 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2022_108067 crossref_primary_10_1016_j_nanoen_2022_108067 elsevier_sciencedirect_doi_10_1016_j_nanoen_2022_108067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sun, Fu, Gao, Zheng, Li, Chen, Bao (bib28) 2017; 10 Zhong, Lee, Kang, Kwon, Choi, Kim, Kim, Lee, Woo, Moon (bib38) 2016; 8 Zhang, Han, Zhu, Zhang, Li, Gao, Wu, Yang, Liu, Baaziz, Ersen, Gu, Miller, Liu (bib6) 2020; 3 Dou, Cui, Yu, Khanarian, Eaton, Yang, Resasco, Schildknecht, Schierle-Arndt, Yang (bib31) 2016; 10 Lee, Lee, Ahn, Jeong, Lee, Lee (bib24) 2013; 5 Shen, Li, Yi, Zhang, Ma (bib40) 2011; 22 Liu, Cui, Yu, Becknell, Sun, Khanarian, Kim, Dou, Dehestani, Schierle-Arndt, Yang (bib4) 2017; 139 Lee, Lee, Ahn, Lee (bib25) 2015; 81 Tang, Yuan, Cai, Fu, Ma (bib45) 2016; 6 Liu, Wang, Ge, Wang, Lu, Zhao, Tang, Soomro, Hong, Yang, Xu, Li, Chen, Cai, Kang (bib1) 2020; 14 Kim, Park, Nhan, Hoang, Cho, Choi (bib44) 2021; 29 Ho, Lin (bib3) 2019; 7 Xie, Xia, Li, Yang, Sun, Chan, Fisher, Wang (bib19) 2016; 9 Ahn, Jeong, Lee, Lee (bib16) 2015; 9 Chen, Chen, Qin, Wang, Deng, Feng (bib48) 2021; 29 Tan, Shu, Abbott, Zhao, Liu, Qu, Chen, Zhu, Liu, Wu (bib15) 2019; 9 Strickler, Escudero-Escribano, Jaramillo (bib14) 2017; 17 Zhu, Hartel, Yu, Garrido, Kim, Lee, Bandaru, Guan, Lin, Emaminejad, Barros, Ahadian, Kim, Sun, Jucaud, Dokmeci, Weiss, Yan, Khademhosseini (bib2) 2022; 6 Wang, Zhang, Wang, Zhang, Guo, Cheng, Gu, Liu, Chen (bib34) 2020; 71 Huang, Liu, Jafari, Siaj, Wang, Xiao, Ma (bib9) 2021; 31 Kim, Hwang, Kim, Jung, Bae, Lee (bib36) 2022; 14 Huang, Zhi, Jiang, Golberg, Bando, Tanaka (bib49) 2013; 23 Fan, Luo, Huang, Li, Chen, Wang, Hu, Zhang (bib22) 2016; 138 Lee, Han, Cho, Cho, Jeong (bib37) 2021; 29 Zhang, Zhao, Qu, Liu, Wu, Chen, Huang (bib5) 2021; 17 Tang, Li, Ji, Teng, Tai, Ye, Wei, Lau (bib41) 2012; 22 Huo, Kim, Lyu, Shi, Wiley, Xia (bib20) 2019; 119 Chen, Das, Jeong, Khan, Janes, Alam (bib23) 2013; 23 Ding, Tian (bib32) 2019; 9 Park, Woo, Kim, Lee, Ahn, Song, Kim, Oh, Kwon, Lee (bib35) 2019; 11 Lyu, Zhu, Xie, Zhang, Chen, Chen, Tian, Chi, Shao, Xia (bib17) 2021; 60 Sun, Xia (bib21) 2003; 3 Huang, liu, Fan, Qiu (bib29) 2015; 5 Chaudhuri, Paria (bib13) 2012; 112 Cote, Cruz-Silva, Huang (bib43) 2009; 131 Li, Cui, Ross, Kim, Sun, Yang (bib18) 2017; 17 Sun, Dong, Lv, Zhao, Meng, Song, Wang, Li, Fu, Tian, Bao (bib30) 2018; 11 Ma, Li, Hussain, Shen, Yang, Zhang (bib10) 2020; 32 Zhang, Ke, Wang, Zhang, Niu, Mao, Song, Jin, Tian (bib26) 2016; 118 Zhang, Radjenovic, Zhou, Zhang, Yao, Li (bib8) 2021; 33 D’Angelo, Bongiorno, Amato, Deretzis, La Magna, Fazio, Scalese (bib42) 2017; 121 Zhang, Wang, Su, Ge, Ye, Zhao, He, Yang, Song, Duan (bib12) 2021; 21 Wang, Zhao, Luo, Yu (bib46) 2021; 29 Wang, Sun, Hu, Wang, Chou, Zhang, Zhang, Ren, Wang (bib11) 2020; 32 Karuppannan, Kim, Gok, Lee, Hwang, Jang, Cho, Lim, Sung, Kwon (bib7) 2019; 12 Huang, Huang, Zhong, Yang, Hong, Wang, Huang, Gao, Chen, Cai, kang (bib33) 2020; 8 Wang, Wang, Lee, Zhang (bib47) 2019; 11 DiStefano, Li, Jung, Hao, Murthy, Zhang, Wolverton, Dravid (bib27) 2018; 30 Choi, Kwon, Cheng, Xu, Tieu, Lee, Cai, Lee, Pan, Duan, Goddard, Huang (bib39) 2020; 3 Sun (10.1016/j.nanoen.2022.108067_bib28) 2017; 10 D’Angelo (10.1016/j.nanoen.2022.108067_bib42) 2017; 121 Zhu (10.1016/j.nanoen.2022.108067_bib2) 2022; 6 Tang (10.1016/j.nanoen.2022.108067_bib45) 2016; 6 Ma (10.1016/j.nanoen.2022.108067_bib10) 2020; 32 Li (10.1016/j.nanoen.2022.108067_bib18) 2017; 17 Strickler (10.1016/j.nanoen.2022.108067_bib14) 2017; 17 Sun (10.1016/j.nanoen.2022.108067_bib21) 2003; 3 Ahn (10.1016/j.nanoen.2022.108067_bib16) 2015; 9 Wang (10.1016/j.nanoen.2022.108067_bib46) 2021; 29 Zhang (10.1016/j.nanoen.2022.108067_bib6) 2020; 3 Shen (10.1016/j.nanoen.2022.108067_bib40) 2011; 22 DiStefano (10.1016/j.nanoen.2022.108067_bib27) 2018; 30 Chen (10.1016/j.nanoen.2022.108067_bib48) 2021; 29 Huang (10.1016/j.nanoen.2022.108067_bib33) 2020; 8 Park (10.1016/j.nanoen.2022.108067_bib35) 2019; 11 Huo (10.1016/j.nanoen.2022.108067_bib20) 2019; 119 Ding (10.1016/j.nanoen.2022.108067_bib32) 2019; 9 Zhang (10.1016/j.nanoen.2022.108067_bib26) 2016; 118 Huang (10.1016/j.nanoen.2022.108067_bib29) 2015; 5 Fan (10.1016/j.nanoen.2022.108067_bib22) 2016; 138 Lee (10.1016/j.nanoen.2022.108067_bib25) 2015; 81 Chaudhuri (10.1016/j.nanoen.2022.108067_bib13) 2012; 112 Liu (10.1016/j.nanoen.2022.108067_bib4) 2017; 139 Karuppannan (10.1016/j.nanoen.2022.108067_bib7) 2019; 12 Zhang (10.1016/j.nanoen.2022.108067_bib8) 2021; 33 Tang (10.1016/j.nanoen.2022.108067_bib41) 2012; 22 Sun (10.1016/j.nanoen.2022.108067_bib30) 2018; 11 Chen (10.1016/j.nanoen.2022.108067_bib23) 2013; 23 Tan (10.1016/j.nanoen.2022.108067_bib15) 2019; 9 Liu (10.1016/j.nanoen.2022.108067_bib1) 2020; 14 Lyu (10.1016/j.nanoen.2022.108067_bib17) 2021; 60 Wang (10.1016/j.nanoen.2022.108067_bib11) 2020; 32 Huang (10.1016/j.nanoen.2022.108067_bib9) 2021; 31 Zhang (10.1016/j.nanoen.2022.108067_bib5) 2021; 17 Cote (10.1016/j.nanoen.2022.108067_bib43) 2009; 131 Zhong (10.1016/j.nanoen.2022.108067_bib38) 2016; 8 Dou (10.1016/j.nanoen.2022.108067_bib31) 2016; 10 Kim (10.1016/j.nanoen.2022.108067_bib36) 2022; 14 Zhang (10.1016/j.nanoen.2022.108067_bib12) 2021; 21 Xie (10.1016/j.nanoen.2022.108067_bib19) 2016; 9 Choi (10.1016/j.nanoen.2022.108067_bib39) 2020; 3 Huang (10.1016/j.nanoen.2022.108067_bib49) 2013; 23 Ho (10.1016/j.nanoen.2022.108067_bib3) 2019; 7 Lee (10.1016/j.nanoen.2022.108067_bib37) 2021; 29 Wang (10.1016/j.nanoen.2022.108067_bib47) 2019; 11 Lee (10.1016/j.nanoen.2022.108067_bib24) 2013; 5 Wang (10.1016/j.nanoen.2022.108067_bib34) 2020; 71 Kim (10.1016/j.nanoen.2022.108067_bib44) 2021; 29 |
References_xml | – volume: 71 year: 2020 ident: bib34 article-title: Superstable copper nanowire network electrodes by single-crystal graphene covering and their applications in flexible nanogenerator and light-emitting diode publication-title: Nano Energy – volume: 7 start-page: 3516 year: 2019 end-page: 3530 ident: bib3 article-title: A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitors publication-title: J. Mater. Chem. A – volume: 9 start-page: 3125 year: 2015 end-page: 3133 ident: bib16 article-title: Copper nanowire−graphene core−shell nanostructure for highly stable transparent conducting electrodes publication-title: ACS Nano – volume: 6 year: 2022 ident: bib2 article-title: Epidermis-inspired wearable piezoresistive pressure sensors using reduced graphene oxide self-wrapped copper nanowire networks publication-title: Small Methods – volume: 11 start-page: 40481 year: 2019 end-page: 40489 ident: bib47 article-title: Enhanced performance of an electric double layer microsupercapacitor based on novel carbon-encapsulated Cu nanowire network structure as the electrode publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 6761 year: 2020 end-page: 6773 ident: bib1 article-title: Cu nanowires passivated with hexagonal boron nitride: an ultrastable, selectively transparent conductor publication-title: ACS Nano – volume: 3 start-page: 411 year: 2020 end-page: 417 ident: bib6 article-title: Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO publication-title: Nat. Catal. – volume: 12 start-page: 2820 year: 2019 end-page: 2829 ident: bib7 article-title: A highly durable carbon-nanofiber-supported Pt–C core–shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: facile carbon encapsulation publication-title: Energy Environ. Sci. – volume: 8 start-page: 13721 year: 2020 ident: bib33 article-title: Highly transparent light emitting diodes on graphene encapsulated Cu nanowires network publication-title: Sci. Rep. – volume: 23 start-page: 1824 year: 2013 end-page: 1831 ident: bib49 article-title: Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 ident: bib8 article-title: Plasmonic core–shell nanomaterials and their applications in spectroscopies publication-title: Adv. Mater. – volume: 10 start-page: 2600 year: 2016 end-page: 2606 ident: bib31 article-title: Solution-processed copper/reduced- graphene-oxide core/shell nanowire transparent conductors publication-title: ACS Nano – volume: 60 start-page: 1909 year: 2021 end-page: 1915 ident: bib17 article-title: Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C publication-title: Angew. Chem. Int. Ed. – volume: 119 start-page: 8972 year: 2019 end-page: 9073 ident: bib20 article-title: One-dimensional metal nanostructures: from colloidal syntheses to applications publication-title: Chem. Rev. – volume: 139 start-page: 7348 year: 2017 end-page: 7354 ident: bib4 article-title: Ultrathin epitaxial Cu@Au core−shell nanowires for stable transparent conductors publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 7847 year: 2016 end-page: 7854 ident: bib38 article-title: Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications publication-title: ACS Nano – volume: 11 start-page: 3490 year: 2018 end-page: 3498 ident: bib30 article-title: Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells publication-title: Nano Res. – volume: 23 start-page: 5150 year: 2013 end-page: 5158 ident: bib23 article-title: Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes publication-title: Adv. Funct. Mater. – volume: 9 start-page: 26961 year: 2019 end-page: 26980 ident: bib32 article-title: Recent progress of solution-processed Cu nanowires transparent electrodes and their applications publication-title: RSC Adv. – volume: 17 year: 2021 ident: bib5 article-title: Electrochemical reduction of CO publication-title: Small – volume: 11 start-page: 14882 year: 2019 end-page: 14891 ident: bib35 article-title: High-resolution and large-area patterning of highly conductive silver nanowire electrodes by reverse offset printing and intense pulsed light irradiation publication-title: ACS Appl. Mater. Interfaces – volume: 121 start-page: 5408 year: 2017 end-page: 5414 ident: bib42 article-title: Oxygen functionalities evolution in thermally treated graphene oxide featured by EELS and DFT calculations publication-title: J. Phys. Chem. C – volume: 29 start-page: 75 year: 2021 end-page: 81 ident: bib44 article-title: Optimal design of PEDOT:PSS polymer-based silver nanowire electrodes for realization of flexible polymer solar cells publication-title: Macromol. Res. – volume: 6 year: 2016 ident: bib45 article-title: Combining nature-inspired, graphene-wrapped flexible electrodes with nanocomposite polymer electrolyte for asymmetric capacitive energy storage publication-title: Adv. Energy Mater. – volume: 14 start-page: 5807 year: 2022 end-page: 5814 ident: bib36 article-title: Simple, fast, and scalable reverse-offset printing of micropatterned copper nanowire electrodes with sub-10 μm resolution publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 582 year: 2021 end-page: 588 ident: bib46 article-title: Improved pseudocapacitive performance of graphene architectures modulating by nitrogen/phosphorus dual-doping and steam-activation publication-title: Macromol. Res. – volume: 81 start-page: 439 year: 2015 end-page: 446 ident: bib25 article-title: High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure publication-title: Carbon – volume: 31 year: 2021 ident: bib9 article-title: Highly stable Ag–Au core–shell nanowire network for ITO-free flexible organic electrochromic device publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1403 year: 2017 end-page: 1412 ident: bib28 article-title: Catalysis under shell: improved CO oxidation reaction confined in Pt@h-BN core–shell nanoreactors publication-title: Nano Res. – volume: 29 start-page: 172 year: 2021 end-page: 177 ident: bib37 article-title: Large-scale and high-resolution patterning based on the intense pulsed light transfer of inkjet-printed light-emitting materials publication-title: Macromol. Res. – volume: 17 start-page: 6040 year: 2017 end-page: 6046 ident: bib14 article-title: Core−shell Au@metal-oxide nanoparticle electrocatalysts for enhanced oxygen evolution publication-title: Nano Lett. – volume: 131 start-page: 11027 year: 2009 end-page: 11032 ident: bib43 article-title: Flash reduction and patterning of graphite oxide and its polymer composite publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 2373 year: 2012 end-page: 2433 ident: bib13 article-title: Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications publication-title: Chem. Rev. – volume: 17 start-page: 1312 year: 2017 end-page: 1317 ident: bib18 article-title: Structure-sensitive CO publication-title: Nano Lett. – volume: 9 start-page: 1687 year: 2016 end-page: 1695 ident: bib19 article-title: Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons publication-title: Energy Environ. Sci. – volume: 138 start-page: 1414 year: 2016 end-page: 1419 ident: bib22 article-title: Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 804 year: 2020 end-page: 812 ident: bib39 article-title: Highly active and stable stepped Cu surface for enhanced electrochemical CO publication-title: Nat. Catal. – volume: 21 start-page: 2625 year: 2021 end-page: 2633 ident: bib12 article-title: Plasmonic-fluorescent Janus Ag/Ag publication-title: Nano Lett. – volume: 30 start-page: 4675 year: 2018 end-page: 4682 ident: bib27 article-title: Nanoparticle@MoS publication-title: Chem. Mater. – volume: 22 year: 2011 ident: bib40 article-title: Preparation of graphene by jet cavitation publication-title: Nanotechnology – volume: 32 year: 2020 ident: bib10 article-title: Core–shell structured nanoenergetic materials: preparation and fundamental properties publication-title: Adv. Mater. – volume: 3 start-page: 1569 year: 2003 end-page: 1572 ident: bib21 article-title: Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction publication-title: Nano Lett. – volume: 32 year: 2020 ident: bib11 article-title: A porous Au@Rh bimetallic core–shell nanostructure as an H publication-title: Adv. Mater. – volume: 5 start-page: 7750 year: 2013 end-page: 7755 ident: bib24 article-title: Highly stable and flexible silver nanowire–graphene hybrid transparent conducting electrodes for emerging optoelectronic devices publication-title: Nanoscale – volume: 22 start-page: 5676 year: 2012 end-page: 5683 ident: bib41 article-title: Bottom-up synthesis of large-scale graphene oxide nanosheets publication-title: J. Mater. Chem. – volume: 5 start-page: 16736 year: 2015 ident: bib29 article-title: Boron nitride encapsulated copper nanoparticles: a facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate publication-title: Sci. Rep. – volume: 29 start-page: 589 year: 2021 end-page: 596 ident: bib48 article-title: Lowering dielectric loss and AC conductivity of polymer/HfC composite dielectric films via insulating montmorillonite barrier publication-title: Macromol. Res. – volume: 118 start-page: 917 year: 2016 end-page: 926 ident: bib26 article-title: Facile electrosynthesis and photoelectric conversion of Ag nanodendrites wrapped with MoS publication-title: Electrochim. Acta – volume: 9 start-page: 6362 year: 2019 end-page: 6371 ident: bib15 article-title: Highly dispersed Pd-CeO publication-title: ACS Catal. – volume: 139 start-page: 7348 year: 2017 ident: 10.1016/j.nanoen.2022.108067_bib4 article-title: Ultrathin epitaxial Cu@Au core−shell nanowires for stable transparent conductors publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02884 – volume: 14 start-page: 6761 year: 2020 ident: 10.1016/j.nanoen.2022.108067_bib1 article-title: Cu nanowires passivated with hexagonal boron nitride: an ultrastable, selectively transparent conductor publication-title: ACS Nano doi: 10.1021/acsnano.0c00109 – volume: 10 start-page: 2600 year: 2016 ident: 10.1016/j.nanoen.2022.108067_bib31 article-title: Solution-processed copper/reduced- graphene-oxide core/shell nanowire transparent conductors publication-title: ACS Nano doi: 10.1021/acsnano.5b07651 – volume: 9 start-page: 26961 year: 2019 ident: 10.1016/j.nanoen.2022.108067_bib32 article-title: Recent progress of solution-processed Cu nanowires transparent electrodes and their applications publication-title: RSC Adv. doi: 10.1039/C9RA04404C – volume: 22 start-page: 5676 year: 2012 ident: 10.1016/j.nanoen.2022.108067_bib41 article-title: Bottom-up synthesis of large-scale graphene oxide nanosheets publication-title: J. Mater. Chem. doi: 10.1039/c2jm15944a – volume: 9 start-page: 3125 year: 2015 ident: 10.1016/j.nanoen.2022.108067_bib16 article-title: Copper nanowire−graphene core−shell nanostructure for highly stable transparent conducting electrodes publication-title: ACS Nano doi: 10.1021/acsnano.5b00053 – volume: 30 start-page: 4675 year: 2018 ident: 10.1016/j.nanoen.2022.108067_bib27 article-title: Nanoparticle@MoS2 core−shell architecture: role of the core material publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01333 – volume: 31 year: 2021 ident: 10.1016/j.nanoen.2022.108067_bib9 article-title: Highly stable Ag–Au core–shell nanowire network for ITO-free flexible organic electrochromic device publication-title: Adv. Funct. Mater. – volume: 9 start-page: 6362 year: 2019 ident: 10.1016/j.nanoen.2022.108067_bib15 article-title: Highly dispersed Pd-CeO2 nanoparticles supported on N‑doped core−shell structured mesoporous carbon for methanol oxidation in alkaline media publication-title: ACS Catal. doi: 10.1021/acscatal.9b00726 – volume: 29 start-page: 589 year: 2021 ident: 10.1016/j.nanoen.2022.108067_bib48 article-title: Lowering dielectric loss and AC conductivity of polymer/HfC composite dielectric films via insulating montmorillonite barrier publication-title: Macromol. Res. doi: 10.1007/s13233-021-9076-6 – volume: 11 start-page: 14882 year: 2019 ident: 10.1016/j.nanoen.2022.108067_bib35 article-title: High-resolution and large-area patterning of highly conductive silver nanowire electrodes by reverse offset printing and intense pulsed light irradiation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00838 – volume: 138 start-page: 1414 year: 2016 ident: 10.1016/j.nanoen.2022.108067_bib22 article-title: Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12715 – volume: 10 start-page: 1403 year: 2017 ident: 10.1016/j.nanoen.2022.108067_bib28 article-title: Catalysis under shell: improved CO oxidation reaction confined in Pt@h-BN core–shell nanoreactors publication-title: Nano Res. doi: 10.1007/s12274-017-1512-8 – volume: 29 start-page: 75 year: 2021 ident: 10.1016/j.nanoen.2022.108067_bib44 article-title: Optimal design of PEDOT:PSS polymer-based silver nanowire electrodes for realization of flexible polymer solar cells publication-title: Macromol. Res. doi: 10.1007/s13233-021-9005-8 – volume: 23 start-page: 1824 year: 2013 ident: 10.1016/j.nanoen.2022.108067_bib49 article-title: Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201824 – volume: 17 year: 2021 ident: 10.1016/j.nanoen.2022.108067_bib5 article-title: Electrochemical reduction of CO2 toward C2 valuables on Cu@Ag core-shell tandem catalyst with tunable shell thickness publication-title: Small – volume: 118 start-page: 917 year: 2016 ident: 10.1016/j.nanoen.2022.108067_bib26 article-title: Facile electrosynthesis and photoelectric conversion of Ag nanodendrites wrapped with MoS2 nanosheets publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.01.003 – volume: 11 start-page: 40481 year: 2019 ident: 10.1016/j.nanoen.2022.108067_bib47 article-title: Enhanced performance of an electric double layer microsupercapacitor based on novel carbon-encapsulated Cu nanowire network structure as the electrode publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13417 – volume: 6 year: 2022 ident: 10.1016/j.nanoen.2022.108067_bib2 article-title: Epidermis-inspired wearable piezoresistive pressure sensors using reduced graphene oxide self-wrapped copper nanowire networks publication-title: Small Methods doi: 10.1002/smtd.202100900 – volume: 9 start-page: 1687 year: 2016 ident: 10.1016/j.nanoen.2022.108067_bib19 article-title: Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03694A – volume: 11 start-page: 3490 year: 2018 ident: 10.1016/j.nanoen.2022.108067_bib30 article-title: Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells publication-title: Nano Res. doi: 10.1007/s12274-018-2029-5 – volume: 81 start-page: 439 year: 2015 ident: 10.1016/j.nanoen.2022.108067_bib25 article-title: High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure publication-title: Carbon doi: 10.1016/j.carbon.2014.09.076 – volume: 8 start-page: 7847 year: 2016 ident: 10.1016/j.nanoen.2022.108067_bib38 article-title: Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications publication-title: ACS Nano doi: 10.1021/acsnano.6b03626 – volume: 3 start-page: 1569 year: 2003 ident: 10.1016/j.nanoen.2022.108067_bib21 article-title: Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction publication-title: Nano Lett. doi: 10.1021/nl034765r – volume: 23 start-page: 5150 year: 2013 ident: 10.1016/j.nanoen.2022.108067_bib23 article-title: Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300124 – volume: 8 start-page: 13721 year: 2020 ident: 10.1016/j.nanoen.2022.108067_bib33 article-title: Highly transparent light emitting diodes on graphene encapsulated Cu nanowires network publication-title: Sci. Rep. doi: 10.1038/s41598-018-31903-7 – volume: 3 start-page: 411 year: 2020 ident: 10.1016/j.nanoen.2022.108067_bib6 article-title: Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation publication-title: Nat. Catal. doi: 10.1038/s41929-020-0440-2 – volume: 29 start-page: 582 year: 2021 ident: 10.1016/j.nanoen.2022.108067_bib46 article-title: Improved pseudocapacitive performance of graphene architectures modulating by nitrogen/phosphorus dual-doping and steam-activation publication-title: Macromol. Res. doi: 10.1007/s13233-021-9075-7 – volume: 12 start-page: 2820 year: 2019 ident: 10.1016/j.nanoen.2022.108067_bib7 article-title: A highly durable carbon-nanofiber-supported Pt–C core–shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: facile carbon encapsulation publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01000A – volume: 14 start-page: 5807 year: 2022 ident: 10.1016/j.nanoen.2022.108067_bib36 article-title: Simple, fast, and scalable reverse-offset printing of micropatterned copper nanowire electrodes with sub-10 μm resolution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c21223 – volume: 29 start-page: 172 year: 2021 ident: 10.1016/j.nanoen.2022.108067_bib37 article-title: Large-scale and high-resolution patterning based on the intense pulsed light transfer of inkjet-printed light-emitting materials publication-title: Macromol. Res. doi: 10.1007/s13233-021-9017-4 – volume: 21 start-page: 2625 year: 2021 ident: 10.1016/j.nanoen.2022.108067_bib12 article-title: Plasmonic-fluorescent Janus Ag/Ag2S nanoparticles for in situ H2O2‑activated NIR-II fluorescence imaging publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00197 – volume: 22 year: 2011 ident: 10.1016/j.nanoen.2022.108067_bib40 article-title: Preparation of graphene by jet cavitation publication-title: Nanotechnology doi: 10.1088/0957-4484/22/36/365306 – volume: 121 start-page: 5408 year: 2017 ident: 10.1016/j.nanoen.2022.108067_bib42 article-title: Oxygen functionalities evolution in thermally treated graphene oxide featured by EELS and DFT calculations publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b00239 – volume: 3 start-page: 804 year: 2020 ident: 10.1016/j.nanoen.2022.108067_bib39 article-title: Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4 publication-title: Nat. Catal. doi: 10.1038/s41929-020-00504-x – volume: 131 start-page: 11027 year: 2009 ident: 10.1016/j.nanoen.2022.108067_bib43 article-title: Flash reduction and patterning of graphite oxide and its polymer composite publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902348k – volume: 17 start-page: 1312 year: 2017 ident: 10.1016/j.nanoen.2022.108067_bib18 article-title: Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5–fold twinned copper nanowires publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05287 – volume: 6 year: 2016 ident: 10.1016/j.nanoen.2022.108067_bib45 article-title: Combining nature-inspired, graphene-wrapped flexible electrodes with nanocomposite polymer electrolyte for asymmetric capacitive energy storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600813 – volume: 17 start-page: 6040 year: 2017 ident: 10.1016/j.nanoen.2022.108067_bib14 article-title: Core−shell Au@metal-oxide nanoparticle electrocatalysts for enhanced oxygen evolution publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02357 – volume: 7 start-page: 3516 year: 2019 ident: 10.1016/j.nanoen.2022.108067_bib3 article-title: A review of electrode materials based on core–shell nanostructures for electrochemical supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11599K – volume: 33 year: 2021 ident: 10.1016/j.nanoen.2022.108067_bib8 article-title: Plasmonic core–shell nanomaterials and their applications in spectroscopies publication-title: Adv. Mater. – volume: 112 start-page: 2373 year: 2012 ident: 10.1016/j.nanoen.2022.108067_bib13 article-title: Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications publication-title: Chem. Rev. doi: 10.1021/cr100449n – volume: 60 start-page: 1909 year: 2021 ident: 10.1016/j.nanoen.2022.108067_bib17 article-title: Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202011956 – volume: 71 year: 2020 ident: 10.1016/j.nanoen.2022.108067_bib34 article-title: Superstable copper nanowire network electrodes by single-crystal graphene covering and their applications in flexible nanogenerator and light-emitting diode publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104638 – volume: 119 start-page: 8972 year: 2019 ident: 10.1016/j.nanoen.2022.108067_bib20 article-title: One-dimensional metal nanostructures: from colloidal syntheses to applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00745 – volume: 5 start-page: 7750 year: 2013 ident: 10.1016/j.nanoen.2022.108067_bib24 article-title: Highly stable and flexible silver nanowire–graphene hybrid transparent conducting electrodes for emerging optoelectronic devices publication-title: Nanoscale doi: 10.1039/c3nr02320f – volume: 32 year: 2020 ident: 10.1016/j.nanoen.2022.108067_bib10 article-title: Core–shell structured nanoenergetic materials: preparation and fundamental properties publication-title: Adv. Mater. doi: 10.1002/adma.202001291 – volume: 32 year: 2020 ident: 10.1016/j.nanoen.2022.108067_bib11 article-title: A porous Au@Rh bimetallic core–shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy publication-title: Adv. Mater. – volume: 5 start-page: 16736 year: 2015 ident: 10.1016/j.nanoen.2022.108067_bib29 article-title: Boron nitride encapsulated copper nanoparticles: a facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate publication-title: Sci. Rep. doi: 10.1038/srep16736 |
SSID | ssj0000651712 |
Score | 2.434088 |
Snippet | Wrapping metallic nanomaterials with two-dimensional (2D) materials can significantly improve the physical properties required for various electronic and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108067 |
SubjectTerms | 2D material-wrapped copper nanowire 2D quantum dot assembly Flash light irradiation Supercapacitor Transparent electronic device |
Title | Ultrastable 2D material-wrapped copper nanowires for high-performance flexible and transparent energy devices |
URI | https://dx.doi.org/10.1016/j.nanoen.2022.108067 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uOhBfGJ9lD14XZtsks32WKqlKvSihd7CZh9QqWmIEW_-dnc3Sa0gCp4CSyYsk83Mt9lvvgG4irWnzPbfw1HEKA4Jl3goCMWCpZY37stUOrbFjE7n4f0iWrRg3NTCWFplHfurmO6idT0yqL05yJfLwSMxexfCIgMgLKiPwjZ0icn2rAPd0d3DdLb51WKyrB-7c09rgq1NU0TnmF4Zz9bKaqES4ih3ruf8D0lqK_FM9mGvRoxoVE3qAFoqO4TdLR3BI3iZr8qCG5yXrhQiN8igULew8HvB81xJJNbmUiA7BatN_IoMVEVWqRjnX4UDSFtxTPsInklUOtVzWypWIuUKBJFULqwcw3xy-zSe4rqPAhYkoCXWjGrFaESk8IlkPPQ9j5uNYcpInHIhCVNK-GIYSd-gCTZkcRB5WgzN18ljrnhwAp1snalTQJRqQQNNhR-qUITc5Dfl8ZRpwrgZpD0IGsclohYZt70uVknDJntOKncn1t1J5e4e4I1VXols_HF_3LyT5NtiSUwe-NXy7N-W57BjO81XhO0L6JTFm7o0eKRM-9C-_vD79ar7BPWO4Hk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7M7aAexJ84f-bgNaxN2zQ7junY3NzFDXYraZLCZHalVvz3TdJ2ThAFT4XQV8Jr-t6X5nvfA7gLE0fp7b-Dg4BR7BMucVcQigWLDW_clbG0bIspHc79x0WwaEC_roUxtMoq9pcx3UbraqRTebOTLZedZ6L3LoQFGkAYUB_4O9DyTVPrJrR6o_FwuvnVorOsG9pzT2OCjU1dRGeZXilP18pooRJiKXe25_wPSWor8QwO4aBCjKhXTuoIGio9hv0tHcETeJ2vipxrnBevFCL3SKNQu7DwR86zTEkk1vqSIzMFo038hjRURUapGGdfhQMoMeKY5hE8laiwquemVKxAyhYIIqlsWDmF-eBh1h_iqo8CFsSjBU4YTRSjAZHCJZJx33UcrjeGMSNhzIUkTCnhim4gXY0mWJeFXuAkoqu_Th5yxb0zaKbrVJ0DojQR1EuocH3lC5_r_KYcHrOEMK4HaRu82nGRqETGTa-LVVSzyV6i0t2RcXdUursNeGOVlSIbf9wf1u8k-rZYIp0HfrW8-LflLewOZ0-TaDKaji9hz3SdL8nbV9As8nd1rbFJEd9Ua-8TQr7iXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastable+2D+material-wrapped+copper+nanowires+for+high-performance+flexible+and+transparent+energy+devices&rft.jtitle=Nano+energy&rft.au=Kim%2C+Jongyoun&rft.au=Kim%2C+Minkyoung&rft.au=Jung%2C+Hyeonwoo&rft.au=Park%2C+Jaehyoung&rft.date=2023-02-01&rft.issn=2211-2855&rft.volume=106&rft.spage=108067&rft_id=info:doi/10.1016%2Fj.nanoen.2022.108067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2022_108067 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |