Side‐Chains Engineered Self‐Assembly of Ortho ‐Benzodipyrrole‐Based Acceptors: Comprehensive Exploration of Structure‐Interface‐Photovoltaics Correlations

This research employs inner side‐chain engineering in C‐shaped ortho‐benzodipyrrole‐based (CB) A‐D‐A non‐fullerene acceptors (NFAs) CB8, CB12, CB16, and CB20, where side‐chain configuration crucially influences self‐assembly, single‐crystal structures, and optoelectronic properties. The enthalpy of...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials
Main Authors Xue, Yung‐Jing, Chang, Chen‐Yu, Hung, Chieh‐Ming, Tseng, Chi‐Chun, Chang, Je‐Wei, Su, Chun‐Jen, Tsai, Chia‐Lin, Lu, Han‐Cheng, Huang, Kuo‐Hsiu, Tai, Kuei‐Yu, Ku, Chien‐Yi, Wu, Chia‐Shing, Chien, Su‐Ying, Yang, Shang‐Da, Jiang, Bing‐Huang, Chen, Chih‐Ping, Chou, Pi‐Tai, Jeng, U‐Ser, Cheng, Yen‐Ju
Format Journal Article
LanguageEnglish
Published 19.06.2025
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202504705

Cover

Abstract This research employs inner side‐chain engineering in C‐shaped ortho‐benzodipyrrole‐based (CB) A‐D‐A non‐fullerene acceptors (NFAs) CB8, CB12, CB16, and CB20, where side‐chain configuration crucially influences self‐assembly, single‐crystal structures, and optoelectronic properties. The enthalpy of fusion at the melting point, combined with the intensity of the 730 nm solid‐state absorption shoulder, suggests that the acceptor–acceptor (A–A) interactions follow the order: CB8 > CB12 > CB20 > CB16. Solution small‐ and wide‐angle X‐ray scattering (SWAXS) quantitatively reveals the successively increased donor–acceptor (D–A) association numbers of these CB derivatives with PM6, consistent with the reduction of their A–A self‐assembly. Complementarily and comprehensively, transient absorption spectroscopy (TAS) shows a systematically shortened decay‐time of charge transfer in the series of the binary PM6:CB (1:1.2 wt%) thin films, from 25.40 ps (CB8), to 16.13 ps (CB12), to 15.03 ps (CB20), and to 11.97 ps (CB16), following the increasing trend of CB‐PM6 interaction strength. Correspondingly, the photovoltaic efficiency improves with the enhanced CB‐PM6 interactions from PM6:CB8 (15.24%), to PM6:CB12 (16.66%), to PM6:CB20 (17.12%), and to PM6:CB16 (18.13%). These close correlations between the structures and photovoltaic properties elucidate the importance of minimizing A–A self‐aggregation and enhancing D (PM6)‐A (CBs) interactions via engineering the side chains in the CB‐based acceptors.
AbstractList This research employs inner side‐chain engineering in C‐shaped ortho‐benzodipyrrole‐based (CB) A‐D‐A non‐fullerene acceptors (NFAs) CB8, CB12, CB16, and CB20, where side‐chain configuration crucially influences self‐assembly, single‐crystal structures, and optoelectronic properties. The enthalpy of fusion at the melting point, combined with the intensity of the 730 nm solid‐state absorption shoulder, suggests that the acceptor–acceptor (A–A) interactions follow the order: CB8 > CB12 > CB20 > CB16. Solution small‐ and wide‐angle X‐ray scattering (SWAXS) quantitatively reveals the successively increased donor–acceptor (D–A) association numbers of these CB derivatives with PM6, consistent with the reduction of their A–A self‐assembly. Complementarily and comprehensively, transient absorption spectroscopy (TAS) shows a systematically shortened decay‐time of charge transfer in the series of the binary PM6:CB (1:1.2 wt%) thin films, from 25.40 ps (CB8), to 16.13 ps (CB12), to 15.03 ps (CB20), and to 11.97 ps (CB16), following the increasing trend of CB‐PM6 interaction strength. Correspondingly, the photovoltaic efficiency improves with the enhanced CB‐PM6 interactions from PM6:CB8 (15.24%), to PM6:CB12 (16.66%), to PM6:CB20 (17.12%), and to PM6:CB16 (18.13%). These close correlations between the structures and photovoltaic properties elucidate the importance of minimizing A–A self‐aggregation and enhancing D (PM6)‐A (CBs) interactions via engineering the side chains in the CB‐based acceptors.
Author Tsai, Chia‐Lin
Chou, Pi‐Tai
Tai, Kuei‐Yu
Ku, Chien‐Yi
Chien, Su‐Ying
Jiang, Bing‐Huang
Hung, Chieh‐Ming
Huang, Kuo‐Hsiu
Wu, Chia‐Shing
Tseng, Chi‐Chun
Chang, Je‐Wei
Lu, Han‐Cheng
Chang, Chen‐Yu
Yang, Shang‐Da
Chen, Chih‐Ping
Jeng, U‐Ser
Xue, Yung‐Jing
Su, Chun‐Jen
Cheng, Yen‐Ju
Author_xml – sequence: 1
  givenname: Yung‐Jing
  surname: Xue
  fullname: Xue, Yung‐Jing
  organization: National Yang Ming Chiao Tung University Department of Applied Chemistry 1001 University Road Hsinchu 30010 Taiwan
– sequence: 2
  givenname: Chen‐Yu
  surname: Chang
  fullname: Chang, Chen‐Yu
  organization: National Tsing Hua University Department of Chemical Engineering 101, Sec. 2, Kuang‐Fu Road Hsinchu 300044 Taiwan
– sequence: 3
  givenname: Chieh‐Ming
  surname: Hung
  fullname: Hung, Chieh‐Ming
  organization: National Taiwan University Department of Chemistry Center for Emerging Materials and Advanced Devices No.1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
– sequence: 4
  givenname: Chi‐Chun
  surname: Tseng
  fullname: Tseng, Chi‐Chun
  organization: National Yang Ming Chiao Tung University Department of Applied Chemistry 1001 University Road Hsinchu 30010 Taiwan
– sequence: 5
  givenname: Je‐Wei
  surname: Chang
  fullname: Chang, Je‐Wei
  organization: National Synchrotron Radiation Research Center 101 Hsin‐Ann Road, Hsinchu Science Park Hsinchu 300092 Taiwan
– sequence: 6
  givenname: Chun‐Jen
  surname: Su
  fullname: Su, Chun‐Jen
  organization: National Synchrotron Radiation Research Center 101 Hsin‐Ann Road, Hsinchu Science Park Hsinchu 300092 Taiwan
– sequence: 7
  givenname: Chia‐Lin
  surname: Tsai
  fullname: Tsai, Chia‐Lin
  organization: National Yang Ming Chiao Tung University Department of Applied Chemistry 1001 University Road Hsinchu 30010 Taiwan
– sequence: 8
  givenname: Han‐Cheng
  surname: Lu
  fullname: Lu, Han‐Cheng
  organization: National Yang Ming Chiao Tung University Department of Applied Chemistry 1001 University Road Hsinchu 30010 Taiwan
– sequence: 9
  givenname: Kuo‐Hsiu
  surname: Huang
  fullname: Huang, Kuo‐Hsiu
  organization: National Yang Ming Chiao Tung University Department of Applied Chemistry 1001 University Road Hsinchu 30010 Taiwan
– sequence: 10
  givenname: Kuei‐Yu
  surname: Tai
  fullname: Tai, Kuei‐Yu
  organization: National Yang Ming Chiao Tung University Department of Applied Chemistry 1001 University Road Hsinchu 30010 Taiwan
– sequence: 11
  givenname: Chien‐Yi
  surname: Ku
  fullname: Ku, Chien‐Yi
  organization: National Yang Ming Chiao Tung University Department of Applied Chemistry 1001 University Road Hsinchu 30010 Taiwan
– sequence: 12
  givenname: Chia‐Shing
  surname: Wu
  fullname: Wu, Chia‐Shing
  organization: Taiwan Space Agency 8F, 9 Prosperity 1st Road, Hsinchu Science Park Hsinchu 300 Taiwan
– sequence: 13
  givenname: Su‐Ying
  surname: Chien
  fullname: Chien, Su‐Ying
  organization: National Taiwan University Instrumentation Center No.1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
– sequence: 14
  givenname: Shang‐Da
  surname: Yang
  fullname: Yang, Shang‐Da
  organization: National Tsing Hua University Institute of Photonics Technologies 101, Sec. 2, Kuang‐Fu Road Hsinchu 300044 Taiwan
– sequence: 15
  givenname: Bing‐Huang
  surname: Jiang
  fullname: Jiang, Bing‐Huang
  organization: Ming Chi University of Technology Department of Materials Engineering New Taipei City 243 Taiwan
– sequence: 16
  givenname: Chih‐Ping
  surname: Chen
  fullname: Chen, Chih‐Ping
  organization: Ming Chi University of Technology Department of Materials Engineering New Taipei City 243 Taiwan
– sequence: 17
  givenname: Pi‐Tai
  orcidid: 0000-0002-8925-7747
  surname: Chou
  fullname: Chou, Pi‐Tai
  organization: National Taiwan University Department of Chemistry Center for Emerging Materials and Advanced Devices No.1, Sec. 4, Roosevelt Road Taipei 10617 Taiwan
– sequence: 18
  givenname: U‐Ser
  orcidid: 0000-0002-2247-5061
  surname: Jeng
  fullname: Jeng, U‐Ser
  organization: National Tsing Hua University Department of Chemical Engineering 101, Sec. 2, Kuang‐Fu Road Hsinchu 300044 Taiwan, National Synchrotron Radiation Research Center 101 Hsin‐Ann Road, Hsinchu Science Park Hsinchu 300092 Taiwan, National Tsing Hua University College of Semiconductor Research 01, Sec. 2, Kuang‐Fu Road Hsinchu 300044 Taiwan
– sequence: 19
  givenname: Yen‐Ju
  orcidid: 0000-0003-0780-4557
  surname: Cheng
  fullname: Cheng, Yen‐Ju
  organization: National Yang Ming Chiao Tung University Department of Applied Chemistry 1001 University Road Hsinchu 30010 Taiwan, National Yang Ming Chiao Tung University Center for Emergent Functional Matter Science 1001 University Road Hsinchu 30010 Taiwan
BookMark eNo9kEtOwzAURS0EEm1hyjgbSLHj_MqsjQpUqlSkgsQscuxnYpTYke1WlBFLYBUsjJWQAOroXb2rcwZ3jE610YDQFcFTgnF0zYRspxGOEhxnODlBI5KSNKQ4yk-PmTyfo7FzrxiTLKPxCH1tlYDvj8-iZkq7YKlflAawIIItNLIv5s5BWzWHwMhgY31tgv65AP1uhOoO1ppmwBfM9cicc-i8se4mKEzbWahBO7WHYPnWNcYyr4wePFtvd9zv7ECutAcrGR_yQ2282ZvGM8Vdr7AWml_IXaAzyRoHl_93gp5ul4_Ffbje3K2K-TrkEU19WLG4yiKe5AkXicRRmkgp4wrjTOQSp4LSXGYMGMU4jolgEkgW5zlwkc-qjM_oBE3_vNwa5yzIsrOqZfZQElwOK5fDyuVxZfoDhxJ93Q
Cites_doi 10.1002/adma.202302946
10.1002/anie.202317892
10.1002/adfm.202106524
10.1016/j.joule.2019.01.004
10.1039/D1EE03225A
10.1021/acsenergylett.2c02679
10.1002/adma.202408858
10.1002/adma.201908205
10.1038/s41467-022-33754-3
10.1002/adts.202000116
10.1021/acsenergylett.0c02230
10.1093/nsr/nwz200
10.1021/jacs.2c13247
10.1021/acs.chemrev.1c00955
10.1002/aenm.202404537
10.1002/anie.202318756
10.1016/j.joule.2023.01.009
10.1002/(SICI)1097-0282(199609)39:3<339::AID-BIP6>3.0.CO;2-P
10.1002/smll.202401054
10.1002/anie.202313016
10.1002/adma.202002122
10.1039/D3EE01333B
10.1021/jacs.4c01503
10.1002/adma.201906324
10.1038/s41467-020-17867-1
10.1039/D0TA06658C
10.1002/aenm.202301292
10.1038/s41560-022-01138-y
10.1002/adma.202405718
10.1002/adfm.202419176
10.1016/j.nanoen.2020.105087
10.1016/j.joule.2020.02.004
10.1016/j.joule.2022.01.006
10.1002/aenm.202304477
10.1007/s11426-023-1720-x
10.1039/D3EE01164J
10.1002/anie.202400086
10.1039/C7CS00892A
10.1039/D3EE02354K
10.1021/acs.chemmater.4c02548
10.1002/advs.202413045
10.1002/anie.202313791
10.1002/aenm.201601842
10.1021/acsami.4c11466
10.1021/jacs.1c00211
10.1002/adma.202300400
10.1109/JPHOTOV.2012.2198434
10.1002/adfm.202305611
10.1002/aenm.202003141
10.1002/aenm.202403121
10.1039/D2EE00430E
10.1039/D3CC02560H
10.1002/adma.202100830
10.1002/aenm.202003177
10.1021/acsami.5c04989
10.1002/aenm.202401561
10.1007/s11426-023-1774-6
10.1002/adma.202312101
10.1039/D4SC07146H
10.1002/anie.202104766
10.1002/anie.202311645
10.1103/PhysRevApplied.4.014020
10.1002/adfm.202301573
10.1021/acs.chemmater.1c03311
10.1038/s41467-023-40423-6
10.1002/advs.202207678
10.1021/acsenergylett.2c02140
10.1002/adma.200601093
10.1038/s41560-021-00820-x
10.1021/acs.chemrev.7b00535
10.1021/acsenergylett.9b00528
10.1103/PhysRevB.81.125204
10.1039/D1EE03673D
10.1002/aenm.202103702
10.1016/j.joule.2019.09.010
10.1021/acs.chemmater.1c03104
10.1021/jacs.3c11062
10.1002/anie.202209580
10.1038/s41563-019-0324-5
10.1021/jacs.0c04890
10.1107/S1600576722001923
10.1002/aenm.201301469
10.1039/D0EE00862A
10.1002/adma.202202089
10.1021/jacs.0c07083
10.1021/acsenergylett.0c01688
10.1002/adma.202406653
10.1016/j.nanoen.2022.107574
10.1039/D2EE01340A
10.1002/anie.202304127
10.1002/advs.202404997
10.1016/j.nanoen.2024.109540
10.1002/adfm.200304399
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/adfm.202504705
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202504705
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
ID FETCH-LOGICAL-c236t-ba4b72c585cd5f0265fff4b007d8f06d338f7aea300441dafe17488ecd89b7c93
ISSN 1616-301X
IngestDate Tue Aug 05 12:01:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c236t-ba4b72c585cd5f0265fff4b007d8f06d338f7aea300441dafe17488ecd89b7c93
ORCID 0000-0003-0780-4557
0000-0002-2247-5061
0000-0002-8925-7747
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202504705
ParticipantIDs crossref_primary_10_1002_adfm_202504705
PublicationCentury 2000
PublicationDate 2025-06-19
PublicationDateYYYYMMDD 2025-06-19
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-19
  day: 19
PublicationDecade 2020
PublicationTitle Advanced functional materials
PublicationYear 2025
References Wang J. (e_1_2_7_25_1) 2022; 15
Zeng R. (e_1_2_7_14_2) 2024; 14
Wang Y.‐B. (e_1_2_7_35_2) 2025; 16
Kong X. (e_1_2_7_17_2) 2022; 15
Fan B. (e_1_2_7_15_4) 2023; 145
Li G. (e_1_2_7_4_2) 2022; 15
Huang K.‐H. (e_1_2_7_35_3) 2025; 12
Huang K.‐H. (e_1_2_7_30_2) 2025; 35
e_1_2_7_13_2
Gao W. (e_1_2_7_3_2) 2020; 11
Wang L. (e_1_2_7_17_1) 2021; 33
Cros S. (e_1_2_7_32_1) 1996; 39
Liang H. (e_1_2_7_9_4) 2023; 14
Lai H. (e_1_2_7_19_2) 2020; 4
Riedel I. (e_1_2_7_22_1) 2004; 14
Li G. (e_1_2_7_4_1) 2021; 143
Yang C. (e_1_2_7_8_2) 2023; 62
Abbas Z. (e_1_2_7_12_3) 2022; 101
Zou Y. (e_1_2_7_9_2) 2022; 15
Ullbrich S. (e_1_2_7_28_1) 2019; 18
Bi X. (e_1_2_7_9_7) 2024; 20
Chai G. (e_1_2_7_3_1) 2020; 5
Chen H. (e_1_2_7_9_1) 2022; 61
Xu T. (e_1_2_7_9_6) 2023; 62
Zhang X. (e_1_2_7_20_1) 2022; 6
Yuan J. (e_1_2_7_2_1) 2019; 3
Qi F. (e_1_2_7_7_1) 2020; 6
Fan B. (e_1_2_7_15_3) 2022; 13
Wang R. (e_1_2_7_36_1) 2020; 142
Song G. (e_1_2_7_8_1) 2023; 59
Liu F. (e_1_2_7_37_1) 2021; 33
Yang C. (e_1_2_7_3_4) 2021; 60
Chen Z. (e_1_2_7_16_3) 2024; 36
Wu W.‐R. (e_1_2_7_30_3) 2017; 7
Li C. (e_1_2_7_13_1) 2021; 6
Gao W. (e_1_2_7_3_7) 2024; 14
Liang H. (e_1_2_7_9_5) 2023; 33
Gao M. (e_1_2_7_31_3) 2024; 36
Lee J.‐W. (e_1_2_7_4_4) 2023; 8
Vandewal K. (e_1_2_7_27_1) 2010; 81
Xue Y.‐J. (e_1_2_7_18_1) 2024; 146
Chen S. (e_1_2_7_17_3) 2024; 63
Yu H. (e_1_2_7_3_3) 2020; 8
Gao Y. (e_1_2_7_7_4) 2023; 66
Zhou Z. (e_1_2_7_10_1) 2020; 32
Higgins J. S. (e_1_2_7_33_1) 1997
Xu R. (e_1_2_7_17_5) 2024; 36
Chen Y. (e_1_2_7_19_3) 2024; 36
Gao M. (e_1_2_7_31_2) 2023; 16
Wu X. (e_1_2_7_15_5) 2023; 35
Miller O. D. (e_1_2_7_26_1) 2012; 2
Shi J. (e_1_2_7_3_6) 2023; 13
Yang Q. (e_1_2_7_4_3) 2023; 10
Zhang B. (e_1_2_7_14_3) 2024; 36
Lin F. (e_1_2_7_5_1) 2020; 142
Gokulnath T. (e_1_2_7_7_6) 2024; 11
Jiang K. (e_1_2_7_14_1) 2019; 3
An N. (e_1_2_7_26_2) 2020; 32
Hartnagel P. (e_1_2_7_34_1) 2020; 3
Tian L. (e_1_2_7_11_1) 2023; 67
Chen Z. (e_1_2_7_4_6) 2024; 63
Zhu C. (e_1_2_7_7_2) 2020; 13
Chen T. (e_1_2_7_6_1) 2023; 35
Kyaw A. K. K. (e_1_2_7_23_1) 2014; 4
Sun C. (e_1_2_7_4_5) 2023; 7
Chen Y. (e_1_2_7_16_1) 2020; 11
Xie M. (e_1_2_7_10_3) 2023; 16
Liu F. (e_1_2_7_17_4) 2024; 63
Zhang G. (e_1_2_7_19_1) 2020; 11
Tsai C.‐L. (e_1_2_7_21_1) 2025; 17
Chen Z. (e_1_2_7_9_3) 2023; 16
Hung K.‐E. (e_1_2_7_30_1) 2022; 12
Sun Y. (e_1_2_7_4_7) 2024; 146
Jiang K. (e_1_2_7_36_2) 2022; 7
Cui Y. (e_1_2_7_12_2) 2020; 32
Tan P. (e_1_2_7_15_2) 2021; 31
Zhang G. (e_1_2_7_1_1) 2018; 118
Chai G. (e_1_2_7_15_1) 2020; 76
Zhang G. (e_1_2_7_1_4) 2022; 122
Blom P. W. M. (e_1_2_7_24_1) 2007; 19
Tao J. (e_1_2_7_10_4) 2024; 125
Wadsworth A. (e_1_2_7_1_2) 2019; 48
Huo Y. (e_1_2_7_1_3) 2019; 4
Guo Y. (e_1_2_7_10_2) 2023; 33
Liang J. (e_1_2_7_16_2) 2022; 34
Cho Y. (e_1_2_7_7_3) 2022; 8
Tian H. (e_1_2_7_9_8) 2024; 15
Hu H. (e_1_2_7_15_6) 2024; 63
Cui Y. (e_1_2_7_12_1) 2020; 7
Yao J. (e_1_2_7_29_1) 2015; 4
Shih O. (e_1_2_7_31_1) 2022; 55
Liu W. (e_1_2_7_7_5) 2023; 62
Xue Y.‐J. (e_1_2_7_35_1) 2024; 16
Gao W. (e_1_2_7_3_5) 2022; 34
References_xml – volume: 35
  year: 2023
  ident: e_1_2_7_15_5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202302946
– volume: 63
  year: 2024
  ident: e_1_2_7_4_6
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202317892
– volume: 31
  year: 2021
  ident: e_1_2_7_15_2
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106524
– volume: 3
  start-page: 1140
  year: 2019
  ident: e_1_2_7_2_1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.004
– volume: 15
  start-page: 645
  year: 2022
  ident: e_1_2_7_4_2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03225A
– volume: 8
  start-page: 1344
  year: 2023
  ident: e_1_2_7_4_4
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02679
– volume: 36
  year: 2024
  ident: e_1_2_7_16_3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202408858
– volume: 32
  year: 2020
  ident: e_1_2_7_12_2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908205
– volume: 13
  start-page: 5946
  year: 2022
  ident: e_1_2_7_15_3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33754-3
– volume: 3
  year: 2020
  ident: e_1_2_7_34_1
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.202000116
– volume: 6
  start-page: 9
  year: 2020
  ident: e_1_2_7_7_1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02230
– volume: 7
  start-page: 1239
  year: 2020
  ident: e_1_2_7_12_1
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwz200
– volume: 145
  start-page: 5909
  year: 2023
  ident: e_1_2_7_15_4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c13247
– volume: 122
  year: 2022
  ident: e_1_2_7_1_4
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00955
– volume: 15
  year: 2024
  ident: e_1_2_7_9_8
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202404537
– volume: 63
  year: 2024
  ident: e_1_2_7_17_3
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202318756
– volume: 7
  start-page: 416
  year: 2023
  ident: e_1_2_7_4_5
  publication-title: Joule
  doi: 10.1016/j.joule.2023.01.009
– volume: 39
  start-page: 339
  year: 1996
  ident: e_1_2_7_32_1
  publication-title: Biopolymers
  doi: 10.1002/(SICI)1097-0282(199609)39:3<339::AID-BIP6>3.0.CO;2-P
– volume: 20
  year: 2024
  ident: e_1_2_7_9_7
  publication-title: Small
  doi: 10.1002/smll.202401054
– volume: 62
  year: 2023
  ident: e_1_2_7_8_2
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202313016
– volume: 32
  year: 2020
  ident: e_1_2_7_26_2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002122
– volume: 16
  start-page: 3543
  year: 2023
  ident: e_1_2_7_10_3
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE01333B
– volume: 146
  year: 2024
  ident: e_1_2_7_4_7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c01503
– volume: 32
  year: 2020
  ident: e_1_2_7_10_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906324
– volume: 11
  start-page: 3943
  year: 2020
  ident: e_1_2_7_19_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17867-1
– volume: 8
  year: 2020
  ident: e_1_2_7_3_3
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06658C
– volume: 13
  year: 2023
  ident: e_1_2_7_3_6
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202301292
– volume-title: Polymers and Neutron Scattering
  year: 1997
  ident: e_1_2_7_33_1
– volume: 7
  start-page: 1076
  year: 2022
  ident: e_1_2_7_36_2
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01138-y
– volume: 36
  year: 2024
  ident: e_1_2_7_14_3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202405718
– volume: 35
  year: 2025
  ident: e_1_2_7_30_2
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202419176
– volume: 76
  year: 2020
  ident: e_1_2_7_15_1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105087
– volume: 4
  start-page: 688
  year: 2020
  ident: e_1_2_7_19_2
  publication-title: Joule
  doi: 10.1016/j.joule.2020.02.004
– volume: 6
  start-page: 444
  year: 2022
  ident: e_1_2_7_20_1
  publication-title: Joule
  doi: 10.1016/j.joule.2022.01.006
– volume: 14
  year: 2024
  ident: e_1_2_7_3_7
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202304477
– volume: 66
  start-page: 3205
  year: 2023
  ident: e_1_2_7_7_4
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-023-1720-x
– volume: 16
  start-page: 3119
  year: 2023
  ident: e_1_2_7_9_3
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE01164J
– volume: 63
  year: 2024
  ident: e_1_2_7_15_6
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202400086
– volume: 48
  start-page: 1596
  year: 2019
  ident: e_1_2_7_1_2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00892A
– volume: 16
  start-page: 5822
  year: 2023
  ident: e_1_2_7_31_2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02354K
– volume: 36
  year: 2024
  ident: e_1_2_7_19_3
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.4c02548
– volume: 12
  year: 2025
  ident: e_1_2_7_35_3
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202413045
– volume: 63
  year: 2024
  ident: e_1_2_7_17_4
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202313791
– volume: 7
  year: 2017
  ident: e_1_2_7_30_3
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601842
– volume: 16
  year: 2024
  ident: e_1_2_7_35_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.4c11466
– volume: 143
  start-page: 6123
  year: 2021
  ident: e_1_2_7_4_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00211
– volume: 35
  year: 2023
  ident: e_1_2_7_6_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202300400
– volume: 2
  start-page: 303
  year: 2012
  ident: e_1_2_7_26_1
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2012.2198434
– volume: 33
  year: 2023
  ident: e_1_2_7_10_2
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202305611
– volume: 11
  year: 2020
  ident: e_1_2_7_16_1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003141
– ident: e_1_2_7_13_2
  doi: 10.1002/aenm.202403121
– volume: 15
  start-page: 2011
  year: 2022
  ident: e_1_2_7_17_2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00430E
– volume: 59
  year: 2023
  ident: e_1_2_7_8_1
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC02560H
– volume: 33
  year: 2021
  ident: e_1_2_7_37_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100830
– volume: 11
  year: 2020
  ident: e_1_2_7_3_2
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003177
– volume: 17
  year: 2025
  ident: e_1_2_7_21_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5c04989
– volume: 14
  year: 2024
  ident: e_1_2_7_14_2
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202401561
– volume: 67
  start-page: 788
  year: 2023
  ident: e_1_2_7_11_1
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-023-1774-6
– volume: 36
  year: 2024
  ident: e_1_2_7_17_5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202312101
– volume: 16
  start-page: 3259
  year: 2025
  ident: e_1_2_7_35_2
  publication-title: Chem. Sci.
  doi: 10.1039/D4SC07146H
– volume: 60
  year: 2021
  ident: e_1_2_7_3_4
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202104766
– volume: 62
  year: 2023
  ident: e_1_2_7_7_5
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202311645
– volume: 4
  year: 2015
  ident: e_1_2_7_29_1
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.4.014020
– volume: 33
  year: 2023
  ident: e_1_2_7_9_5
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202301573
– volume: 34
  start-page: 2059
  year: 2022
  ident: e_1_2_7_16_2
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.1c03311
– volume: 14
  start-page: 4707
  year: 2023
  ident: e_1_2_7_9_4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40423-6
– volume: 10
  year: 2023
  ident: e_1_2_7_4_3
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202207678
– volume: 8
  start-page: 96
  year: 2022
  ident: e_1_2_7_7_3
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02140
– volume: 19
  start-page: 1551
  year: 2007
  ident: e_1_2_7_24_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200601093
– volume: 6
  start-page: 605
  year: 2021
  ident: e_1_2_7_13_1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00820-x
– volume: 118
  start-page: 3447
  year: 2018
  ident: e_1_2_7_1_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00535
– volume: 4
  start-page: 1241
  year: 2019
  ident: e_1_2_7_1_3
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00528
– volume: 81
  year: 2010
  ident: e_1_2_7_27_1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.125204
– volume: 15
  start-page: 1585
  year: 2022
  ident: e_1_2_7_25_1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03673D
– volume: 12
  year: 2022
  ident: e_1_2_7_30_1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103702
– volume: 3
  start-page: 3020
  year: 2019
  ident: e_1_2_7_14_1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.09.010
– volume: 33
  start-page: 8854
  year: 2021
  ident: e_1_2_7_17_1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.1c03104
– volume: 146
  start-page: 833
  year: 2024
  ident: e_1_2_7_18_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c11062
– volume: 61
  year: 2022
  ident: e_1_2_7_9_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202209580
– volume: 18
  start-page: 459
  year: 2019
  ident: e_1_2_7_28_1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0324-5
– volume: 142
  year: 2020
  ident: e_1_2_7_36_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04890
– volume: 55
  start-page: 340
  year: 2022
  ident: e_1_2_7_31_1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576722001923
– volume: 4
  year: 2014
  ident: e_1_2_7_23_1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301469
– volume: 13
  start-page: 2459
  year: 2020
  ident: e_1_2_7_7_2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE00862A
– volume: 34
  year: 2022
  ident: e_1_2_7_3_5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202089
– volume: 142
  year: 2020
  ident: e_1_2_7_5_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07083
– volume: 5
  start-page: 3415
  year: 2020
  ident: e_1_2_7_3_1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01688
– volume: 36
  year: 2024
  ident: e_1_2_7_31_3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202406653
– volume: 101
  year: 2022
  ident: e_1_2_7_12_3
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107574
– volume: 15
  start-page: 3519
  year: 2022
  ident: e_1_2_7_9_2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE01340A
– volume: 62
  year: 2023
  ident: e_1_2_7_9_6
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202304127
– volume: 11
  year: 2024
  ident: e_1_2_7_7_6
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202404997
– volume: 125
  year: 2024
  ident: e_1_2_7_10_4
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109540
– volume: 14
  start-page: 38
  year: 2004
  ident: e_1_2_7_22_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200304399
SSID ssj0017734
Score 2.4835458
SecondaryResourceType online_first
Snippet This research employs inner side‐chain engineering in C‐shaped ortho‐benzodipyrrole‐based (CB) A‐D‐A non‐fullerene acceptors (NFAs) CB8, CB12, CB16, and CB20,...
SourceID crossref
SourceType Index Database
Title Side‐Chains Engineered Self‐Assembly of Ortho ‐Benzodipyrrole‐Based Acceptors: Comprehensive Exploration of Structure‐Interface‐Photovoltaics Correlations
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKcoED4lfAAvIBiQMK5N8pNyig1UoLiO1K3VNlx7ZSqSRVNzmwJx6Bp-DBuPISzMSx48IeFi5RNE7cyvPJM558_kzI06JkOo0iHaQqFEHKShYIOc2DTPE8ZbkSrN8UdvQhPzhJDxfZYjL55bGWula8KM8v3FfyP14FG_gVd8n-g2ddp2CAe_AvXMHDcL2Uj49XUjm2wqziSHexAoOYSKq1ds34dfeLWPcf1D9u26p57preqPq8kavN1y1yDUczBDiJx0moDR7Jg7UDnD22qhpI74a_53LO416KttuOPfTlRo11emv5VDVtAzNiy1EdeoZHg6y9mqGVw7XEBIy6Q7ESMmszpBYii66vxZ7ibGW7P7SB2BAWzDw2ww0o9onTbgSybV6pyrUfeT3Mz5R7xBvmrvZLJXGGlK5hQjazex4h0a8_oweCn28zO9T_iidGn5ZLjaIFqPbGwmyMnJYt8EdAdTRHIwkdL_H9pXv_CrkaszzH4zbefnZaZxFjhgJh_6NVGA3jl7u_72VQXio0v0luDGsY-toA8haZqPo2ue4pW94hPxCaP799N6CkIygpghIaLBxpo2kPRwrGXSCiASFIHQRf0R0AUg-A2I8DILzpoAf3O6CjPujukpP37-azg2A4EiQo4yRvA8FTweIS1rilzHQY55nWOoXQwWShw1wmSaEZVxx15NJIcq1gxV0UqpTFVLBymtwje3VTq_uETmUmSxhOEfIw1UzwLE44U5AOK1YWTDwgz-wwLzdG-WV5sUMfXvrJfXJtxOUjsgfDoh5DUtuKJz0YfgMuv6Wo
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Side%E2%80%90Chains+Engineered+Self%E2%80%90Assembly+of+Ortho+%E2%80%90Benzodipyrrole%E2%80%90Based+Acceptors%3A+Comprehensive+Exploration+of+Structure%E2%80%90Interface%E2%80%90Photovoltaics+Correlations&rft.jtitle=Advanced+functional+materials&rft.au=Xue%2C+Yung%E2%80%90Jing&rft.au=Chang%2C+Chen%E2%80%90Yu&rft.au=Hung%2C+Chieh%E2%80%90Ming&rft.au=Tseng%2C+Chi%E2%80%90Chun&rft.date=2025-06-19&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002%2Fadfm.202504705&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202504705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon