Surface conversion derived core-shell nanostructures of Co particles@RuCo alloy for superior hydrogen evolution in alkali and seawater
Hydrogen evolution reaction (HER) in alkali involves higher energy barriers and slow reaction kinetics due to involving water dissociation process. Catalysts with proper surface properties are highly needed to optimize the surface binding energy with reaction intermediates and enhance intrinsic cata...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 315; p. 121554 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0926-3373 1873-3883 |
DOI | 10.1016/j.apcatb.2022.121554 |
Cover
Abstract | Hydrogen evolution reaction (HER) in alkali involves higher energy barriers and slow reaction kinetics due to involving water dissociation process. Catalysts with proper surface properties are highly needed to optimize the surface binding energy with reaction intermediates and enhance intrinsic catalytic activity. Herein, we present an effective strategy to construct a self-standing catalyst with core-shell structure, which is composited of metallic Co nanoparticles coated by RuCo alloy layer with optimized surface properties. The Ru attracts electrons from Co and optimizes the surface electronic structure. Theoretical calculations demonstrate that the water dissociation barrier on the Co surface is decreased from 0.65 eV to 0.58 eV after alloying with Ru. Experimental results reveal that the synthesized Co@RuCo-3 features highly efficient catalytic activity together with good stability at large current densities for HER in alkali, as well as in alkaline seawater and pure seawater.
[Display omitted]
•Present an effective strategy to improve alkaline HER performance of Co.•Controllable coating MOF layers on nanomaterials.•A self-standing catalyst with core-shell nanostructure is constructed.•Self-standing Co@RuCo exhibits good long-term stability (100 h) at 500 mA cm−2. |
---|---|
AbstractList | Hydrogen evolution reaction (HER) in alkali involves higher energy barriers and slow reaction kinetics due to involving water dissociation process. Catalysts with proper surface properties are highly needed to optimize the surface binding energy with reaction intermediates and enhance intrinsic catalytic activity. Herein, we present an effective strategy to construct a self-standing catalyst with core-shell structure, which is composited of metallic Co nanoparticles coated by RuCo alloy layer with optimized surface properties. The Ru attracts electrons from Co and optimizes the surface electronic structure. Theoretical calculations demonstrate that the water dissociation barrier on the Co surface is decreased from 0.65 eV to 0.58 eV after alloying with Ru. Experimental results reveal that the synthesized Co@RuCo-3 features highly efficient catalytic activity together with good stability at large current densities for HER in alkali, as well as in alkaline seawater and pure seawater.
[Display omitted]
•Present an effective strategy to improve alkaline HER performance of Co.•Controllable coating MOF layers on nanomaterials.•A self-standing catalyst with core-shell nanostructure is constructed.•Self-standing Co@RuCo exhibits good long-term stability (100 h) at 500 mA cm−2. |
ArticleNumber | 121554 |
Author | Jun, Hyunwoo Han, Jeong Woo Lee, Ahryeon Lee, Jinwoo Jung, Hyeonjung Huang, Huawei Kim, Seongbeen Park, Cheol-Young Choi, Jaeryung |
Author_xml | – sequence: 1 givenname: Huawei surname: Huang fullname: Huang, Huawei organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea – sequence: 2 givenname: Hyeonjung surname: Jung fullname: Jung, Hyeonjung organization: Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea – sequence: 3 givenname: Cheol-Young surname: Park fullname: Park, Cheol-Young organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea – sequence: 4 givenname: Seongbeen surname: Kim fullname: Kim, Seongbeen organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea – sequence: 5 givenname: Ahryeon surname: Lee fullname: Lee, Ahryeon organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea – sequence: 6 givenname: Hyunwoo surname: Jun fullname: Jun, Hyunwoo organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea – sequence: 7 givenname: Jaeryung surname: Choi fullname: Choi, Jaeryung organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea – sequence: 8 givenname: Jeong Woo surname: Han fullname: Han, Jeong Woo email: jwhan@postech.ac.kr organization: Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea – sequence: 9 givenname: Jinwoo surname: Lee fullname: Lee, Jinwoo email: jwlee1@kaist.ac.kr organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea |
BookMark | eNqFkM-KFDEQh4Os4OzqG3jIC_SYTjrpbg-iDK4uLAj-OYfqpNrNGJOhkh6ZF_C57WE8eVhPlSryffD7XbOrlBMy9rIV21a05tV-CwcHddpKIeW2la3W3RO2aYdeNWoY1BXbiFGaRqlePWPXpeyFEFLJYcN-f1loBofc5XREKiEn7pHCEf16ImzKA8bIE6RcKi2uLoSF55nvMj8A1eAilrefl3WFGPOJz5l4WQ6rYn08nDzl75g4HnNc6lke0vrxB8TAIXleEH5BRXrOns4QC774O2_Yt9v3X3cfm_tPH-527-4bJ5WpDRjocMZRT9rD1Hs9CDWh6GHs-lHp0Q2ug04b44XW09wr2Q5mjToaLbwyWt2w7uJ1lEshnO2Bwk-gk22FPXdp9_bSpT13aS9drtjrfzAXKpzzVIIQ_we_ucC4BjsGJFtcwOTQB0JXrc_hccEfsXeXIA |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_4c02804 crossref_primary_10_1021_acsmaterialslett_2c00699 crossref_primary_10_1039_D3TA01585H crossref_primary_10_1002_aenm_202301438 crossref_primary_10_1002_smll_202204155 crossref_primary_10_1021_acssuschemeng_3c06729 crossref_primary_10_1007_s12274_023_5667_1 crossref_primary_10_1002_anie_202414647 crossref_primary_10_1021_acs_analchem_3c03230 crossref_primary_10_1021_acssuschemeng_2c04894 crossref_primary_10_1002_adfm_202420517 crossref_primary_10_1016_j_fuel_2024_131505 crossref_primary_10_1002_ange_202414647 crossref_primary_10_1016_j_fuel_2024_131644 crossref_primary_10_1016_j_cej_2025_160362 crossref_primary_10_1016_j_mattod_2025_03_003 crossref_primary_10_1007_s42864_023_00223_3 crossref_primary_10_1016_j_cej_2022_138939 crossref_primary_10_1016_j_jallcom_2023_170571 crossref_primary_10_1016_j_apcatb_2024_124388 crossref_primary_10_1016_j_fuel_2024_131691 crossref_primary_10_1002_adfm_202315460 crossref_primary_10_1002_adfm_202209134 crossref_primary_10_1016_j_ijhydene_2023_11_296 crossref_primary_10_1016_j_jcis_2023_08_009 crossref_primary_10_1016_j_jmst_2023_05_035 crossref_primary_10_1039_D4TA06304J crossref_primary_10_1016_j_carbon_2024_119797 crossref_primary_10_1038_s41467_023_43459_w crossref_primary_10_1002_smll_202302906 crossref_primary_10_1016_j_ijhydene_2024_02_310 crossref_primary_10_1016_j_jcrysgro_2024_127928 crossref_primary_10_1016_j_aca_2023_342199 crossref_primary_10_1039_D4QI00959B crossref_primary_10_1016_j_jechem_2024_10_047 crossref_primary_10_1002_cctc_202402006 crossref_primary_10_1016_j_apcatb_2023_123644 crossref_primary_10_1021_acs_energyfuels_4c06200 crossref_primary_10_1016_j_gee_2024_02_001 crossref_primary_10_1039_D3TA07230D crossref_primary_10_1039_D2GC03377A crossref_primary_10_1021_acscatal_4c06833 crossref_primary_10_1016_j_jcis_2025_137309 crossref_primary_10_1002_smll_202301465 crossref_primary_10_1016_j_apsusc_2023_158834 crossref_primary_10_1002_cctc_202301305 crossref_primary_10_1016_j_jallcom_2023_172286 crossref_primary_10_1021_acs_energyfuels_3c02671 |
Cites_doi | 10.1002/anie.200504386 10.1016/j.apcatb.2021.120996 10.1038/s41467-021-23750-4 10.1016/j.joule.2021.03.005 10.1103/PhysRevLett.81.2819 10.1039/C9SC05636J 10.1002/anie.202106547 10.1021/acsenergylett.9b02374 10.1126/sciadv.abg2580 10.1002/adma.201304759 10.1201/9780429351402 10.1039/C9EE03273H 10.1103/PhysRevB.50.17953 10.1016/j.nanoen.2019.01.094 10.1016/j.cej.2020.126977 10.1021/acscatal.9b05359 10.1016/j.cej.2021.130183 10.1039/C4CS00470A 10.1063/1.1329672 10.1038/376238a0 10.1103/PhysRevB.54.11169 10.1002/adfm.201901949 10.1016/j.nanoen.2021.106276 10.1016/j.apcatb.2019.04.096 10.1038/s41467-018-07288-6 10.1038/s41560-018-0209-x 10.1016/j.apcatb.2022.121081 10.1126/sciadv.aav6009 10.1021/jacs.6b11291 10.1016/j.apcatb.2021.120696 10.1016/j.apcatb.2021.120834 10.1039/C7EE03603E 10.1016/j.apcatb.2021.120879 10.1039/C6EE03768B 10.1021/acssuschemeng.9b03720 10.1002/anie.201408222 10.1039/C9EE00752K 10.1016/j.apsusc.2021.148975 10.1103/PhysRevLett.77.3865 10.1016/j.nanoen.2017.03.016 10.1103/PhysRevB.13.5188 10.1016/j.electacta.2016.04.184 10.1016/j.jcis.2019.07.063 10.1002/adma.201901349 10.1126/sciadv.abb9823 10.1103/PhysRevB.47.558 10.1016/j.apcatb.2021.120395 10.1039/b103525h 10.1016/j.apcatb.2021.120418 10.1016/j.nanoen.2021.106763 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2022.121554 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2022_121554 S0926337322004957 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP |
ID | FETCH-LOGICAL-c236t-a6a4efe95b5dab7d5803be07a9479359c8c4a4566d055bf7321860029650d3653 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Tue Jul 01 04:35:21 EDT 2025 Thu Apr 24 23:13:16 EDT 2025 Sat Mar 02 16:01:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrocatalysis Cobalt Core-shell Alloy Hydrogen evolution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c236t-a6a4efe95b5dab7d5803be07a9479359c8c4a4566d055bf7321860029650d3653 |
ParticipantIDs | crossref_primary_10_1016_j_apcatb_2022_121554 crossref_citationtrail_10_1016_j_apcatb_2022_121554 elsevier_sciencedirect_doi_10_1016_j_apcatb_2022_121554 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-15 |
PublicationDateYYYYMMDD | 2022-10-15 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jiao, Zheng, Jaroniec, Qiao (bib53) 2015; 44 Wang, Chen, Fan, Xiao, Meng, Xing, Yang (bib3) 2022; 305 Kim, Park, Wang, Wang, Kim, Kim, Cho, Kim, Feng, Kim, Lee (bib7) 2022; 302 Zhang, Zhai, Sun, Han, Zhai, Cheong, Liu, Su, Wang, Li (bib45) 2019; 254 Zhang, Zuo, Qiu, Wang, Zhang, Zhang, Lou (bib17) 2020; 6 Huang, Kim, Lee, Kim, Lim, Park, Kim, Kim, Lee (bib6) 2021; 88 Tiwari, Sultan, Myung, Yoon, Li, Ha, Harzandi, Park, Kim, Chandrasekaran, Lee, Vij, Kang, Shin, Shin, Lee, Lee, Kim (bib23) 2018; 3 Gao, Chen, Zhao, Yu, Jiang, He, Li, Ma, Wu, Wang (bib2) 2022; 303 Blöchl (bib27) 1994; 50 Kresse, Furthmuller (bib25) 1996; 54 Perdew, Burke, Ernzerhof (bib28) 1996; 77 Chen, Wang, Hao, Li, Zhang, Guo, Ding, Liu, Wang, Guo (bib43) 2022; 304 Li, Hu, Zhang, Gou, Zhang, Chen, Qu, Ma (bib9) 2021; 12 Monkhorst, Pack (bib29) 1976; 13 Huang, Yu, Huang, Zhao, Qiu, Yao, Li, Han, Guo, Dai, Qiu (bib41) 2019; 58 Cheng, Zhang, Luan, Lou (bib5) 2021; 7 Xu, Liu, Li, Li, Liu, Zhang, Xiong, Amorim, Li, Liu (bib39) 2018; 11 Huang, Jung, Jun, Woo, Han, Lee (bib44) 2021; 405 Kim, Yoo, Bootharaju, Kim, Chung, Hyeon (bib19) 2022; 9 Hammer, Norskov (bib51) 1995; 376 Zheng, Jiao, Zhu, Li, Han, Chen, Jaroniec, Qiao (bib15) 2016; 138 Liu, Wang, Li, Yuan, Huang, Li, Li (bib42) 2022; 300 Ma, Wu, Feng, Tan, Yan, Liu, Kang, Wang, Li (bib46) 2017; 10 Stamenkovic, Mun, Mayrhofer, Ross, Markovic, Rossmeisl, Greeley, Nørskov (bib52) 2006; 45 Sun, Yan, Liu, Xu, Cheng, Chen (bib33) 2020; 32 Wu, Liu, Cheng, Li, Liu (bib35) 2021; 545 Mao, He, Pei, Chen, He, He, Zhuang, Chen, Peng, Wang, Li (bib16) 2018; 9 Yang, Zai, Zhou, Du, Jiang (bib40) 2019; 29 Zhang, Lu, Wu, Luan, Lou (bib21) 2021; 60 Lu, Zhu, Yu, Zhang, Li, Sun, Wang, Wang, Wang, Luo, Lei, Jiang (bib34) 2014; 26 Kresse, Hafner (bib26) 1993; 47 Henkelman, Uberuaga, Jónsson (bib31) 2000; 113 Victoria, Haegel, Peters, Sinton, Jäger-Waldau, del Cañizo, Breyer, Stocks, Blakers, Kaizuka, Komoto, Smets (bib1) 2021; 5 Kibsgaard, Jaramillo (bib22) 2014; 53 Wu, Luo, Han, Peng, Zhao, Chen, Peng, Liu, de Groot, Tan (bib24) 2020; 5 Wang, Zhong, Zeng, Cheng, Xiong, Bu (bib37) 2019; 555 Zhang, Xia, Zhang, Zou, Shen, Li, Chen, Qu (bib20) 2021; 297 Liu, Nørskov (bib50) 2001; 3 Tang, Sanville, Henkelman (bib30) 2009; 21 Niu, Tang, He, Yang (bib47) 2016; 208 Bertella, Lopes, Foucher, Agostini, Concepción, Stach, Martínez (bib38) 2020 Lu, Yu, Lou (bib13) 2019 Huang, Zhou, Yu, Huang, Zhao, Dai, Qiu (bib12) 2020; 13 Zhao, Gao, Chen, Li, Ma, Wu, Wang (bib10) 2021; 297 Tang, Yang, Sheng, Yin, Que, Henzie, Yamauchi (bib4) 2021; 423 Wan, Wu, Guan, Luan, Lou (bib11) 2020; 32 Liu, Hu, Huang, Xie (bib48) 2019; 7 Huang, Yu, Zhao, Han, Yang, Liu, Li, Zhang, Qiu (bib32) 2017; 34 Huang, Jung, Li, Kim, Han, Lee (bib8) 2022; 92 Mavrikakis, Hammer, Nørskov (bib49) 1998; 81 Zhang, Zhou, Lu, Chen, Lou (bib18) 2020; 10 Li, Liu, Gou, Zhang, Xia, Zhang, Chang, Ma, Qu (bib14) 2019; 12 Gumilar, Kaneti, Henzie, Chatterjee, Na, Yuliarto, Nugraha, Patah, Bhaumik, Yamauchi (bib36) 2020; 11 Kim (10.1016/j.apcatb.2022.121554_bib19) 2022; 9 Zheng (10.1016/j.apcatb.2022.121554_bib15) 2016; 138 Zhang (10.1016/j.apcatb.2022.121554_bib21) 2021; 60 Bertella (10.1016/j.apcatb.2022.121554_bib38) 2020 Huang (10.1016/j.apcatb.2022.121554_bib6) 2021; 88 Perdew (10.1016/j.apcatb.2022.121554_bib28) 1996; 77 Zhang (10.1016/j.apcatb.2022.121554_bib20) 2021; 297 Liu (10.1016/j.apcatb.2022.121554_bib50) 2001; 3 Xu (10.1016/j.apcatb.2022.121554_bib39) 2018; 11 Victoria (10.1016/j.apcatb.2022.121554_bib1) 2021; 5 Sun (10.1016/j.apcatb.2022.121554_bib33) 2020; 32 Stamenkovic (10.1016/j.apcatb.2022.121554_bib52) 2006; 45 Kresse (10.1016/j.apcatb.2022.121554_bib25) 1996; 54 Tang (10.1016/j.apcatb.2022.121554_bib30) 2009; 21 Lu (10.1016/j.apcatb.2022.121554_bib34) 2014; 26 Li (10.1016/j.apcatb.2022.121554_bib14) 2019; 12 Tiwari (10.1016/j.apcatb.2022.121554_bib23) 2018; 3 Tang (10.1016/j.apcatb.2022.121554_bib4) 2021; 423 Mao (10.1016/j.apcatb.2022.121554_bib16) 2018; 9 Wan (10.1016/j.apcatb.2022.121554_bib11) 2020; 32 Zhao (10.1016/j.apcatb.2022.121554_bib10) 2021; 297 Gao (10.1016/j.apcatb.2022.121554_bib2) 2022; 303 Huang (10.1016/j.apcatb.2022.121554_bib41) 2019; 58 Chen (10.1016/j.apcatb.2022.121554_bib43) 2022; 304 Li (10.1016/j.apcatb.2022.121554_bib9) 2021; 12 Monkhorst (10.1016/j.apcatb.2022.121554_bib29) 1976; 13 Gumilar (10.1016/j.apcatb.2022.121554_bib36) 2020; 11 Jiao (10.1016/j.apcatb.2022.121554_bib53) 2015; 44 Wang (10.1016/j.apcatb.2022.121554_bib3) 2022; 305 Kibsgaard (10.1016/j.apcatb.2022.121554_bib22) 2014; 53 Wu (10.1016/j.apcatb.2022.121554_bib24) 2020; 5 Zhang (10.1016/j.apcatb.2022.121554_bib18) 2020; 10 Huang (10.1016/j.apcatb.2022.121554_bib8) 2022; 92 Huang (10.1016/j.apcatb.2022.121554_bib12) 2020; 13 Blöchl (10.1016/j.apcatb.2022.121554_bib27) 1994; 50 Wu (10.1016/j.apcatb.2022.121554_bib35) 2021; 545 Cheng (10.1016/j.apcatb.2022.121554_bib5) 2021; 7 Wang (10.1016/j.apcatb.2022.121554_bib37) 2019; 555 Hammer (10.1016/j.apcatb.2022.121554_bib51) 1995; 376 Niu (10.1016/j.apcatb.2022.121554_bib47) 2016; 208 Mavrikakis (10.1016/j.apcatb.2022.121554_bib49) 1998; 81 Huang (10.1016/j.apcatb.2022.121554_bib32) 2017; 34 Yang (10.1016/j.apcatb.2022.121554_bib40) 2019; 29 Zhang (10.1016/j.apcatb.2022.121554_bib45) 2019; 254 Kresse (10.1016/j.apcatb.2022.121554_bib26) 1993; 47 Henkelman (10.1016/j.apcatb.2022.121554_bib31) 2000; 113 Huang (10.1016/j.apcatb.2022.121554_bib44) 2021; 405 Zhang (10.1016/j.apcatb.2022.121554_bib17) 2020; 6 Liu (10.1016/j.apcatb.2022.121554_bib42) 2022; 300 Ma (10.1016/j.apcatb.2022.121554_bib46) 2017; 10 Liu (10.1016/j.apcatb.2022.121554_bib48) 2019; 7 Kim (10.1016/j.apcatb.2022.121554_bib7) 2022; 302 Lu (10.1016/j.apcatb.2022.121554_bib13) 2019 |
References_xml | – volume: 305 year: 2022 ident: bib3 article-title: Bulk and surface dual modification of nickel-cobalt spinel with ruthenium toward highly efficient overall water splitting publication-title: Appl. Catal. B – volume: 7 start-page: eabg2580 year: 2021 ident: bib5 article-title: Exposing unsaturated Cu publication-title: Sci. Adv. – start-page: eaav6009 year: 2019 ident: bib13 article-title: Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts publication-title: Sci. Adv. 5 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib28 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 58 start-page: 778 year: 2019 end-page: 785 ident: bib41 article-title: Activation of transition metal oxides by in-situ electro-regulated structure-reconstruction for ultra-efficient oxygen evolution publication-title: Nano Energy – volume: 12 start-page: 2298 year: 2019 end-page: 2304 ident: bib14 article-title: Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover publication-title: Energy Environ. Sci. – volume: 32 year: 2020 ident: bib11 article-title: Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity publication-title: Adv. Mater. – volume: 5 start-page: 1041 year: 2021 end-page: 1056 ident: bib1 article-title: Solar photovoltaics is ready to power a sustainable future publication-title: Joule – volume: 10 year: 2020 ident: bib18 article-title: Implanting isolated Ru atoms into edge-rich carbon matrix for efficient electrocatalytic hydrogen evolution publication-title: Adv. Energy Mater. – volume: 303 year: 2022 ident: bib2 article-title: Facile synthesis of MoP-Ru publication-title: Appl. Catal. B – volume: 5 start-page: 192 year: 2020 end-page: 199 ident: bib24 article-title: Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte publication-title: ACS Energy Lett. – volume: 92 year: 2022 ident: bib8 article-title: Activation of inert copper for significantly enhanced hydrogen evolution behaviors by trace ruthenium doping publication-title: Nano Energy – volume: 304 year: 2022 ident: bib43 article-title: N,O-C Nanocage-mediated high-efficient hydrogen evolution reaction on IrNi@N,O-C electrocatalyst publication-title: Appl. Catal. B – volume: 45 start-page: 2897 year: 2006 end-page: 2901 ident: bib52 article-title: Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure publication-title: Angew. Chem. Int. Ed. – volume: 29 year: 2019 ident: bib40 article-title: Fe publication-title: Adv. Funct. Mater. – volume: 423 year: 2021 ident: bib4 article-title: Phosphorus-doped molybdenum carbide/MXene hybrid architectures for upgraded hydrogen evolution reaction performance over a wide pH range publication-title: Chem. Eng. J. – volume: 13 start-page: 545 year: 2020 end-page: 553 ident: bib12 article-title: Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting publication-title: Energy Environ. Sci. – volume: 6 start-page: eabb9823 year: 2020 ident: bib17 article-title: Direct probing of atomically dispersed Ru species over multi-edged TiO publication-title: Sci. Adv. – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: bib27 article-title: Projector augmented-wave method publication-title: Phys. Rev. B – volume: 21 year: 2009 ident: bib30 article-title: A grid-based Bader analysis algorithm without lattice bias publication-title: J. Phys.: Condens. Matter – start-page: 6042 year: 2020 end-page: 6057 ident: bib38 article-title: Insights into the promotion with Ru of Co/TiO2 fischer–tropsch catalysts: an in situ spectroscopic study publication-title: ACS Catal. – volume: 81 start-page: 2819 year: 1998 end-page: 2822 ident: bib49 article-title: Effect of strain on the reactivity of metal surfaces publication-title: Phys. Rev. Lett. – volume: 3 start-page: 773 year: 2018 end-page: 782 ident: bib23 article-title: Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity publication-title: Nat. Energy – volume: 254 start-page: 186 year: 2019 end-page: 193 ident: bib45 article-title: In situ embedding Co publication-title: Appl. Catal. B – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: bib31 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. – volume: 138 start-page: 16174 year: 2016 end-page: 16181 ident: bib15 article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1819 year: 2018 end-page: 1827 ident: bib39 article-title: Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide publication-title: Energy Environ. Sci. – volume: 32 year: 2020 ident: bib33 article-title: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution publication-title: Adv. Mater. – volume: 208 start-page: 180 year: 2016 end-page: 187 ident: bib47 article-title: Robust and stable ruthenium alloy electrocatalysts for hydrogen evolution by seawater splitting publication-title: Electrochim. Acta – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: bib29 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B – volume: 26 start-page: 2683 year: 2014 end-page: 2687 ident: bib34 article-title: Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS publication-title: Adv. Mater. – volume: 34 start-page: 472 year: 2017 end-page: 480 ident: bib32 article-title: Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting publication-title: Nano Energy – volume: 11 start-page: 3644 year: 2020 end-page: 3655 ident: bib36 article-title: General synthesis of hierarchical sheet/plate-like M-BDC (M = Cu, Mn, Ni, and Zr) metal–organic frameworks for electrochemical non-enzymatic glucose sensing publication-title: Chem. Sci. – volume: 405 year: 2021 ident: bib44 article-title: Design of grain boundary enriched bimetallic borides for enhanced hydrogen evolution reaction publication-title: Chem. Eng. J. – volume: 302 year: 2022 ident: bib7 article-title: Role of surface steps in activation of surface oxygen sites on Ir nanocrystals for oxygen evolution reaction in acidic media publication-title: Appl. Catal. B – volume: 297 year: 2021 ident: bib10 article-title: Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting publication-title: Appl. Catal. B – volume: 53 start-page: 14433 year: 2014 end-page: 14437 ident: bib22 article-title: Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction publication-title: Angew. Chem. Int. Ed. – volume: 9 year: 2022 ident: bib19 article-title: Noble metal-based multimetallic nanoparticles for electrocatalytic applications publication-title: Adv. Sci. – volume: 297 year: 2021 ident: bib20 article-title: Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature publication-title: Appl. Catal. B – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: bib25 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 7 start-page: 18835 year: 2019 end-page: 18843 ident: bib48 article-title: Surface engineering of Rh catalysts with N/S-codoped carbon nanosheets toward high-performance hydrogen evolution from seawater publication-title: ACS Sustain. Chem. Eng. – volume: 9 start-page: 4958 year: 2018 ident: bib16 article-title: Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice publication-title: Nat. Commun. – volume: 376 start-page: 238 year: 1995 end-page: 240 ident: bib51 article-title: Why gold is the noblest of all the metals publication-title: Nature – volume: 555 start-page: 42 year: 2019 end-page: 52 ident: bib37 article-title: Rational construction of triangle-like nickel-cobalt bimetallic metal-organic framework nanosheets arrays as battery-type electrodes for hybrid supercapacitors publication-title: J. Colloid Interface Sci. – volume: 88 year: 2021 ident: bib6 article-title: Structure engineering defective and mass transfer-enhanced RuO publication-title: Nano Energy – volume: 300 year: 2022 ident: bib42 article-title: Activation engineering on metallic 1T-MoS publication-title: Appl. Catal. B – volume: 10 start-page: 788 year: 2017 end-page: 798 ident: bib46 article-title: Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C publication-title: Energy Environ. Sci. – volume: 545 year: 2021 ident: bib35 article-title: Ni-Co@carbon nanosheet derived from nickelocene doped Co-BDC for efficient oxygen evolution reaction publication-title: Appl. Surf. Sci. – volume: 12 start-page: 3502 year: 2021 ident: bib9 article-title: A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution publication-title: Nat. Commun. – volume: 60 start-page: 19068 year: 2021 end-page: 19073 ident: bib21 article-title: Engineering platinum–cobalt nano-alloys in porous nitrogen-doped carbon nanotubes for highly efficient electrocatalytic hydrogen evolution publication-title: Angew. Chem. Int. Ed. – volume: 47 start-page: 558 year: 1993 end-page: 561 ident: bib26 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B – volume: 3 start-page: 3814 year: 2001 end-page: 3818 ident: bib50 article-title: Ligand and ensemble effects in adsorption on alloy surfaces publication-title: Phys. Chem. Chem. Phys. – volume: 44 start-page: 2060 year: 2015 end-page: 2086 ident: bib53 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. – volume: 45 start-page: 2897 year: 2006 ident: 10.1016/j.apcatb.2022.121554_bib52 article-title: Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200504386 – volume: 304 year: 2022 ident: 10.1016/j.apcatb.2022.121554_bib43 article-title: N,O-C Nanocage-mediated high-efficient hydrogen evolution reaction on IrNi@N,O-C electrocatalyst publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120996 – volume: 12 start-page: 3502 year: 2021 ident: 10.1016/j.apcatb.2022.121554_bib9 article-title: A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-021-23750-4 – volume: 5 start-page: 1041 year: 2021 ident: 10.1016/j.apcatb.2022.121554_bib1 article-title: Solar photovoltaics is ready to power a sustainable future publication-title: Joule doi: 10.1016/j.joule.2021.03.005 – volume: 81 start-page: 2819 year: 1998 ident: 10.1016/j.apcatb.2022.121554_bib49 article-title: Effect of strain on the reactivity of metal surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2819 – volume: 11 start-page: 3644 year: 2020 ident: 10.1016/j.apcatb.2022.121554_bib36 article-title: General synthesis of hierarchical sheet/plate-like M-BDC (M = Cu, Mn, Ni, and Zr) metal–organic frameworks for electrochemical non-enzymatic glucose sensing publication-title: Chem. Sci. doi: 10.1039/C9SC05636J – volume: 60 start-page: 19068 year: 2021 ident: 10.1016/j.apcatb.2022.121554_bib21 article-title: Engineering platinum–cobalt nano-alloys in porous nitrogen-doped carbon nanotubes for highly efficient electrocatalytic hydrogen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202106547 – volume: 5 start-page: 192 year: 2020 ident: 10.1016/j.apcatb.2022.121554_bib24 article-title: Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02374 – volume: 7 start-page: eabg2580 year: 2021 ident: 10.1016/j.apcatb.2022.121554_bib5 article-title: Exposing unsaturated Cu1-O2 sites in nanoscale Cu-MOF for efficient electrocatalytic hydrogen evolution publication-title: Sci. Adv. doi: 10.1126/sciadv.abg2580 – volume: 26 start-page: 2683 year: 2014 ident: 10.1016/j.apcatb.2022.121554_bib34 article-title: Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes publication-title: Adv. Mater. doi: 10.1002/adma.201304759 – volume: 10 year: 2020 ident: 10.1016/j.apcatb.2022.121554_bib18 article-title: Implanting isolated Ru atoms into edge-rich carbon matrix for efficient electrocatalytic hydrogen evolution publication-title: Adv. Energy Mater. doi: 10.1201/9780429351402 – volume: 13 start-page: 545 year: 2020 ident: 10.1016/j.apcatb.2022.121554_bib12 article-title: Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03273H – volume: 50 start-page: 17953 year: 1994 ident: 10.1016/j.apcatb.2022.121554_bib27 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 58 start-page: 778 year: 2019 ident: 10.1016/j.apcatb.2022.121554_bib41 article-title: Activation of transition metal oxides by in-situ electro-regulated structure-reconstruction for ultra-efficient oxygen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.094 – volume: 405 year: 2021 ident: 10.1016/j.apcatb.2022.121554_bib44 article-title: Design of grain boundary enriched bimetallic borides for enhanced hydrogen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126977 – start-page: 6042 year: 2020 ident: 10.1016/j.apcatb.2022.121554_bib38 article-title: Insights into the promotion with Ru of Co/TiO2 fischer–tropsch catalysts: an in situ spectroscopic study publication-title: ACS Catal. doi: 10.1021/acscatal.9b05359 – volume: 423 year: 2021 ident: 10.1016/j.apcatb.2022.121554_bib4 article-title: Phosphorus-doped molybdenum carbide/MXene hybrid architectures for upgraded hydrogen evolution reaction performance over a wide pH range publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130183 – volume: 44 start-page: 2060 year: 2015 ident: 10.1016/j.apcatb.2022.121554_bib53 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 113 start-page: 9901 year: 2000 ident: 10.1016/j.apcatb.2022.121554_bib31 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 376 start-page: 238 year: 1995 ident: 10.1016/j.apcatb.2022.121554_bib51 article-title: Why gold is the noblest of all the metals publication-title: Nature doi: 10.1038/376238a0 – volume: 21 year: 2009 ident: 10.1016/j.apcatb.2022.121554_bib30 article-title: A grid-based Bader analysis algorithm without lattice bias publication-title: J. Phys.: Condens. Matter – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.apcatb.2022.121554_bib25 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 29 year: 2019 ident: 10.1016/j.apcatb.2022.121554_bib40 article-title: Fe3C-Co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901949 – volume: 88 year: 2021 ident: 10.1016/j.apcatb.2022.121554_bib6 article-title: Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for proton exchange membrane water electrolyzer publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106276 – volume: 254 start-page: 186 year: 2019 ident: 10.1016/j.apcatb.2022.121554_bib45 article-title: In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.04.096 – volume: 9 start-page: 4958 year: 2018 ident: 10.1016/j.apcatb.2022.121554_bib16 article-title: Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice publication-title: Nat. Commun. doi: 10.1038/s41467-018-07288-6 – volume: 3 start-page: 773 year: 2018 ident: 10.1016/j.apcatb.2022.121554_bib23 article-title: Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity publication-title: Nat. Energy doi: 10.1038/s41560-018-0209-x – volume: 305 year: 2022 ident: 10.1016/j.apcatb.2022.121554_bib3 article-title: Bulk and surface dual modification of nickel-cobalt spinel with ruthenium toward highly efficient overall water splitting publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2022.121081 – start-page: eaav6009 year: 2019 ident: 10.1016/j.apcatb.2022.121554_bib13 article-title: Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts publication-title: Sci. Adv. 5 doi: 10.1126/sciadv.aav6009 – volume: 138 start-page: 16174 year: 2016 ident: 10.1016/j.apcatb.2022.121554_bib15 article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11291 – volume: 300 year: 2022 ident: 10.1016/j.apcatb.2022.121554_bib42 article-title: Activation engineering on metallic 1T-MoS2 by constructing In-plane heterostructure for efficient hydrogen generation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120696 – volume: 302 year: 2022 ident: 10.1016/j.apcatb.2022.121554_bib7 article-title: Role of surface steps in activation of surface oxygen sites on Ir nanocrystals for oxygen evolution reaction in acidic media publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120834 – volume: 9 year: 2022 ident: 10.1016/j.apcatb.2022.121554_bib19 article-title: Noble metal-based multimetallic nanoparticles for electrocatalytic applications publication-title: Adv. Sci. – volume: 11 start-page: 1819 year: 2018 ident: 10.1016/j.apcatb.2022.121554_bib39 article-title: Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03603E – volume: 303 year: 2022 ident: 10.1016/j.apcatb.2022.121554_bib2 article-title: Facile synthesis of MoP-Ru2P on porous N, P co-doped carbon for efficiently electrocatalytic hydrogen evolution reaction in full pH range publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120879 – volume: 10 start-page: 788 year: 2017 ident: 10.1016/j.apcatb.2022.121554_bib46 article-title: Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03768B – volume: 7 start-page: 18835 year: 2019 ident: 10.1016/j.apcatb.2022.121554_bib48 article-title: Surface engineering of Rh catalysts with N/S-codoped carbon nanosheets toward high-performance hydrogen evolution from seawater publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b03720 – volume: 53 start-page: 14433 year: 2014 ident: 10.1016/j.apcatb.2022.121554_bib22 article-title: Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201408222 – volume: 12 start-page: 2298 year: 2019 ident: 10.1016/j.apcatb.2022.121554_bib14 article-title: Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00752K – volume: 545 year: 2021 ident: 10.1016/j.apcatb.2022.121554_bib35 article-title: Ni-Co@carbon nanosheet derived from nickelocene doped Co-BDC for efficient oxygen evolution reaction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.148975 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.apcatb.2022.121554_bib28 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 34 start-page: 472 year: 2017 ident: 10.1016/j.apcatb.2022.121554_bib32 article-title: Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.03.016 – volume: 13 start-page: 5188 year: 1976 ident: 10.1016/j.apcatb.2022.121554_bib29 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 208 start-page: 180 year: 2016 ident: 10.1016/j.apcatb.2022.121554_bib47 article-title: Robust and stable ruthenium alloy electrocatalysts for hydrogen evolution by seawater splitting publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.04.184 – volume: 555 start-page: 42 year: 2019 ident: 10.1016/j.apcatb.2022.121554_bib37 article-title: Rational construction of triangle-like nickel-cobalt bimetallic metal-organic framework nanosheets arrays as battery-type electrodes for hybrid supercapacitors publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.07.063 – volume: 32 year: 2020 ident: 10.1016/j.apcatb.2022.121554_bib11 article-title: Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity publication-title: Adv. Mater. doi: 10.1002/adma.201901349 – volume: 6 start-page: eabb9823 year: 2020 ident: 10.1016/j.apcatb.2022.121554_bib17 article-title: Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution publication-title: Sci. Adv. doi: 10.1126/sciadv.abb9823 – volume: 32 year: 2020 ident: 10.1016/j.apcatb.2022.121554_bib33 article-title: Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution publication-title: Adv. Mater. – volume: 47 start-page: 558 year: 1993 ident: 10.1016/j.apcatb.2022.121554_bib26 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 297 year: 2021 ident: 10.1016/j.apcatb.2022.121554_bib10 article-title: Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120395 – volume: 3 start-page: 3814 year: 2001 ident: 10.1016/j.apcatb.2022.121554_bib50 article-title: Ligand and ensemble effects in adsorption on alloy surfaces publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b103525h – volume: 297 year: 2021 ident: 10.1016/j.apcatb.2022.121554_bib20 article-title: Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120418 – volume: 92 year: 2022 ident: 10.1016/j.apcatb.2022.121554_bib8 article-title: Activation of inert copper for significantly enhanced hydrogen evolution behaviors by trace ruthenium doping publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106763 |
SSID | ssj0002328 |
Score | 2.5828917 |
Snippet | Hydrogen evolution reaction (HER) in alkali involves higher energy barriers and slow reaction kinetics due to involving water dissociation process. Catalysts... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 121554 |
SubjectTerms | Alloy Cobalt Core-shell Electrocatalysis Hydrogen evolution |
Title | Surface conversion derived core-shell nanostructures of Co particles@RuCo alloy for superior hydrogen evolution in alkali and seawater |
URI | https://dx.doi.org/10.1016/j.apcatb.2022.121554 |
Volume | 315 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KPagH0WqxPsoevMY-9pH0phRLVejBWugt7CtYlaT0JV48-rudzcMqiIK3bJiBkG925tvdmVmAM6MoFRLnt24L5TFcQ3hSGOpFKmppQ5HAZlm-A9EfsZsxH5egW9TCuLTK3PdnPj311vmbRv43G9PJpDFsdtqCUh8t0tFc7irKGfOdrZ-_rdM8kDGk3hiFPSddlM-lOV5yquVC4Sqx3U7bLHD2c3j6EnJ6u7CTc0VymX3OHpRsXIHNbnFFWwW2v3QTrED1al20hmr5rJ3vw_twOYuktiRNMU_3x4hBpZU1xHWx9OYuG5TEMk6ydrJLXIOTJCLdhEyLzLmLuyUO3TH9K0GiS-ZL1yMZHx5ezSxBMyR2lZsxmcQo-IQMn8jYEJxML8hoZwcw6l3dd_tefv8CAkfFAkGTzEa2wxU3UvmGB02qbNOXHbcdxzs60EwiAROmybmKEIlWkB7zIeszVHBahXKcxPYQCPJOpREjI3XEEDFpmRVBYJm0fssEtga0-O2hzpuTuzsynsMiC-0xzMAKHVhhBlYNvE-tadac4w95v0A0_GZkIcaPXzWP_q15DFtu5MJdi59AGWG0p8hjFqqeGmodNi6vb_uDD4e69OM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6qHqoH0ar4dg9eYx_7SHpTiqVq7UEt9Bb2FaxKUvpQvHj0dzubh1UQBW95zEDINzvz7e7sDMCxUZQKieNbN4TyGM4hPCkM9SIV1bWhSGCzLN-e6PTZ5YAPStAqzsK4tMrc92c-PfXW-ZNq_jero-GweltrNgSlPlqko7ncX4Al5tocoFGfvM3zPJAypO4YpT0nXpyfS5O85EjLqcJpYqOR1lng7Of49CXmtNdgNSeL5Cz7nnUo2bgC5VbRo60CK1_KCVZg63x-ag3V8mE72YD329k4ktqSNMc8XSAjBpWerSGujKU3cemgJJZxktWTneEknCQRaSVkVKTOnd7M8Nbt078SZLpkMnNFkvHi_tWME7RDYp9zOybDGAUfkeITGRuCo-kFKe14E_rt87tWx8sbMCByVEwRNclsZJtccSOVb3hQo8rWfNl063G8qQPNJDIwYWqcqwihqAfpPh_SPkMFp1uwGCex3QaCxFNpBMlIHTGETFpmRRBYJq1fN4HdAVr89lDn1cldk4ynsEhDewgzsEIHVpiBtQPep9Yoq87xh7xfIBp-s7IQA8ivmrv_1jyCcufuuht2L3pXe7Ds3rjYV-f7sIiQ2gMkNVN1mBrtBxAI9mw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+conversion+derived+core-shell+nanostructures+of+Co+particles%40RuCo+alloy+for+superior+hydrogen+evolution+in+alkali+and+seawater&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Huang%2C+Huawei&rft.au=Jung%2C+Hyeonjung&rft.au=Park%2C+Cheol-Young&rft.au=Kim%2C+Seongbeen&rft.date=2022-10-15&rft.issn=0926-3373&rft.volume=315&rft.spage=121554&rft_id=info:doi/10.1016%2Fj.apcatb.2022.121554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2022_121554 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |