Surface conversion derived core-shell nanostructures of Co particles@RuCo alloy for superior hydrogen evolution in alkali and seawater

Hydrogen evolution reaction (HER) in alkali involves higher energy barriers and slow reaction kinetics due to involving water dissociation process. Catalysts with proper surface properties are highly needed to optimize the surface binding energy with reaction intermediates and enhance intrinsic cata...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 315; p. 121554
Main Authors Huang, Huawei, Jung, Hyeonjung, Park, Cheol-Young, Kim, Seongbeen, Lee, Ahryeon, Jun, Hyunwoo, Choi, Jaeryung, Han, Jeong Woo, Lee, Jinwoo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2022
Subjects
Online AccessGet full text
ISSN0926-3373
1873-3883
DOI10.1016/j.apcatb.2022.121554

Cover

Abstract Hydrogen evolution reaction (HER) in alkali involves higher energy barriers and slow reaction kinetics due to involving water dissociation process. Catalysts with proper surface properties are highly needed to optimize the surface binding energy with reaction intermediates and enhance intrinsic catalytic activity. Herein, we present an effective strategy to construct a self-standing catalyst with core-shell structure, which is composited of metallic Co nanoparticles coated by RuCo alloy layer with optimized surface properties. The Ru attracts electrons from Co and optimizes the surface electronic structure. Theoretical calculations demonstrate that the water dissociation barrier on the Co surface is decreased from 0.65 eV to 0.58 eV after alloying with Ru. Experimental results reveal that the synthesized Co@RuCo-3 features highly efficient catalytic activity together with good stability at large current densities for HER in alkali, as well as in alkaline seawater and pure seawater. [Display omitted] •Present an effective strategy to improve alkaline HER performance of Co.•Controllable coating MOF layers on nanomaterials.•A self-standing catalyst with core-shell nanostructure is constructed.•Self-standing Co@RuCo exhibits good long-term stability (100 h) at 500 mA cm−2.
AbstractList Hydrogen evolution reaction (HER) in alkali involves higher energy barriers and slow reaction kinetics due to involving water dissociation process. Catalysts with proper surface properties are highly needed to optimize the surface binding energy with reaction intermediates and enhance intrinsic catalytic activity. Herein, we present an effective strategy to construct a self-standing catalyst with core-shell structure, which is composited of metallic Co nanoparticles coated by RuCo alloy layer with optimized surface properties. The Ru attracts electrons from Co and optimizes the surface electronic structure. Theoretical calculations demonstrate that the water dissociation barrier on the Co surface is decreased from 0.65 eV to 0.58 eV after alloying with Ru. Experimental results reveal that the synthesized Co@RuCo-3 features highly efficient catalytic activity together with good stability at large current densities for HER in alkali, as well as in alkaline seawater and pure seawater. [Display omitted] •Present an effective strategy to improve alkaline HER performance of Co.•Controllable coating MOF layers on nanomaterials.•A self-standing catalyst with core-shell nanostructure is constructed.•Self-standing Co@RuCo exhibits good long-term stability (100 h) at 500 mA cm−2.
ArticleNumber 121554
Author Jun, Hyunwoo
Han, Jeong Woo
Lee, Ahryeon
Lee, Jinwoo
Jung, Hyeonjung
Huang, Huawei
Kim, Seongbeen
Park, Cheol-Young
Choi, Jaeryung
Author_xml – sequence: 1
  givenname: Huawei
  surname: Huang
  fullname: Huang, Huawei
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
– sequence: 2
  givenname: Hyeonjung
  surname: Jung
  fullname: Jung, Hyeonjung
  organization: Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
– sequence: 3
  givenname: Cheol-Young
  surname: Park
  fullname: Park, Cheol-Young
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
– sequence: 4
  givenname: Seongbeen
  surname: Kim
  fullname: Kim, Seongbeen
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
– sequence: 5
  givenname: Ahryeon
  surname: Lee
  fullname: Lee, Ahryeon
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
– sequence: 6
  givenname: Hyunwoo
  surname: Jun
  fullname: Jun, Hyunwoo
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
– sequence: 7
  givenname: Jaeryung
  surname: Choi
  fullname: Choi, Jaeryung
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
– sequence: 8
  givenname: Jeong Woo
  surname: Han
  fullname: Han, Jeong Woo
  email: jwhan@postech.ac.kr
  organization: Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
– sequence: 9
  givenname: Jinwoo
  surname: Lee
  fullname: Lee, Jinwoo
  email: jwlee1@kaist.ac.kr
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
BookMark eNqFkM-KFDEQh4Os4OzqG3jIC_SYTjrpbg-iDK4uLAj-OYfqpNrNGJOhkh6ZF_C57WE8eVhPlSryffD7XbOrlBMy9rIV21a05tV-CwcHddpKIeW2la3W3RO2aYdeNWoY1BXbiFGaRqlePWPXpeyFEFLJYcN-f1loBofc5XREKiEn7pHCEf16ImzKA8bIE6RcKi2uLoSF55nvMj8A1eAilrefl3WFGPOJz5l4WQ6rYn08nDzl75g4HnNc6lke0vrxB8TAIXleEH5BRXrOns4QC774O2_Yt9v3X3cfm_tPH-527-4bJ5WpDRjocMZRT9rD1Hs9CDWh6GHs-lHp0Q2ug04b44XW09wr2Q5mjToaLbwyWt2w7uJ1lEshnO2Bwk-gk22FPXdp9_bSpT13aS9drtjrfzAXKpzzVIIQ_we_ucC4BjsGJFtcwOTQB0JXrc_hccEfsXeXIA
CitedBy_id crossref_primary_10_1021_acs_inorgchem_4c02804
crossref_primary_10_1021_acsmaterialslett_2c00699
crossref_primary_10_1039_D3TA01585H
crossref_primary_10_1002_aenm_202301438
crossref_primary_10_1002_smll_202204155
crossref_primary_10_1021_acssuschemeng_3c06729
crossref_primary_10_1007_s12274_023_5667_1
crossref_primary_10_1002_anie_202414647
crossref_primary_10_1021_acs_analchem_3c03230
crossref_primary_10_1021_acssuschemeng_2c04894
crossref_primary_10_1002_adfm_202420517
crossref_primary_10_1016_j_fuel_2024_131505
crossref_primary_10_1002_ange_202414647
crossref_primary_10_1016_j_fuel_2024_131644
crossref_primary_10_1016_j_cej_2025_160362
crossref_primary_10_1016_j_mattod_2025_03_003
crossref_primary_10_1007_s42864_023_00223_3
crossref_primary_10_1016_j_cej_2022_138939
crossref_primary_10_1016_j_jallcom_2023_170571
crossref_primary_10_1016_j_apcatb_2024_124388
crossref_primary_10_1016_j_fuel_2024_131691
crossref_primary_10_1002_adfm_202315460
crossref_primary_10_1002_adfm_202209134
crossref_primary_10_1016_j_ijhydene_2023_11_296
crossref_primary_10_1016_j_jcis_2023_08_009
crossref_primary_10_1016_j_jmst_2023_05_035
crossref_primary_10_1039_D4TA06304J
crossref_primary_10_1016_j_carbon_2024_119797
crossref_primary_10_1038_s41467_023_43459_w
crossref_primary_10_1002_smll_202302906
crossref_primary_10_1016_j_ijhydene_2024_02_310
crossref_primary_10_1016_j_jcrysgro_2024_127928
crossref_primary_10_1016_j_aca_2023_342199
crossref_primary_10_1039_D4QI00959B
crossref_primary_10_1016_j_jechem_2024_10_047
crossref_primary_10_1002_cctc_202402006
crossref_primary_10_1016_j_apcatb_2023_123644
crossref_primary_10_1021_acs_energyfuels_4c06200
crossref_primary_10_1016_j_gee_2024_02_001
crossref_primary_10_1039_D3TA07230D
crossref_primary_10_1039_D2GC03377A
crossref_primary_10_1021_acscatal_4c06833
crossref_primary_10_1016_j_jcis_2025_137309
crossref_primary_10_1002_smll_202301465
crossref_primary_10_1016_j_apsusc_2023_158834
crossref_primary_10_1002_cctc_202301305
crossref_primary_10_1016_j_jallcom_2023_172286
crossref_primary_10_1021_acs_energyfuels_3c02671
Cites_doi 10.1002/anie.200504386
10.1016/j.apcatb.2021.120996
10.1038/s41467-021-23750-4
10.1016/j.joule.2021.03.005
10.1103/PhysRevLett.81.2819
10.1039/C9SC05636J
10.1002/anie.202106547
10.1021/acsenergylett.9b02374
10.1126/sciadv.abg2580
10.1002/adma.201304759
10.1201/9780429351402
10.1039/C9EE03273H
10.1103/PhysRevB.50.17953
10.1016/j.nanoen.2019.01.094
10.1016/j.cej.2020.126977
10.1021/acscatal.9b05359
10.1016/j.cej.2021.130183
10.1039/C4CS00470A
10.1063/1.1329672
10.1038/376238a0
10.1103/PhysRevB.54.11169
10.1002/adfm.201901949
10.1016/j.nanoen.2021.106276
10.1016/j.apcatb.2019.04.096
10.1038/s41467-018-07288-6
10.1038/s41560-018-0209-x
10.1016/j.apcatb.2022.121081
10.1126/sciadv.aav6009
10.1021/jacs.6b11291
10.1016/j.apcatb.2021.120696
10.1016/j.apcatb.2021.120834
10.1039/C7EE03603E
10.1016/j.apcatb.2021.120879
10.1039/C6EE03768B
10.1021/acssuschemeng.9b03720
10.1002/anie.201408222
10.1039/C9EE00752K
10.1016/j.apsusc.2021.148975
10.1103/PhysRevLett.77.3865
10.1016/j.nanoen.2017.03.016
10.1103/PhysRevB.13.5188
10.1016/j.electacta.2016.04.184
10.1016/j.jcis.2019.07.063
10.1002/adma.201901349
10.1126/sciadv.abb9823
10.1103/PhysRevB.47.558
10.1016/j.apcatb.2021.120395
10.1039/b103525h
10.1016/j.apcatb.2021.120418
10.1016/j.nanoen.2021.106763
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apcatb.2022.121554
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2022_121554
S0926337322004957
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
ID FETCH-LOGICAL-c236t-a6a4efe95b5dab7d5803be07a9479359c8c4a4566d055bf7321860029650d3653
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Tue Jul 01 04:35:21 EDT 2025
Thu Apr 24 23:13:16 EDT 2025
Sat Mar 02 16:01:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrocatalysis
Cobalt
Core-shell
Alloy
Hydrogen evolution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-a6a4efe95b5dab7d5803be07a9479359c8c4a4566d055bf7321860029650d3653
ParticipantIDs crossref_primary_10_1016_j_apcatb_2022_121554
crossref_citationtrail_10_1016_j_apcatb_2022_121554
elsevier_sciencedirect_doi_10_1016_j_apcatb_2022_121554
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jiao, Zheng, Jaroniec, Qiao (bib53) 2015; 44
Wang, Chen, Fan, Xiao, Meng, Xing, Yang (bib3) 2022; 305
Kim, Park, Wang, Wang, Kim, Kim, Cho, Kim, Feng, Kim, Lee (bib7) 2022; 302
Zhang, Zhai, Sun, Han, Zhai, Cheong, Liu, Su, Wang, Li (bib45) 2019; 254
Zhang, Zuo, Qiu, Wang, Zhang, Zhang, Lou (bib17) 2020; 6
Huang, Kim, Lee, Kim, Lim, Park, Kim, Kim, Lee (bib6) 2021; 88
Tiwari, Sultan, Myung, Yoon, Li, Ha, Harzandi, Park, Kim, Chandrasekaran, Lee, Vij, Kang, Shin, Shin, Lee, Lee, Kim (bib23) 2018; 3
Gao, Chen, Zhao, Yu, Jiang, He, Li, Ma, Wu, Wang (bib2) 2022; 303
Blöchl (bib27) 1994; 50
Kresse, Furthmuller (bib25) 1996; 54
Perdew, Burke, Ernzerhof (bib28) 1996; 77
Chen, Wang, Hao, Li, Zhang, Guo, Ding, Liu, Wang, Guo (bib43) 2022; 304
Li, Hu, Zhang, Gou, Zhang, Chen, Qu, Ma (bib9) 2021; 12
Monkhorst, Pack (bib29) 1976; 13
Huang, Yu, Huang, Zhao, Qiu, Yao, Li, Han, Guo, Dai, Qiu (bib41) 2019; 58
Cheng, Zhang, Luan, Lou (bib5) 2021; 7
Xu, Liu, Li, Li, Liu, Zhang, Xiong, Amorim, Li, Liu (bib39) 2018; 11
Huang, Jung, Jun, Woo, Han, Lee (bib44) 2021; 405
Kim, Yoo, Bootharaju, Kim, Chung, Hyeon (bib19) 2022; 9
Hammer, Norskov (bib51) 1995; 376
Zheng, Jiao, Zhu, Li, Han, Chen, Jaroniec, Qiao (bib15) 2016; 138
Liu, Wang, Li, Yuan, Huang, Li, Li (bib42) 2022; 300
Ma, Wu, Feng, Tan, Yan, Liu, Kang, Wang, Li (bib46) 2017; 10
Stamenkovic, Mun, Mayrhofer, Ross, Markovic, Rossmeisl, Greeley, Nørskov (bib52) 2006; 45
Sun, Yan, Liu, Xu, Cheng, Chen (bib33) 2020; 32
Wu, Liu, Cheng, Li, Liu (bib35) 2021; 545
Mao, He, Pei, Chen, He, He, Zhuang, Chen, Peng, Wang, Li (bib16) 2018; 9
Yang, Zai, Zhou, Du, Jiang (bib40) 2019; 29
Zhang, Lu, Wu, Luan, Lou (bib21) 2021; 60
Lu, Zhu, Yu, Zhang, Li, Sun, Wang, Wang, Wang, Luo, Lei, Jiang (bib34) 2014; 26
Kresse, Hafner (bib26) 1993; 47
Henkelman, Uberuaga, Jónsson (bib31) 2000; 113
Victoria, Haegel, Peters, Sinton, Jäger-Waldau, del Cañizo, Breyer, Stocks, Blakers, Kaizuka, Komoto, Smets (bib1) 2021; 5
Kibsgaard, Jaramillo (bib22) 2014; 53
Wu, Luo, Han, Peng, Zhao, Chen, Peng, Liu, de Groot, Tan (bib24) 2020; 5
Wang, Zhong, Zeng, Cheng, Xiong, Bu (bib37) 2019; 555
Zhang, Xia, Zhang, Zou, Shen, Li, Chen, Qu (bib20) 2021; 297
Liu, Nørskov (bib50) 2001; 3
Tang, Sanville, Henkelman (bib30) 2009; 21
Niu, Tang, He, Yang (bib47) 2016; 208
Bertella, Lopes, Foucher, Agostini, Concepción, Stach, Martínez (bib38) 2020
Lu, Yu, Lou (bib13) 2019
Huang, Zhou, Yu, Huang, Zhao, Dai, Qiu (bib12) 2020; 13
Zhao, Gao, Chen, Li, Ma, Wu, Wang (bib10) 2021; 297
Tang, Yang, Sheng, Yin, Que, Henzie, Yamauchi (bib4) 2021; 423
Wan, Wu, Guan, Luan, Lou (bib11) 2020; 32
Liu, Hu, Huang, Xie (bib48) 2019; 7
Huang, Yu, Zhao, Han, Yang, Liu, Li, Zhang, Qiu (bib32) 2017; 34
Huang, Jung, Li, Kim, Han, Lee (bib8) 2022; 92
Mavrikakis, Hammer, Nørskov (bib49) 1998; 81
Zhang, Zhou, Lu, Chen, Lou (bib18) 2020; 10
Li, Liu, Gou, Zhang, Xia, Zhang, Chang, Ma, Qu (bib14) 2019; 12
Gumilar, Kaneti, Henzie, Chatterjee, Na, Yuliarto, Nugraha, Patah, Bhaumik, Yamauchi (bib36) 2020; 11
Kim (10.1016/j.apcatb.2022.121554_bib19) 2022; 9
Zheng (10.1016/j.apcatb.2022.121554_bib15) 2016; 138
Zhang (10.1016/j.apcatb.2022.121554_bib21) 2021; 60
Bertella (10.1016/j.apcatb.2022.121554_bib38) 2020
Huang (10.1016/j.apcatb.2022.121554_bib6) 2021; 88
Perdew (10.1016/j.apcatb.2022.121554_bib28) 1996; 77
Zhang (10.1016/j.apcatb.2022.121554_bib20) 2021; 297
Liu (10.1016/j.apcatb.2022.121554_bib50) 2001; 3
Xu (10.1016/j.apcatb.2022.121554_bib39) 2018; 11
Victoria (10.1016/j.apcatb.2022.121554_bib1) 2021; 5
Sun (10.1016/j.apcatb.2022.121554_bib33) 2020; 32
Stamenkovic (10.1016/j.apcatb.2022.121554_bib52) 2006; 45
Kresse (10.1016/j.apcatb.2022.121554_bib25) 1996; 54
Tang (10.1016/j.apcatb.2022.121554_bib30) 2009; 21
Lu (10.1016/j.apcatb.2022.121554_bib34) 2014; 26
Li (10.1016/j.apcatb.2022.121554_bib14) 2019; 12
Tiwari (10.1016/j.apcatb.2022.121554_bib23) 2018; 3
Tang (10.1016/j.apcatb.2022.121554_bib4) 2021; 423
Mao (10.1016/j.apcatb.2022.121554_bib16) 2018; 9
Wan (10.1016/j.apcatb.2022.121554_bib11) 2020; 32
Zhao (10.1016/j.apcatb.2022.121554_bib10) 2021; 297
Gao (10.1016/j.apcatb.2022.121554_bib2) 2022; 303
Huang (10.1016/j.apcatb.2022.121554_bib41) 2019; 58
Chen (10.1016/j.apcatb.2022.121554_bib43) 2022; 304
Li (10.1016/j.apcatb.2022.121554_bib9) 2021; 12
Monkhorst (10.1016/j.apcatb.2022.121554_bib29) 1976; 13
Gumilar (10.1016/j.apcatb.2022.121554_bib36) 2020; 11
Jiao (10.1016/j.apcatb.2022.121554_bib53) 2015; 44
Wang (10.1016/j.apcatb.2022.121554_bib3) 2022; 305
Kibsgaard (10.1016/j.apcatb.2022.121554_bib22) 2014; 53
Wu (10.1016/j.apcatb.2022.121554_bib24) 2020; 5
Zhang (10.1016/j.apcatb.2022.121554_bib18) 2020; 10
Huang (10.1016/j.apcatb.2022.121554_bib8) 2022; 92
Huang (10.1016/j.apcatb.2022.121554_bib12) 2020; 13
Blöchl (10.1016/j.apcatb.2022.121554_bib27) 1994; 50
Wu (10.1016/j.apcatb.2022.121554_bib35) 2021; 545
Cheng (10.1016/j.apcatb.2022.121554_bib5) 2021; 7
Wang (10.1016/j.apcatb.2022.121554_bib37) 2019; 555
Hammer (10.1016/j.apcatb.2022.121554_bib51) 1995; 376
Niu (10.1016/j.apcatb.2022.121554_bib47) 2016; 208
Mavrikakis (10.1016/j.apcatb.2022.121554_bib49) 1998; 81
Huang (10.1016/j.apcatb.2022.121554_bib32) 2017; 34
Yang (10.1016/j.apcatb.2022.121554_bib40) 2019; 29
Zhang (10.1016/j.apcatb.2022.121554_bib45) 2019; 254
Kresse (10.1016/j.apcatb.2022.121554_bib26) 1993; 47
Henkelman (10.1016/j.apcatb.2022.121554_bib31) 2000; 113
Huang (10.1016/j.apcatb.2022.121554_bib44) 2021; 405
Zhang (10.1016/j.apcatb.2022.121554_bib17) 2020; 6
Liu (10.1016/j.apcatb.2022.121554_bib42) 2022; 300
Ma (10.1016/j.apcatb.2022.121554_bib46) 2017; 10
Liu (10.1016/j.apcatb.2022.121554_bib48) 2019; 7
Kim (10.1016/j.apcatb.2022.121554_bib7) 2022; 302
Lu (10.1016/j.apcatb.2022.121554_bib13) 2019
References_xml – volume: 305
  year: 2022
  ident: bib3
  article-title: Bulk and surface dual modification of nickel-cobalt spinel with ruthenium toward highly efficient overall water splitting
  publication-title: Appl. Catal. B
– volume: 7
  start-page: eabg2580
  year: 2021
  ident: bib5
  article-title: Exposing unsaturated Cu
  publication-title: Sci. Adv.
– start-page: eaav6009
  year: 2019
  ident: bib13
  article-title: Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts
  publication-title: Sci. Adv. 5
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib28
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 58
  start-page: 778
  year: 2019
  end-page: 785
  ident: bib41
  article-title: Activation of transition metal oxides by in-situ electro-regulated structure-reconstruction for ultra-efficient oxygen evolution
  publication-title: Nano Energy
– volume: 12
  start-page: 2298
  year: 2019
  end-page: 2304
  ident: bib14
  article-title: Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover
  publication-title: Energy Environ. Sci.
– volume: 32
  year: 2020
  ident: bib11
  article-title: Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1041
  year: 2021
  end-page: 1056
  ident: bib1
  article-title: Solar photovoltaics is ready to power a sustainable future
  publication-title: Joule
– volume: 10
  year: 2020
  ident: bib18
  article-title: Implanting isolated Ru atoms into edge-rich carbon matrix for efficient electrocatalytic hydrogen evolution
  publication-title: Adv. Energy Mater.
– volume: 303
  year: 2022
  ident: bib2
  article-title: Facile synthesis of MoP-Ru
  publication-title: Appl. Catal. B
– volume: 5
  start-page: 192
  year: 2020
  end-page: 199
  ident: bib24
  article-title: Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte
  publication-title: ACS Energy Lett.
– volume: 92
  year: 2022
  ident: bib8
  article-title: Activation of inert copper for significantly enhanced hydrogen evolution behaviors by trace ruthenium doping
  publication-title: Nano Energy
– volume: 304
  year: 2022
  ident: bib43
  article-title: N,O-C Nanocage-mediated high-efficient hydrogen evolution reaction on IrNi@N,O-C electrocatalyst
  publication-title: Appl. Catal. B
– volume: 45
  start-page: 2897
  year: 2006
  end-page: 2901
  ident: bib52
  article-title: Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure
  publication-title: Angew. Chem. Int. Ed.
– volume: 29
  year: 2019
  ident: bib40
  article-title: Fe
  publication-title: Adv. Funct. Mater.
– volume: 423
  year: 2021
  ident: bib4
  article-title: Phosphorus-doped molybdenum carbide/MXene hybrid architectures for upgraded hydrogen evolution reaction performance over a wide pH range
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 545
  year: 2020
  end-page: 553
  ident: bib12
  article-title: Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: eabb9823
  year: 2020
  ident: bib17
  article-title: Direct probing of atomically dispersed Ru species over multi-edged TiO
  publication-title: Sci. Adv.
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: bib27
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 21
  year: 2009
  ident: bib30
  article-title: A grid-based Bader analysis algorithm without lattice bias
  publication-title: J. Phys.: Condens. Matter
– start-page: 6042
  year: 2020
  end-page: 6057
  ident: bib38
  article-title: Insights into the promotion with Ru of Co/TiO2 fischer–tropsch catalysts: an in situ spectroscopic study
  publication-title: ACS Catal.
– volume: 81
  start-page: 2819
  year: 1998
  end-page: 2822
  ident: bib49
  article-title: Effect of strain on the reactivity of metal surfaces
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 773
  year: 2018
  end-page: 782
  ident: bib23
  article-title: Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity
  publication-title: Nat. Energy
– volume: 254
  start-page: 186
  year: 2019
  end-page: 193
  ident: bib45
  article-title: In situ embedding Co
  publication-title: Appl. Catal. B
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: bib31
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
– volume: 138
  start-page: 16174
  year: 2016
  end-page: 16181
  ident: bib15
  article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1819
  year: 2018
  end-page: 1827
  ident: bib39
  article-title: Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide
  publication-title: Energy Environ. Sci.
– volume: 32
  year: 2020
  ident: bib33
  article-title: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution
  publication-title: Adv. Mater.
– volume: 208
  start-page: 180
  year: 2016
  end-page: 187
  ident: bib47
  article-title: Robust and stable ruthenium alloy electrocatalysts for hydrogen evolution by seawater splitting
  publication-title: Electrochim. Acta
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: bib29
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
– volume: 26
  start-page: 2683
  year: 2014
  end-page: 2687
  ident: bib34
  article-title: Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS
  publication-title: Adv. Mater.
– volume: 34
  start-page: 472
  year: 2017
  end-page: 480
  ident: bib32
  article-title: Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting
  publication-title: Nano Energy
– volume: 11
  start-page: 3644
  year: 2020
  end-page: 3655
  ident: bib36
  article-title: General synthesis of hierarchical sheet/plate-like M-BDC (M = Cu, Mn, Ni, and Zr) metal–organic frameworks for electrochemical non-enzymatic glucose sensing
  publication-title: Chem. Sci.
– volume: 405
  year: 2021
  ident: bib44
  article-title: Design of grain boundary enriched bimetallic borides for enhanced hydrogen evolution reaction
  publication-title: Chem. Eng. J.
– volume: 302
  year: 2022
  ident: bib7
  article-title: Role of surface steps in activation of surface oxygen sites on Ir nanocrystals for oxygen evolution reaction in acidic media
  publication-title: Appl. Catal. B
– volume: 297
  year: 2021
  ident: bib10
  article-title: Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting
  publication-title: Appl. Catal. B
– volume: 53
  start-page: 14433
  year: 2014
  end-page: 14437
  ident: bib22
  article-title: Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  year: 2022
  ident: bib19
  article-title: Noble metal-based multimetallic nanoparticles for electrocatalytic applications
  publication-title: Adv. Sci.
– volume: 297
  year: 2021
  ident: bib20
  article-title: Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature
  publication-title: Appl. Catal. B
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: bib25
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 18835
  year: 2019
  end-page: 18843
  ident: bib48
  article-title: Surface engineering of Rh catalysts with N/S-codoped carbon nanosheets toward high-performance hydrogen evolution from seawater
  publication-title: ACS Sustain. Chem. Eng.
– volume: 9
  start-page: 4958
  year: 2018
  ident: bib16
  article-title: Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice
  publication-title: Nat. Commun.
– volume: 376
  start-page: 238
  year: 1995
  end-page: 240
  ident: bib51
  article-title: Why gold is the noblest of all the metals
  publication-title: Nature
– volume: 555
  start-page: 42
  year: 2019
  end-page: 52
  ident: bib37
  article-title: Rational construction of triangle-like nickel-cobalt bimetallic metal-organic framework nanosheets arrays as battery-type electrodes for hybrid supercapacitors
  publication-title: J. Colloid Interface Sci.
– volume: 88
  year: 2021
  ident: bib6
  article-title: Structure engineering defective and mass transfer-enhanced RuO
  publication-title: Nano Energy
– volume: 300
  year: 2022
  ident: bib42
  article-title: Activation engineering on metallic 1T-MoS
  publication-title: Appl. Catal. B
– volume: 10
  start-page: 788
  year: 2017
  end-page: 798
  ident: bib46
  article-title: Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C
  publication-title: Energy Environ. Sci.
– volume: 545
  year: 2021
  ident: bib35
  article-title: Ni-Co@carbon nanosheet derived from nickelocene doped Co-BDC for efficient oxygen evolution reaction
  publication-title: Appl. Surf. Sci.
– volume: 12
  start-page: 3502
  year: 2021
  ident: bib9
  article-title: A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution
  publication-title: Nat. Commun.
– volume: 60
  start-page: 19068
  year: 2021
  end-page: 19073
  ident: bib21
  article-title: Engineering platinum–cobalt nano-alloys in porous nitrogen-doped carbon nanotubes for highly efficient electrocatalytic hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
– volume: 47
  start-page: 558
  year: 1993
  end-page: 561
  ident: bib26
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 3814
  year: 2001
  end-page: 3818
  ident: bib50
  article-title: Ligand and ensemble effects in adsorption on alloy surfaces
  publication-title: Phys. Chem. Chem. Phys.
– volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  ident: bib53
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 2897
  year: 2006
  ident: 10.1016/j.apcatb.2022.121554_bib52
  article-title: Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200504386
– volume: 304
  year: 2022
  ident: 10.1016/j.apcatb.2022.121554_bib43
  article-title: N,O-C Nanocage-mediated high-efficient hydrogen evolution reaction on IrNi@N,O-C electrocatalyst
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120996
– volume: 12
  start-page: 3502
  year: 2021
  ident: 10.1016/j.apcatb.2022.121554_bib9
  article-title: A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23750-4
– volume: 5
  start-page: 1041
  year: 2021
  ident: 10.1016/j.apcatb.2022.121554_bib1
  article-title: Solar photovoltaics is ready to power a sustainable future
  publication-title: Joule
  doi: 10.1016/j.joule.2021.03.005
– volume: 81
  start-page: 2819
  year: 1998
  ident: 10.1016/j.apcatb.2022.121554_bib49
  article-title: Effect of strain on the reactivity of metal surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2819
– volume: 11
  start-page: 3644
  year: 2020
  ident: 10.1016/j.apcatb.2022.121554_bib36
  article-title: General synthesis of hierarchical sheet/plate-like M-BDC (M = Cu, Mn, Ni, and Zr) metal–organic frameworks for electrochemical non-enzymatic glucose sensing
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC05636J
– volume: 60
  start-page: 19068
  year: 2021
  ident: 10.1016/j.apcatb.2022.121554_bib21
  article-title: Engineering platinum–cobalt nano-alloys in porous nitrogen-doped carbon nanotubes for highly efficient electrocatalytic hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202106547
– volume: 5
  start-page: 192
  year: 2020
  ident: 10.1016/j.apcatb.2022.121554_bib24
  article-title: Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02374
– volume: 7
  start-page: eabg2580
  year: 2021
  ident: 10.1016/j.apcatb.2022.121554_bib5
  article-title: Exposing unsaturated Cu1-O2 sites in nanoscale Cu-MOF for efficient electrocatalytic hydrogen evolution
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abg2580
– volume: 26
  start-page: 2683
  year: 2014
  ident: 10.1016/j.apcatb.2022.121554_bib34
  article-title: Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304759
– volume: 10
  year: 2020
  ident: 10.1016/j.apcatb.2022.121554_bib18
  article-title: Implanting isolated Ru atoms into edge-rich carbon matrix for efficient electrocatalytic hydrogen evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1201/9780429351402
– volume: 13
  start-page: 545
  year: 2020
  ident: 10.1016/j.apcatb.2022.121554_bib12
  article-title: Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03273H
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.apcatb.2022.121554_bib27
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 58
  start-page: 778
  year: 2019
  ident: 10.1016/j.apcatb.2022.121554_bib41
  article-title: Activation of transition metal oxides by in-situ electro-regulated structure-reconstruction for ultra-efficient oxygen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.094
– volume: 405
  year: 2021
  ident: 10.1016/j.apcatb.2022.121554_bib44
  article-title: Design of grain boundary enriched bimetallic borides for enhanced hydrogen evolution reaction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126977
– start-page: 6042
  year: 2020
  ident: 10.1016/j.apcatb.2022.121554_bib38
  article-title: Insights into the promotion with Ru of Co/TiO2 fischer–tropsch catalysts: an in situ spectroscopic study
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05359
– volume: 423
  year: 2021
  ident: 10.1016/j.apcatb.2022.121554_bib4
  article-title: Phosphorus-doped molybdenum carbide/MXene hybrid architectures for upgraded hydrogen evolution reaction performance over a wide pH range
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130183
– volume: 44
  start-page: 2060
  year: 2015
  ident: 10.1016/j.apcatb.2022.121554_bib53
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 113
  start-page: 9901
  year: 2000
  ident: 10.1016/j.apcatb.2022.121554_bib31
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 376
  start-page: 238
  year: 1995
  ident: 10.1016/j.apcatb.2022.121554_bib51
  article-title: Why gold is the noblest of all the metals
  publication-title: Nature
  doi: 10.1038/376238a0
– volume: 21
  year: 2009
  ident: 10.1016/j.apcatb.2022.121554_bib30
  article-title: A grid-based Bader analysis algorithm without lattice bias
  publication-title: J. Phys.: Condens. Matter
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.apcatb.2022.121554_bib25
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 29
  year: 2019
  ident: 10.1016/j.apcatb.2022.121554_bib40
  article-title: Fe3C-Co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901949
– volume: 88
  year: 2021
  ident: 10.1016/j.apcatb.2022.121554_bib6
  article-title: Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for proton exchange membrane water electrolyzer
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106276
– volume: 254
  start-page: 186
  year: 2019
  ident: 10.1016/j.apcatb.2022.121554_bib45
  article-title: In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.04.096
– volume: 9
  start-page: 4958
  year: 2018
  ident: 10.1016/j.apcatb.2022.121554_bib16
  article-title: Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07288-6
– volume: 3
  start-page: 773
  year: 2018
  ident: 10.1016/j.apcatb.2022.121554_bib23
  article-title: Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0209-x
– volume: 305
  year: 2022
  ident: 10.1016/j.apcatb.2022.121554_bib3
  article-title: Bulk and surface dual modification of nickel-cobalt spinel with ruthenium toward highly efficient overall water splitting
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2022.121081
– start-page: eaav6009
  year: 2019
  ident: 10.1016/j.apcatb.2022.121554_bib13
  article-title: Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts
  publication-title: Sci. Adv. 5
  doi: 10.1126/sciadv.aav6009
– volume: 138
  start-page: 16174
  year: 2016
  ident: 10.1016/j.apcatb.2022.121554_bib15
  article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11291
– volume: 300
  year: 2022
  ident: 10.1016/j.apcatb.2022.121554_bib42
  article-title: Activation engineering on metallic 1T-MoS2 by constructing In-plane heterostructure for efficient hydrogen generation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120696
– volume: 302
  year: 2022
  ident: 10.1016/j.apcatb.2022.121554_bib7
  article-title: Role of surface steps in activation of surface oxygen sites on Ir nanocrystals for oxygen evolution reaction in acidic media
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120834
– volume: 9
  year: 2022
  ident: 10.1016/j.apcatb.2022.121554_bib19
  article-title: Noble metal-based multimetallic nanoparticles for electrocatalytic applications
  publication-title: Adv. Sci.
– volume: 11
  start-page: 1819
  year: 2018
  ident: 10.1016/j.apcatb.2022.121554_bib39
  article-title: Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03603E
– volume: 303
  year: 2022
  ident: 10.1016/j.apcatb.2022.121554_bib2
  article-title: Facile synthesis of MoP-Ru2P on porous N, P co-doped carbon for efficiently electrocatalytic hydrogen evolution reaction in full pH range
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120879
– volume: 10
  start-page: 788
  year: 2017
  ident: 10.1016/j.apcatb.2022.121554_bib46
  article-title: Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03768B
– volume: 7
  start-page: 18835
  year: 2019
  ident: 10.1016/j.apcatb.2022.121554_bib48
  article-title: Surface engineering of Rh catalysts with N/S-codoped carbon nanosheets toward high-performance hydrogen evolution from seawater
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03720
– volume: 53
  start-page: 14433
  year: 2014
  ident: 10.1016/j.apcatb.2022.121554_bib22
  article-title: Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201408222
– volume: 12
  start-page: 2298
  year: 2019
  ident: 10.1016/j.apcatb.2022.121554_bib14
  article-title: Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00752K
– volume: 545
  year: 2021
  ident: 10.1016/j.apcatb.2022.121554_bib35
  article-title: Ni-Co@carbon nanosheet derived from nickelocene doped Co-BDC for efficient oxygen evolution reaction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.148975
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.apcatb.2022.121554_bib28
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 34
  start-page: 472
  year: 2017
  ident: 10.1016/j.apcatb.2022.121554_bib32
  article-title: Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.03.016
– volume: 13
  start-page: 5188
  year: 1976
  ident: 10.1016/j.apcatb.2022.121554_bib29
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 208
  start-page: 180
  year: 2016
  ident: 10.1016/j.apcatb.2022.121554_bib47
  article-title: Robust and stable ruthenium alloy electrocatalysts for hydrogen evolution by seawater splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.04.184
– volume: 555
  start-page: 42
  year: 2019
  ident: 10.1016/j.apcatb.2022.121554_bib37
  article-title: Rational construction of triangle-like nickel-cobalt bimetallic metal-organic framework nanosheets arrays as battery-type electrodes for hybrid supercapacitors
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.07.063
– volume: 32
  year: 2020
  ident: 10.1016/j.apcatb.2022.121554_bib11
  article-title: Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901349
– volume: 6
  start-page: eabb9823
  year: 2020
  ident: 10.1016/j.apcatb.2022.121554_bib17
  article-title: Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb9823
– volume: 32
  year: 2020
  ident: 10.1016/j.apcatb.2022.121554_bib33
  article-title: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution
  publication-title: Adv. Mater.
– volume: 47
  start-page: 558
  year: 1993
  ident: 10.1016/j.apcatb.2022.121554_bib26
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 297
  year: 2021
  ident: 10.1016/j.apcatb.2022.121554_bib10
  article-title: Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120395
– volume: 3
  start-page: 3814
  year: 2001
  ident: 10.1016/j.apcatb.2022.121554_bib50
  article-title: Ligand and ensemble effects in adsorption on alloy surfaces
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b103525h
– volume: 297
  year: 2021
  ident: 10.1016/j.apcatb.2022.121554_bib20
  article-title: Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120418
– volume: 92
  year: 2022
  ident: 10.1016/j.apcatb.2022.121554_bib8
  article-title: Activation of inert copper for significantly enhanced hydrogen evolution behaviors by trace ruthenium doping
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106763
SSID ssj0002328
Score 2.5828917
Snippet Hydrogen evolution reaction (HER) in alkali involves higher energy barriers and slow reaction kinetics due to involving water dissociation process. Catalysts...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121554
SubjectTerms Alloy
Cobalt
Core-shell
Electrocatalysis
Hydrogen evolution
Title Surface conversion derived core-shell nanostructures of Co particles@RuCo alloy for superior hydrogen evolution in alkali and seawater
URI https://dx.doi.org/10.1016/j.apcatb.2022.121554
Volume 315
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KPagH0WqxPsoevMY-9pH0phRLVejBWugt7CtYlaT0JV48-rudzcMqiIK3bJiBkG925tvdmVmAM6MoFRLnt24L5TFcQ3hSGOpFKmppQ5HAZlm-A9EfsZsxH5egW9TCuLTK3PdnPj311vmbRv43G9PJpDFsdtqCUh8t0tFc7irKGfOdrZ-_rdM8kDGk3hiFPSddlM-lOV5yquVC4Sqx3U7bLHD2c3j6EnJ6u7CTc0VymX3OHpRsXIHNbnFFWwW2v3QTrED1al20hmr5rJ3vw_twOYuktiRNMU_3x4hBpZU1xHWx9OYuG5TEMk6ydrJLXIOTJCLdhEyLzLmLuyUO3TH9K0GiS-ZL1yMZHx5ezSxBMyR2lZsxmcQo-IQMn8jYEJxML8hoZwcw6l3dd_tefv8CAkfFAkGTzEa2wxU3UvmGB02qbNOXHbcdxzs60EwiAROmybmKEIlWkB7zIeszVHBahXKcxPYQCPJOpREjI3XEEDFpmRVBYJm0fssEtga0-O2hzpuTuzsynsMiC-0xzMAKHVhhBlYNvE-tadac4w95v0A0_GZkIcaPXzWP_q15DFtu5MJdi59AGWG0p8hjFqqeGmodNi6vb_uDD4e69OM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qHqoH0ar4dg9eYx_7SHpTiqVq7UEt9Bb2FaxKUvpQvHj0dzubh1UQBW95zEDINzvz7e7sDMCxUZQKieNbN4TyGM4hPCkM9SIV1bWhSGCzLN-e6PTZ5YAPStAqzsK4tMrc92c-PfXW-ZNq_jero-GweltrNgSlPlqko7ncX4Al5tocoFGfvM3zPJAypO4YpT0nXpyfS5O85EjLqcJpYqOR1lng7Of49CXmtNdgNSeL5Cz7nnUo2bgC5VbRo60CK1_KCVZg63x-ag3V8mE72YD329k4ktqSNMc8XSAjBpWerSGujKU3cemgJJZxktWTneEknCQRaSVkVKTOnd7M8Nbt078SZLpkMnNFkvHi_tWME7RDYp9zOybDGAUfkeITGRuCo-kFKe14E_rt87tWx8sbMCByVEwRNclsZJtccSOVb3hQo8rWfNl063G8qQPNJDIwYWqcqwihqAfpPh_SPkMFp1uwGCex3QaCxFNpBMlIHTGETFpmRRBYJq1fN4HdAVr89lDn1cldk4ynsEhDewgzsEIHVpiBtQPep9Yoq87xh7xfIBp-s7IQA8ivmrv_1jyCcufuuht2L3pXe7Ds3rjYV-f7sIiQ2gMkNVN1mBrtBxAI9mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+conversion+derived+core-shell+nanostructures+of+Co+particles%40RuCo+alloy+for+superior+hydrogen+evolution+in+alkali+and+seawater&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Huang%2C+Huawei&rft.au=Jung%2C+Hyeonjung&rft.au=Park%2C+Cheol-Young&rft.au=Kim%2C+Seongbeen&rft.date=2022-10-15&rft.issn=0926-3373&rft.volume=315&rft.spage=121554&rft_id=info:doi/10.1016%2Fj.apcatb.2022.121554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2022_121554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon