Hybrid intelligence models for compressive strength prediction of MPC composites and parametric analysis with SHAP algorithm

Nowadays, hybrid soft computing technics are attracting the scholars of construction materials field due to their high adaptability and prediction performances to data information. Hence, the current research aims to predict the compressive strength of magnesium phosphate cement (MPC) composites usi...

Full description

Saved in:
Bibliographic Details
Published inMaterials today communications Vol. 35; p. 105547
Main Authors Haque, M. Aminul, Chen, Bing, Kashem, Abul, Qureshi, Tanvir, Ahmed, Abul Abrar Masrur
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2023
Subjects
Online AccessGet full text
ISSN2352-4928
2352-4928
DOI10.1016/j.mtcomm.2023.105547

Cover

Abstract Nowadays, hybrid soft computing technics are attracting the scholars of construction materials field due to their high adaptability and prediction performances to data information. Hence, the current research aims to predict the compressive strength of magnesium phosphate cement (MPC) composites using the deep learning and machine learning based hybrid models, which is rarely seen in the literature. Data was collected from published papers, where 70% data used for training the models and 30% for testing stage. Four different hybrid models like CNN-LSTM, CNN-GRU, DTR-RFR and GBR-RFR were formulated to achieve the goals by comparing their forecasting performances with statistical parameters. Additionally, governing input variable parameters and prediction process explanation were also interpreted by SHAP algorithm under hybrid models. As is observed, all selected hybrid models presented the good corroboration to output CS data with higher accuracy results. Besides, CNN-LSTM and GBR-RFR models exhibited the superior fitness (R2 ≈ 0.99) to strength properties in relation to other three models at both phases. Average error ranges were observed very condense to ± 5%. Moreover, testing age was observed as the most influential variable to model outputs. Furthermore, it was exposed that CNN-LSTM model can well interpret the interactions of inputs to outputs and inner-working process of prediction, whereas GBR-RFR describes the dependence plot at decent level to elucidate the connections among the inputs for model outputs. However, the proposed hybrid approaches of the research might be a potential solution to optimize the mix design of MPC mixtures containing supplementary cementitious materials (SCMs) and well predict the strength characteristics of MPC matrices for real field applications by engineering practitioners. [Display omitted] •Hybrid intelligence approaches were employed to predict strength properties.•Literature data was gathered on MPC matrices with inputs and outputs parameters.•Five hybrid models were formulated to justify their predicting accuracy.•CNN-LSTM and GBR-RFR displayed healthy performances.•Testing age, FA and slag were revealed as influential inputs to model outputs.
AbstractList Nowadays, hybrid soft computing technics are attracting the scholars of construction materials field due to their high adaptability and prediction performances to data information. Hence, the current research aims to predict the compressive strength of magnesium phosphate cement (MPC) composites using the deep learning and machine learning based hybrid models, which is rarely seen in the literature. Data was collected from published papers, where 70% data used for training the models and 30% for testing stage. Four different hybrid models like CNN-LSTM, CNN-GRU, DTR-RFR and GBR-RFR were formulated to achieve the goals by comparing their forecasting performances with statistical parameters. Additionally, governing input variable parameters and prediction process explanation were also interpreted by SHAP algorithm under hybrid models. As is observed, all selected hybrid models presented the good corroboration to output CS data with higher accuracy results. Besides, CNN-LSTM and GBR-RFR models exhibited the superior fitness (R2 ≈ 0.99) to strength properties in relation to other three models at both phases. Average error ranges were observed very condense to ± 5%. Moreover, testing age was observed as the most influential variable to model outputs. Furthermore, it was exposed that CNN-LSTM model can well interpret the interactions of inputs to outputs and inner-working process of prediction, whereas GBR-RFR describes the dependence plot at decent level to elucidate the connections among the inputs for model outputs. However, the proposed hybrid approaches of the research might be a potential solution to optimize the mix design of MPC mixtures containing supplementary cementitious materials (SCMs) and well predict the strength characteristics of MPC matrices for real field applications by engineering practitioners. [Display omitted] •Hybrid intelligence approaches were employed to predict strength properties.•Literature data was gathered on MPC matrices with inputs and outputs parameters.•Five hybrid models were formulated to justify their predicting accuracy.•CNN-LSTM and GBR-RFR displayed healthy performances.•Testing age, FA and slag were revealed as influential inputs to model outputs.
ArticleNumber 105547
Author Ahmed, Abul Abrar Masrur
Chen, Bing
Kashem, Abul
Qureshi, Tanvir
Haque, M. Aminul
Author_xml – sequence: 1
  givenname: M. Aminul
  surname: Haque
  fullname: Haque, M. Aminul
  organization: Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
– sequence: 2
  givenname: Bing
  orcidid: 0000-0003-2862-3392
  surname: Chen
  fullname: Chen, Bing
  email: hntchen@sjtu.edu.cn
  organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
– sequence: 3
  givenname: Abul
  surname: Kashem
  fullname: Kashem, Abul
  organization: Department of Civil Engineering, Leading University, Sylhet, Bangladesh
– sequence: 4
  givenname: Tanvir
  surname: Qureshi
  fullname: Qureshi, Tanvir
  organization: Department of Engineering Design and Mathematics, UWE Bristol, United Kingdom
– sequence: 5
  givenname: Abul Abrar Masrur
  surname: Ahmed
  fullname: Ahmed, Abul Abrar Masrur
  organization: Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia
BookMark eNqFkMtKAzEUhoMoWGvfwEVeoDWTy3TGhSBFraAo6D5kkjP1lJlJSYJS8OFNrQtxoatz4Xw_h--EHA5-AELOCjYrWFGer2d9sr7vZ5xxkVdKyfkBGXGh-FTWvDr80R-TSYxrxlhRKSZrOSIfy20T0FEcEnQdrmCwQHvvoIu09YHm5E2AGPENaEwBhlV6pXnj0Cb0A_UtfXhafJ35iAkiNYOjGxNMDymgzaPpthEjfcdMPi-vnqjpVj7kqT8lR63pIky-65i83Fy_LJbT-8fbu8XV_dRyUaapUcoVpZSu5E1lBcxZY1wlbSnmslFtIyqhXK1qwSuoC8iHDGqrGi7mbVVzMSYX-1gbfIwBWm0xmd37KRjsdMH0zqRe671JvTOp9yYzLH_Bm4C9Cdv_sMs9lkXCG0LQ0eJOrsMANmnn8e-AT6bflB4
CitedBy_id crossref_primary_10_1007_s42107_023_00847_3
crossref_primary_10_1007_s42107_024_01219_1
crossref_primary_10_1038_s41598_024_68276_z
crossref_primary_10_1038_s41598_024_73713_0
crossref_primary_10_4028_p_8SbAEJ
crossref_primary_10_1007_s42107_024_01064_2
crossref_primary_10_1007_s41939_024_00651_9
crossref_primary_10_1007_s41939_024_00476_6
crossref_primary_10_1007_s40996_024_01569_5
crossref_primary_10_3390_buildings14092894
crossref_primary_10_1007_s42107_023_00980_z
crossref_primary_10_1038_s41598_024_66957_3
crossref_primary_10_1007_s41024_024_00445_z
crossref_primary_10_1007_s42107_023_00922_9
crossref_primary_10_1080_10298436_2023_2257852
crossref_primary_10_3390_polym15193962
crossref_primary_10_1007_s40996_024_01594_4
crossref_primary_10_1007_s42107_024_01153_2
crossref_primary_10_1038_s41598_024_73498_2
crossref_primary_10_1007_s44242_024_00042_w
Cites_doi 10.1016/S0008-8846(98)00230-0
10.3390/en14216958
10.1016/j.conbuildmat.2018.09.143
10.1016/j.conbuildmat.2019.117795
10.1016/j.matdes.2008.04.005
10.3389/frai.2020.00004
10.1016/j.conbuildmat.2022.127490
10.1016/j.conbuildmat.2021.122264
10.1016/j.conbuildmat.2013.05.103
10.1016/j.cemconres.2015.01.015
10.1016/j.cmpb.2021.106584
10.1016/j.conbuildmat.2019.04.158
10.1007/s00521-020-05470-w
10.1016/j.conbuildmat.2020.118349
10.1007/s11356-021-12877-y
10.1016/j.conbuildmat.2019.07.184
10.1016/j.jhazmat.2007.12.110
10.1016/j.conbuildmat.2018.11.085
10.1016/j.cemconres.2018.06.003
10.1016/j.cemconcomp.2021.104079
10.1016/j.conbuildmat.2021.125021
10.1016/j.cemconcomp.2021.104177
10.1016/j.conbuildmat.2020.119953
10.1016/j.conbuildmat.2021.122797
10.1016/j.fuel.2017.08.028
10.1016/j.compositesb.2018.12.065
10.1016/j.conbuildmat.2019.117447
10.1016/j.conbuildmat.2020.119098
10.1061/(ASCE)MT.1943-5533.0003413
10.1016/j.conbuildmat.2021.122585
10.1016/j.conbuildmat.2020.120728
10.1016/j.conbuildmat.2019.117471
10.1016/j.conbuildmat.2020.119704
10.1016/j.jclepro.2022.133347
10.1016/j.cemconres.2017.05.008
10.1016/j.cemconcomp.2018.04.002
10.1016/j.engfracmech.2022.108914
10.1016/j.jclepro.2021.130086
10.1109/ASCC.2017.8287531
10.1016/j.conbuildmat.2022.127395
10.1016/j.conbuildmat.2019.03.304
10.1016/j.conbuildmat.2021.125785
10.1016/j.conbuildmat.2015.12.085
10.1016/j.jclepro.2021.128371
10.1016/j.agwat.2020.106649
10.1016/j.conbuildmat.2014.04.136
10.1016/j.conbuildmat.2019.117544
10.1016/j.apt.2012.10.001
10.1016/j.cemconcomp.2004.03.003
10.1016/j.compositesb.2022.109694
10.1016/j.conbuildmat.2021.123130
10.1016/j.conbuildmat.2022.127298
10.1016/j.jrmge.2022.01.002
10.1016/j.jhydrol.2021.126350
10.1016/j.conbuildmat.2020.121584
10.1680/adcr.14.00029
10.1016/j.conbuildmat.2016.07.092
10.1016/j.conbuildmat.2021.126146
10.1016/j.conbuildmat.2021.125581
10.1016/j.conbuildmat.2019.08.037
10.1007/s00477-021-02078-x
10.1016/j.cemconres.2021.106449
10.1038/s41524-022-00810-x
10.1016/j.conbuildmat.2019.01.134
10.1016/j.conbuildmat.2021.124154
10.3390/ma13194331
10.1016/j.resconrec.2022.106812
10.1016/j.conbuildmat.2018.04.169
10.1007/s12205-017-1408-x
10.1016/j.cemconres.2014.10.019
10.1016/j.scitotenv.2022.154722
10.1016/j.conbuildmat.2019.02.014
10.1016/j.jclepro.2020.121268
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mtcomm.2023.105547
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4928
ExternalDocumentID 10_1016_j_mtcomm_2023_105547
S2352492823002374
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c236t-a55d1644d62b8c3e70bad84c6374b5fb3835d959328e91e44d0e9c5b237f8923
IEDL.DBID AIKHN
ISSN 2352-4928
IngestDate Wed Oct 01 02:49:33 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Fri Feb 23 02:34:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Supplementary materials
Strength prediction
Shapely additive explanation
Magnesium phosphate cement
Hybrid artificial intelligence approaches
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-a55d1644d62b8c3e70bad84c6374b5fb3835d959328e91e44d0e9c5b237f8923
ORCID 0000-0003-2862-3392
ParticipantIDs crossref_citationtrail_10_1016_j_mtcomm_2023_105547
crossref_primary_10_1016_j_mtcomm_2023_105547
elsevier_sciencedirect_doi_10_1016_j_mtcomm_2023_105547
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Materials today communications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Emmert-Streib, Yang, Feng, Tripathi, Dehmer (bib14) 2020; 3
Riaz, Chen, Yu (bib32) 2019; 168
Xu, Lothenbach, Ma (bib30) 2018; 90
Ekanayake, Meddage, Rathnayake (bib9) 2022; 16
Yu, Zhou, Cheng, Yang (bib78) 2021; 283
Qin, Dai, Ma, Dai, Li, Jia, Qian (bib80) 2022; 234
Wu, Zhou (bib90) 2022; 330
Topçu, Karakurt, Saridemir (bib2) 2008; 29
Xu, Ma, Shao, Li, Lothenbach (bib31) 2017; 99
Gupta, Sachdeva (bib17) 2021; 33
Kamath, Prashanth, Kumar, Tantri (bib25) 2022
Xu, Ma, Li (bib67) 2015; 68
Haque, Chen, Liu (bib28) 2020; 260
Qi, Changjuan, Jianming, Linlin, Xuancheng, Xuancheng (bib44) 2019; 205
Feng, Liang, Pang, Zhao, Wang, Ahmed Sheikha (bib71) 2022; 333
Xie, Lin, Pan, Ji (bib77) 2020; 235
Zhang, Li, Li, Liu, Gao, Qi (bib37) 2020; 260
Ruan, Ma, Liao, Ma, Zhu, Zhou (bib74) 2022; 49
Feng, Li, Wang, Liu, Zhang, Gao (bib53) 2021; 121
Masuda, Ogino, Mukai (bib36) 2013; 24
Yu, Zhang, Xu, Dong, Zhangzhong (bib21) 2021; 245
R. Xie, Y. Ding, K. Hao, L. Chen, T. Wang, Using gated recurrence units neural network for prediction of melt spinning properties, 2017 Asian Control Conf. ASCC 2017. 2018-Janua (2018) 2286–2291.
Aykut Bilginer, Erdoğan (bib61) 2021; 277
Zheng, Ji, Wang, Sun, Lin, Hossain (bib72) 2016; 106
Song, Ahmad, Farooq, Ostrowski, Maślak, Czarnecki, Aslam (bib4) 2021; 308
Man, Aminul Haque, Chen (bib47) 2019; 227
Yang, Wu (bib48) 1999; 29
Aminul Haque, Chen, Liu, Farasat Ali Shah, Ahmad (bib56) 2020; 261
Ding, Li (bib65) 2005; 27
Liu, Ma, Zhang, Han (bib70) 2022; 15
Tanyildizi, Marani, Türk, Nehdi (bib8) 2022; 319
Dong, Ahmad, Chen, Munir, Kazmi (bib46) 2021; 316
Jin, Chen, Chen (bib51) 2020; 252
Ahmed, Deo, Feng, Ghahramani, Raj, Yin, Yang (bib18) 2022; 36
Haque, Chen, Maierdan (bib34) 2022; 333
Liu, Chen (bib58) 2019; 214
Dehestani, Kazemi, Abdi, Nitka (bib10) 2022; 276
.
Yang, Liu, Wang, Liu (bib63) 2020; 244
Ahmad, Chen (bib79) 2020; 237
Li, Chen (bib29) 2013; 47
Nohara, Matsumoto, Soejima, Nakashima (bib91) 2022; 214
Lu, Wang, Han, Ji (bib73) 2022; 51
Peng, Unluer (bib5) 2023; 190
Deng, He, Zhou, Yu, Cheng, Wu (bib16) 2018; 175
Latif (bib19) 2021; 28
Zhao, Chen, Xu, Li, Huang, Yang, Zhao, Lu (bib60) 2021; 284
Peng, Unluer (bib11) 2022; 316
Liu, Qian, Zhou, Li, Xu, Qin (bib43) 2008; 157
Diaz, Fokoue-Nkoutche, Nannicini, Samulowitz (bib85) 2017; 9
Aminul Haque, Chen, Riaz Ahmad, farasat ali shah (bib54) 2020; 235
Li, Yoon, Zhang, Rajabipour, Srubar, Dabo, Radlińska (bib24) 2022; 8
Jiang, Ahmad, Chen (bib45) 2019; 195
Mateus, Mendes, Farinha, Assis, Cardoso (bib22) 2021; 14
Ahmad, Chen, Yu (bib50) 2019; 168
Alzubaidi, Zhang, Humaidi, Al-Dujaili, Duan, Al-Shamma, Santamaría, Fadhel, Al-Amidie, Farhan (bib15) 2021
Tang, Lee, Amran, Fediuk, Vatin, Kueh, Lee (bib12) 2022; 14
Ahmad, Chen (bib33) 2018; 190
Ma, Liu, Zhou, Jiang, Ren, He (bib59) 2021; 288
Masrur Ahmed, Deo, Feng, Ghahramani, Raj, Yin, Yang (bib89) 2021; 599
Tanyildizi (bib20) 2021; 123
Asteris, Skentou, Bardhan, Samui, Pilakoutas (bib1) 2021; 145
Xin, Zhenyu, Tao, Jie, Zhongyuan, Shuzhen, Feng, Xiaolong (bib41) 2020; 65
Dong, Ahmad, Chen, Munir, Kazmi (bib52) 2021; 302
Haque, Pen, Chen (bib55) 2020; 32
Li, Sun, Li, Shi (bib66) 2015; 27
Topcu, Karakurt, Saridemir (bib84) 2018; 29
Mo, Lv, Deng, Qian (bib75) 2018; 111
Ahmed, Deo, Ghahramani, Feng, Raj, Yin, Yang (bib86) 2022; 831
Lv, Huang, Mo, Deng, Qian, Wang (bib64) 2019; 203
Li, Sun, Chen (bib68) 2014; 65
Ahmed, Deo, Ghahramani, Raj, Feng, Yin, Yang (bib13) 2021
Dahiya, Saini, Chalak (bib26) 2021
He, Lai, Yan, Wu, Lu, Lv, Li, Fan (bib38) 2019; 225
Liu, Chen, Qin (bib57) 2020; 264
Mohtasham Moein, Saradar, Rahmati, Ghasemzadeh Mousavinejad, Bristow, Aramali, Karakouzian (bib6) 2023; 63
Nunez, Marani, Nehdi (bib23) 2020; 13
Xu, Lothenbach, Ma (bib76) 2018; 90
Lundberg, Lee (bib88) 2017
Ahmed, Ahmed, Saha, Ahmed, Sutradhar (bib87) 2022; 3
Çalışkan, Demirhan, Tekin (bib7) 2022; 335
Xu, Lin, Pan, Ji, Liang, Zhang (bib40) 2020; 235
Kannangara, Zhou, Ding, Hong (bib92) 2022; 14
Haque, Chen, Li (bib27) 2022; 369
Gardner, Bernal, Walling, Corkhill, Provis, Hyatt (bib42) 2015; 74
Li, sheng Ji, dong Huang, zhan Xu, hong Yan (bib49) 2018; 22
Alom, Taha, Yakopcic, Westberg, Sidike, Nasrin, Hasan, Van Essen, Awwal, Asari (bib81) 2019; 8
Haque, Chen (bib39) 2019; 211
Liu, Chen, Dong, Wang, Xing (bib69) 2022; 314
Sevim, Bilgic, Cansiz, Ozturk, Atis (bib3) 2021; 271
Lu, Chen (bib35) 2016; 123
Liao, Ma, Sun, Huang, Wang (bib62) 2017; 209
Chen, Li, Wu, Zhou (bib82) 2022
Xu (10.1016/j.mtcomm.2023.105547_bib31) 2017; 99
Song (10.1016/j.mtcomm.2023.105547_bib4) 2021; 308
Dahiya (10.1016/j.mtcomm.2023.105547_bib26) 2021
Li (10.1016/j.mtcomm.2023.105547_bib29) 2013; 47
10.1016/j.mtcomm.2023.105547_bib83
Emmert-Streib (10.1016/j.mtcomm.2023.105547_bib14) 2020; 3
Mohtasham Moein (10.1016/j.mtcomm.2023.105547_bib6) 2023; 63
Haque (10.1016/j.mtcomm.2023.105547_bib55) 2020; 32
Xin (10.1016/j.mtcomm.2023.105547_bib41) 2020; 65
Ahmed (10.1016/j.mtcomm.2023.105547_bib87) 2022; 3
Mo (10.1016/j.mtcomm.2023.105547_bib75) 2018; 111
Ekanayake (10.1016/j.mtcomm.2023.105547_bib9) 2022; 16
Lv (10.1016/j.mtcomm.2023.105547_bib64) 2019; 203
Jin (10.1016/j.mtcomm.2023.105547_bib51) 2020; 252
Tanyildizi (10.1016/j.mtcomm.2023.105547_bib20) 2021; 123
Wu (10.1016/j.mtcomm.2023.105547_bib90) 2022; 330
Aykut Bilginer (10.1016/j.mtcomm.2023.105547_bib61) 2021; 277
Li (10.1016/j.mtcomm.2023.105547_bib68) 2014; 65
Aminul Haque (10.1016/j.mtcomm.2023.105547_bib54) 2020; 235
Topçu (10.1016/j.mtcomm.2023.105547_bib2) 2008; 29
Lu (10.1016/j.mtcomm.2023.105547_bib73) 2022; 51
Xu (10.1016/j.mtcomm.2023.105547_bib40) 2020; 235
Qi (10.1016/j.mtcomm.2023.105547_bib44) 2019; 205
Deng (10.1016/j.mtcomm.2023.105547_bib16) 2018; 175
Dehestani (10.1016/j.mtcomm.2023.105547_bib10) 2022; 276
Haque (10.1016/j.mtcomm.2023.105547_bib28) 2020; 260
Xu (10.1016/j.mtcomm.2023.105547_bib76) 2018; 90
Yang (10.1016/j.mtcomm.2023.105547_bib63) 2020; 244
Dong (10.1016/j.mtcomm.2023.105547_bib46) 2021; 316
Xu (10.1016/j.mtcomm.2023.105547_bib67) 2015; 68
Xie (10.1016/j.mtcomm.2023.105547_bib77) 2020; 235
Ahmad (10.1016/j.mtcomm.2023.105547_bib50) 2019; 168
Chen (10.1016/j.mtcomm.2023.105547_bib82) 2022
Jiang (10.1016/j.mtcomm.2023.105547_bib45) 2019; 195
Liu (10.1016/j.mtcomm.2023.105547_bib69) 2022; 314
Ruan (10.1016/j.mtcomm.2023.105547_bib74) 2022; 49
Yu (10.1016/j.mtcomm.2023.105547_bib21) 2021; 245
Liu (10.1016/j.mtcomm.2023.105547_bib70) 2022; 15
Yu (10.1016/j.mtcomm.2023.105547_bib78) 2021; 283
Ma (10.1016/j.mtcomm.2023.105547_bib59) 2021; 288
Liao (10.1016/j.mtcomm.2023.105547_bib62) 2017; 209
Topcu (10.1016/j.mtcomm.2023.105547_bib84) 2018; 29
Feng (10.1016/j.mtcomm.2023.105547_bib71) 2022; 333
Li (10.1016/j.mtcomm.2023.105547_bib24) 2022; 8
Liu (10.1016/j.mtcomm.2023.105547_bib57) 2020; 264
Kamath (10.1016/j.mtcomm.2023.105547_bib25) 2022
Alom (10.1016/j.mtcomm.2023.105547_bib81) 2019; 8
Man (10.1016/j.mtcomm.2023.105547_bib47) 2019; 227
Ahmad (10.1016/j.mtcomm.2023.105547_bib79) 2020; 237
Tang (10.1016/j.mtcomm.2023.105547_bib12) 2022; 14
Masuda (10.1016/j.mtcomm.2023.105547_bib36) 2013; 24
Ding (10.1016/j.mtcomm.2023.105547_bib65) 2005; 27
Mateus (10.1016/j.mtcomm.2023.105547_bib22) 2021; 14
Yang (10.1016/j.mtcomm.2023.105547_bib48) 1999; 29
Zhao (10.1016/j.mtcomm.2023.105547_bib60) 2021; 284
Li (10.1016/j.mtcomm.2023.105547_bib66) 2015; 27
Nohara (10.1016/j.mtcomm.2023.105547_bib91) 2022; 214
Sevim (10.1016/j.mtcomm.2023.105547_bib3) 2021; 271
Aminul Haque (10.1016/j.mtcomm.2023.105547_bib56) 2020; 261
Riaz (10.1016/j.mtcomm.2023.105547_bib32) 2019; 168
Zheng (10.1016/j.mtcomm.2023.105547_bib72) 2016; 106
Li (10.1016/j.mtcomm.2023.105547_bib49) 2018; 22
Zhang (10.1016/j.mtcomm.2023.105547_bib37) 2020; 260
He (10.1016/j.mtcomm.2023.105547_bib38) 2019; 225
Gardner (10.1016/j.mtcomm.2023.105547_bib42) 2015; 74
Diaz (10.1016/j.mtcomm.2023.105547_bib85) 2017; 9
Tanyildizi (10.1016/j.mtcomm.2023.105547_bib8) 2022; 319
Ahmad (10.1016/j.mtcomm.2023.105547_bib33) 2018; 190
Masrur Ahmed (10.1016/j.mtcomm.2023.105547_bib89) 2021; 599
Ahmed (10.1016/j.mtcomm.2023.105547_bib18) 2022; 36
Haque (10.1016/j.mtcomm.2023.105547_bib39) 2019; 211
Nunez (10.1016/j.mtcomm.2023.105547_bib23) 2020; 13
Haque (10.1016/j.mtcomm.2023.105547_bib27) 2022; 369
Lu (10.1016/j.mtcomm.2023.105547_bib35) 2016; 123
Alzubaidi (10.1016/j.mtcomm.2023.105547_bib15) 2021
Asteris (10.1016/j.mtcomm.2023.105547_bib1) 2021; 145
Liu (10.1016/j.mtcomm.2023.105547_bib58) 2019; 214
Dong (10.1016/j.mtcomm.2023.105547_bib52) 2021; 302
Ahmed (10.1016/j.mtcomm.2023.105547_bib86) 2022; 831
Latif (10.1016/j.mtcomm.2023.105547_bib19) 2021; 28
Peng (10.1016/j.mtcomm.2023.105547_bib11) 2022; 316
Xu (10.1016/j.mtcomm.2023.105547_bib30) 2018; 90
Lundberg (10.1016/j.mtcomm.2023.105547_bib88) 2017
Ahmed (10.1016/j.mtcomm.2023.105547_bib13) 2021
Çalışkan (10.1016/j.mtcomm.2023.105547_bib7) 2022; 335
Feng (10.1016/j.mtcomm.2023.105547_bib53) 2021; 121
Gupta (10.1016/j.mtcomm.2023.105547_bib17) 2021; 33
Peng (10.1016/j.mtcomm.2023.105547_bib5) 2023; 190
Qin (10.1016/j.mtcomm.2023.105547_bib80) 2022; 234
Haque (10.1016/j.mtcomm.2023.105547_bib34) 2022; 333
Liu (10.1016/j.mtcomm.2023.105547_bib43) 2008; 157
Kannangara (10.1016/j.mtcomm.2023.105547_bib92) 2022; 14
References_xml – volume: 13
  start-page: 1
  year: 2020
  end-page: 24
  ident: bib23
  article-title: Mixture optimization of recycled aggregate concrete using hybrid machine learning model
  publication-title: Materials
– volume: 14
  start-page: 1
  year: 2021
  end-page: 21
  ident: bib22
  article-title: Comparing LSTM and GRU models to predict the condition of a pulp paper press
  publication-title: Energies
– volume: 369
  year: 2022
  ident: bib27
  article-title: Water-resisting performances and mechanisms of magnesium phosphate cement mortars comprising with fly-ash and silica fume
  publication-title: J. Clean. Prod.
– reference: R. Xie, Y. Ding, K. Hao, L. Chen, T. Wang, Using gated recurrence units neural network for prediction of melt spinning properties, 2017 Asian Control Conf. ASCC 2017. 2018-Janua (2018) 2286–2291.
– volume: 3
  year: 2022
  ident: bib87
  article-title: Optimization algorithms as training approach with hybrid deep learning methods to develop an ultraviolet index forecasting model
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 168
  start-page: 204
  year: 2019
  end-page: 217
  ident: bib50
  article-title: A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash
  publication-title: Compos. Part B Eng.
– year: 2021
  ident: bib15
  article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
  publication-title: Springe Int. Publ.
– volume: 333
  year: 2022
  ident: bib34
  article-title: Influence of supplementary materials on the early age hydration reactions and microstructural progress of magnesium phosphate cement matrices
  publication-title: J. Clean. Prod.
– volume: 234
  year: 2022
  ident: bib80
  article-title: Development and characterization of magnesium phosphate cement based ultra-high performance concrete
  publication-title: Compos. Part B Eng.
– volume: 111
  start-page: 116
  year: 2018
  end-page: 129
  ident: bib75
  article-title: Influence of fly ash and metakaolin on the microstructure and compressive strength of magnesium potassium phosphate cement paste
  publication-title: Cem. Concr. Res.
– volume: 74
  start-page: 78
  year: 2015
  end-page: 87
  ident: bib42
  article-title: Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag
  publication-title: Cem. Concr. Res.
– volume: 319
  year: 2022
  ident: bib8
  article-title: Hybrid deep learning model for concrete incorporating microencapsulated phase change materials
  publication-title: Constr. Build. Mater.
– volume: 68
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib67
  article-title: Influence of magnesia-to-phosphate molar ratio on microstructures, mechanical properties and thermal conductivity of magnesium potassium phosphate cement paste with large water-to-solid ratio
  publication-title: Cem. Concr. Res.
– volume: 123
  year: 2021
  ident: bib20
  article-title: Predicting the geopolymerization process of fly ash-based geopolymer using deep long short-term memory and machine learning
  publication-title: Cem. Concr. Compos.
– volume: 3
  start-page: 1
  year: 2020
  end-page: 23
  ident: bib14
  article-title: An introductory review of deep learning for prediction models with big data
  publication-title: Front. Artif. Intell.
– volume: 261
  year: 2020
  ident: bib56
  article-title: Improvement of physico-mechanical and microstructural properties of magnesium phosphate cement composites comprising with Phosphogypsum
  publication-title: J. Clean. Prod.
– volume: 227
  year: 2019
  ident: bib47
  article-title: Engineering properties and microstructure analysis of magnesium phosphate cement mortar containing bentonite clay
  publication-title: Constr. Build. Mater.
– volume: 65
  start-page: 177
  year: 2014
  end-page: 183
  ident: bib68
  article-title: Experimental study of magnesia and M/P ratio influencing properties of magnesium phosphate cement
  publication-title: Constr. Build. Mater.
– volume: 599
  year: 2021
  ident: bib89
  article-title: Deep learning hybrid model with Boruta-Random forest optimiser algorithm for streamflow forecasting with climate mode indices, rainfall, and periodicity
  publication-title: J. Hydrol.
– volume: 244
  year: 2020
  ident: bib63
  article-title: Properties of fly ash blended magnesium potassium phosphate cement cured in presence of sulfuric acid
  publication-title: Constr. Build. Mater.
– volume: 288
  year: 2021
  ident: bib59
  article-title: Influencing mechanism of mineral admixtures on rheological properties of fresh magnesium phosphate cement
  publication-title: Constr. Build. Mater.
– volume: 284
  year: 2021
  ident: bib60
  article-title: Mix design and rheological properties of magnesium potassium phosphate cement composites based on the 3D printing extrusion system
  publication-title: Constr. Build. Mater.
– volume: 145
  year: 2021
  ident: bib1
  article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models
  publication-title: Cem. Concr. Res.
– volume: 9
  start-page: 11
  year: 2017
  ident: bib85
  article-title: An effective algorithm for hyperparameter optimization of neural networks
  publication-title: IBM J. Res. Dev.
– volume: 260
  year: 2020
  ident: bib37
  article-title: Properties of red mud blended with magnesium phosphate cement paste: feasibility of grouting material preparation
  publication-title: Constr. Build. Mater.
– volume: 277
  year: 2021
  ident: bib61
  article-title: Effect of mixture proportioning on the strength and mineralogy of magnesium phosphate cements
  publication-title: Constr. Build. Mater.
– volume: 333
  year: 2022
  ident: bib71
  article-title: Effects of the fly ash and water glass on the mechanical properties and water stability of the high ductile magnesium phosphate cement-based composite
  publication-title: Constr. Build. Mater.
– year: 2021
  ident: bib13
  article-title: LSTM integrated with Boruta-random forest optimiser for soil moisture estimation under RCP4.5 and RCP8.5 global warming scenarios
  publication-title: Springe Berl. Heidelb.
– volume: 22
  start-page: 231
  year: 2018
  end-page: 235
  ident: bib49
  article-title: Properties and reaction mechanisms of magnesium phosphate cement mixed with acetic acid
  publication-title: KSCE J. Civ. Eng.
– volume: 211
  start-page: 885
  year: 2019
  end-page: 898
  ident: bib39
  article-title: Research progresses on magnesium phosphate cement: a review
  publication-title: Constr. Build. Mater.
– volume: 335
  year: 2022
  ident: bib7
  article-title: Comparison of different machine learning methods for estimating compressive strength of mortars
  publication-title: Constr. Build. Mater.
– volume: 121
  year: 2021
  ident: bib53
  article-title: Deflection hardening behaviour of ductile fibre reinforced magnesium phosphate cement-based composite
  publication-title: Cem. Concr. Compos.
– volume: 302
  year: 2021
  ident: bib52
  article-title: A study on magnesium phosphate cement mortars reinforced by polyvinyl alcohol fibers
  publication-title: Constr. Build. Mater.
– volume: 264
  year: 2020
  ident: bib57
  article-title: Effect of nano-silica on properties and microstructures of magnesium phosphate cement
  publication-title: Constr. Build. Mater.
– volume: 16
  year: 2022
  ident: bib9
  article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP)
  publication-title: Case Stud. Constr. Mater.
– volume: 252
  year: 2020
  ident: bib51
  article-title: Factors assessment of a repair material for brick masonry loaded cracks using magnesium phosphate cement
  publication-title: Constr. Build. Mater.
– volume: 235
  year: 2020
  ident: bib54
  article-title: Mechanical strength and flexural parameters analysis of micro-steel, polyvinyl and basalt fibre reinforced magnesium phosphate cement mortars
  publication-title: Constr. Build. Mater.
– volume: 24
  start-page: 520
  year: 2013
  end-page: 524
  ident: bib36
  article-title: Optimizing the dimensions of magnesium ammonium phosphate to maximize its ammonia uptake ability
  publication-title: Adv. Powder Technol.
– volume: 106
  start-page: 415
  year: 2016
  end-page: 421
  ident: bib72
  article-title: Effect of the combination of fly ash and silica fume on water resistance of Magnesium-Potassium Phosphate Cement
  publication-title: Constr. Build. Mater.
– volume: 15
  year: 2022
  ident: bib70
  article-title: Hydration and properties of magnesium potassium phosphate cement modified by granulated blast-furnace slag: influence of fineness
  publication-title: Materials
– volume: 29
  start-page: 1279
  year: 2018
  end-page: 1286
  ident: bib84
  article-title: Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic
  publication-title: Constr. Build. Mater.
– volume: 276
  year: 2022
  ident: bib10
  article-title: Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various machine learning techniques
  publication-title: Eng. Fract. Mech.
– volume: 175
  start-page: 562
  year: 2018
  end-page: 569
  ident: bib16
  article-title: Compressive strength prediction of recycled concrete based on deep learning
  publication-title: Constr. Build. Mater.
– volume: 90
  start-page: 169
  year: 2018
  end-page: 177
  ident: bib30
  article-title: Properties of fly ash blended magnesium potassium phosphate mortars: effect of the ratio between fly ash and magnesia
  publication-title: Cem. Concr. Compos.
– volume: 33
  start-page: 6951
  year: 2021
  end-page: 6963
  ident: bib17
  article-title: Recurrent neural network-based prediction of compressive and flexural strength of steel slag mixed concrete
  publication-title: Neural Comput. Appl.
– volume: 235
  year: 2020
  ident: bib77
  article-title: Preliminary investigation of the hydration mechanism of MgO-SiO2-K2HPO4 cement
  publication-title: Constr. Build. Mater.
– volume: 316
  year: 2021
  ident: bib46
  article-title: Preparation and study of magnesium ammonium phosphate cement from waste lithium slag
  publication-title: J. Clean. Prod.
– volume: 831
  year: 2022
  ident: bib86
  article-title: New double decomposition deep learning methods for river water level forecasting
  publication-title: Sci. Total Environ.
– volume: 237
  year: 2020
  ident: bib79
  article-title: Microstructural characterization of basalt fiber reinforced magnesium phosphate cement supplemented by silica fume
  publication-title: Constr. Build. Mater.
– volume: 63
  year: 2023
  ident: bib6
  article-title: Predictive models for concrete properties using machine learning and deep learning approaches: a review
  publication-title: J. Build. Eng.
– volume: 123
  start-page: 719
  year: 2016
  end-page: 726
  ident: bib35
  article-title: Experimental study of magnesium phosphate cements modified by metakaolin
  publication-title: Constr. Build. Mater.
– volume: 209
  start-page: 490
  year: 2017
  end-page: 497
  ident: bib62
  article-title: Potential large-volume beneficial use of low-grade fly ash in magnesia-phosphate cement based materials
  publication-title: Fuel
– volume: 195
  start-page: 140
  year: 2019
  end-page: 147
  ident: bib45
  article-title: Properties of magnesium phosphate cement containing steel slag powder
  publication-title: Constr. Build. Mater.
– volume: 47
  start-page: 977
  year: 2013
  end-page: 983
  ident: bib29
  article-title: Factors that affect the properties of magnesium phosphate cement
  publication-title: Constr. Build. Mater.
– volume: 99
  start-page: 86
  year: 2017
  end-page: 94
  ident: bib31
  article-title: Influence of fly ash on compressive strength and micro-characteristics of magnesium potassium phosphate cement mortars
  publication-title: Cem. Concr. Res.
– volume: 283
  year: 2021
  ident: bib78
  article-title: Compressive strength development and microstructure of magnesium phosphate cement concrete
  publication-title: Constr. Build. Mater.
– volume: 316
  year: 2022
  ident: bib11
  article-title: Analyzing the mechanical performance of fly ash-based geopolymer concrete with different machine learning techniques
  publication-title: Constr. Build. Mater.
– volume: 205
  start-page: 668
  year: 2019
  end-page: 678
  ident: bib44
  article-title: Influence of nickel slag powders on properties of magnesium potassium phosphate cement paste
  publication-title: Constr. Build. Mater.
– volume: 214
  year: 2022
  ident: bib91
  article-title: Explanation of machine learning models using shapley additive explanation and application for real data in hospital
  publication-title: Comput. Methods Prog. Biomed.
– volume: 314
  year: 2022
  ident: bib69
  article-title: Influence mechanisms of fly ash in magnesium ammonium phosphate cement
  publication-title: Constr. Build. Mater.
– volume: 14
  start-page: 1052
  year: 2022
  end-page: 1063
  ident: bib92
  article-title: Investigation of feature contribution to shield tunneling-induced settlement using Shapley additive explanations method
  publication-title: J. Rock. Mech. Geotech. Eng.
– volume: 32
  start-page: 04020360
  year: 2020
  ident: bib55
  article-title: Effects of aluminum silicate on mechanical strength and microstructural improvement of magnesium phosphate cement mortar
  publication-title: J. Mater. Civ. Eng.
– year: 2021
  ident: bib26
  article-title: Gradient boosting-based regression modelling for estimating the time period of the irregular precast concrete structural system with cross bracing
  publication-title: J. King Saud. Univ. Eng. Sci.
– volume: 308
  year: 2021
  ident: bib4
  article-title: Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms
  publication-title: Constr. Build. Mater.
– volume: 65
  start-page: 695
  year: 2020
  end-page: 700
  ident: bib41
  article-title: Hydration characteristics and microstructure of magnesium phosphate cement in presence of Cu2
  publication-title: Constr. Build. Mater.
– volume: 29
  start-page: 389
  year: 1999
  end-page: 396
  ident: bib48
  article-title: Factors influencing properties of phosphate cement-based binder for rapid repair of concrete
  publication-title: Cem. Concr. Res.
– volume: 214
  start-page: 516
  year: 2019
  end-page: 526
  ident: bib58
  article-title: Research on the preparation and properties of a novel grouting material based on magnesium phosphate cement
  publication-title: Constr. Build. Mater.
– year: 2022
  ident: bib82
  article-title: Compressive strength prediction of high-strength concrete using long short-term memory and machine learning algorithms
  publication-title: Buildings
– volume: 190
  start-page: 466
  year: 2018
  end-page: 478
  ident: bib33
  article-title: Effect of silica fume and basalt fiber on the mechanical properties and microstructure of magnesium phosphate cement (MPC) mortar
  publication-title: Constr. Build. Mater.
– volume: 235
  year: 2020
  ident: bib40
  article-title: Influence of silica fume on the setting time and mechanical properties of a new magnesium phosphate cement
  publication-title: Constr. Build. Mater.
– volume: 203
  start-page: 589
  year: 2019
  end-page: 600
  ident: bib64
  article-title: Properties of magnesium potassium phosphate cement pastes exposed to water curing: a comparison study on the influences of fly ash and metakaolin
  publication-title: Constr. Build. Mater.
– volume: 27
  start-page: 373
  year: 2015
  end-page: 380
  ident: bib66
  article-title: Effects of fly ash, retarder and calcination of magnesia on properties of magnesia-phosphate cement
  publication-title: Adv. Cem. Res.
– volume: 36
  start-page: 831
  year: 2022
  end-page: 849
  ident: bib18
  article-title: Hybrid deep learning method for a week-ahead evapotranspiration forecasting
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 8
  year: 2022
  ident: bib24
  article-title: Machine learning in concrete science: applications, challenges, and best practices
  publication-title: Npj Comput. Mater.
– year: 2022
  ident: bib25
  article-title: Machine-Learning-Algorithm to predict the High-Performance concrete compressive strength using multiple data
  publication-title: J. Eng. Des. Technol.
– volume: 157
  start-page: 146
  year: 2008
  end-page: 153
  ident: bib43
  article-title: Improvement of ground granulated blast furnace slag on stabilization/solidification of simulated mercury-doped wastes in chemically bonded phosphate ceramics
  publication-title: J. Hazard. Mater.
– volume: 51
  year: 2022
  ident: bib73
  article-title: Experimental study of magnesium ammonium phosphate cements modified by fly ash and metakaolin
  publication-title: J. Build. Eng.
– volume: 245
  year: 2021
  ident: bib21
  article-title: A hybrid CNN-GRU model for predicting soil moisture in maize root zone
  publication-title: Agric. Water Manag
– volume: 14
  year: 2022
  ident: bib12
  article-title: Artificial neural network-forecasted compression strength of alkaline-activated slag concretes
  publication-title: Sustain
– volume: 168
  start-page: 204
  year: 2019
  end-page: 217
  ident: bib32
  publication-title: A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultra fine fly ash
– volume: 190
  year: 2023
  ident: bib5
  article-title: Modeling the mechanical properties of recycled aggregate concrete using hybrid machine learning algorithms
  publication-title: Resour. Conserv. Recycl.
– reference: .
– volume: 27
  start-page: 11
  year: 2005
  end-page: 18
  ident: bib65
  article-title: Effect of aggregates and water contents on the properties of magnesium phospho-silicate cement
  publication-title: Cem. Concr. Compos.
– volume: 8
  year: 2019
  ident: bib81
  article-title: A state-of-the-art survey on deep learning theory and architectures
  publication-title: Electron
– volume: 29
  start-page: 1986
  year: 2008
  end-page: 1991
  ident: bib2
  article-title: Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic
  publication-title: Mater. Des.
– volume: 260
  year: 2020
  ident: bib28
  article-title: The role of bauxite and fly-ash on the water stability and microstructural densification of magnesium phosphate cement composites
  publication-title: Constr. Build. Mater.
– start-page: 4766
  year: 2017
  end-page: 4775
  ident: bib88
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neural Inf. Process. Syst. 2017-Decem
– volume: 49
  year: 2022
  ident: bib74
  article-title: Effects of steel slag on the microstructure and mechanical properties of magnesium phosphate cement
  publication-title: J. Build. Eng.
– volume: 271
  year: 2021
  ident: bib3
  article-title: Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques
  publication-title: Constr. Build. Mater.
– volume: 90
  start-page: 169
  year: 2018
  end-page: 177
  ident: bib76
  article-title: Properties of fly ash blended magnesium potassium phosphate mortars: effect of the ratio between fly ash and magnesia
  publication-title: Cem. Concr. Compos.
– volume: 28
  start-page: 30294
  year: 2021
  end-page: 30302
  ident: bib19
  article-title: Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment
  publication-title: Environ. Sci. Pollut. Res.
– volume: 330
  year: 2022
  ident: bib90
  article-title: Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete
  publication-title: Constr. Build. Mater.
– volume: 225
  start-page: 234
  year: 2019
  end-page: 242
  ident: bib38
  article-title: Hydration characteristics and microstructure of magnesium phosphate cement in presence of Cu2
  publication-title: Constr. Build. Mater.
– volume: 168
  start-page: 204
  year: 2019
  ident: 10.1016/j.mtcomm.2023.105547_bib32
  publication-title: A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultra fine fly ash
– year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib13
  article-title: LSTM integrated with Boruta-random forest optimiser for soil moisture estimation under RCP4.5 and RCP8.5 global warming scenarios
  publication-title: Springe Berl. Heidelb.
– volume: 29
  start-page: 389
  year: 1999
  ident: 10.1016/j.mtcomm.2023.105547_bib48
  article-title: Factors influencing properties of phosphate cement-based binder for rapid repair of concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(98)00230-0
– volume: 14
  start-page: 1
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib22
  article-title: Comparing LSTM and GRU models to predict the condition of a pulp paper press
  publication-title: Energies
  doi: 10.3390/en14216958
– volume: 190
  start-page: 466
  year: 2018
  ident: 10.1016/j.mtcomm.2023.105547_bib33
  article-title: Effect of silica fume and basalt fiber on the mechanical properties and microstructure of magnesium phosphate cement (MPC) mortar
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.09.143
– volume: 237
  year: 2020
  ident: 10.1016/j.mtcomm.2023.105547_bib79
  article-title: Microstructural characterization of basalt fiber reinforced magnesium phosphate cement supplemented by silica fume
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117795
– volume: 29
  start-page: 1986
  year: 2008
  ident: 10.1016/j.mtcomm.2023.105547_bib2
  article-title: Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2008.04.005
– volume: 3
  start-page: 1
  year: 2020
  ident: 10.1016/j.mtcomm.2023.105547_bib14
  article-title: An introductory review of deep learning for prediction models with big data
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2020.00004
– year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib15
  article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
  publication-title: Springe Int. Publ.
– volume: 335
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib7
  article-title: Comparison of different machine learning methods for estimating compressive strength of mortars
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127490
– volume: 277
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib61
  article-title: Effect of mixture proportioning on the strength and mineralogy of magnesium phosphate cements
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.122264
– volume: 47
  start-page: 977
  year: 2013
  ident: 10.1016/j.mtcomm.2023.105547_bib29
  article-title: Factors that affect the properties of magnesium phosphate cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.05.103
– volume: 74
  start-page: 78
  year: 2015
  ident: 10.1016/j.mtcomm.2023.105547_bib42
  article-title: Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2015.01.015
– volume: 214
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib91
  article-title: Explanation of machine learning models using shapley additive explanation and application for real data in hospital
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2021.106584
– volume: 214
  start-page: 516
  year: 2019
  ident: 10.1016/j.mtcomm.2023.105547_bib58
  article-title: Research on the preparation and properties of a novel grouting material based on magnesium phosphate cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.04.158
– volume: 33
  start-page: 6951
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib17
  article-title: Recurrent neural network-based prediction of compressive and flexural strength of steel slag mixed concrete
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05470-w
– volume: 244
  year: 2020
  ident: 10.1016/j.mtcomm.2023.105547_bib63
  article-title: Properties of fly ash blended magnesium potassium phosphate cement cured in presence of sulfuric acid
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118349
– volume: 28
  start-page: 30294
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib19
  article-title: Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-12877-y
– volume: 225
  start-page: 234
  year: 2019
  ident: 10.1016/j.mtcomm.2023.105547_bib38
  article-title: Hydration characteristics and microstructure of magnesium phosphate cement in presence of Cu2
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.07.184
– volume: 157
  start-page: 146
  year: 2008
  ident: 10.1016/j.mtcomm.2023.105547_bib43
  article-title: Improvement of ground granulated blast furnace slag on stabilization/solidification of simulated mercury-doped wastes in chemically bonded phosphate ceramics
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.12.110
– volume: 195
  start-page: 140
  year: 2019
  ident: 10.1016/j.mtcomm.2023.105547_bib45
  article-title: Properties of magnesium phosphate cement containing steel slag powder
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.11.085
– volume: 111
  start-page: 116
  year: 2018
  ident: 10.1016/j.mtcomm.2023.105547_bib75
  article-title: Influence of fly ash and metakaolin on the microstructure and compressive strength of magnesium potassium phosphate cement paste
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2018.06.003
– year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib26
  article-title: Gradient boosting-based regression modelling for estimating the time period of the irregular precast concrete structural system with cross bracing
  publication-title: J. King Saud. Univ. Eng. Sci.
– volume: 121
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib53
  article-title: Deflection hardening behaviour of ductile fibre reinforced magnesium phosphate cement-based composite
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2021.104079
– volume: 9
  start-page: 11
  issue: 1–9
  year: 2017
  ident: 10.1016/j.mtcomm.2023.105547_bib85
  article-title: An effective algorithm for hyperparameter optimization of neural networks
  publication-title: IBM J. Res. Dev.
– volume: 308
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib4
  article-title: Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125021
– volume: 14
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib12
  article-title: Artificial neural network-forecasted compression strength of alkaline-activated slag concretes
  publication-title: Sustain
– volume: 123
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib20
  article-title: Predicting the geopolymerization process of fly ash-based geopolymer using deep long short-term memory and machine learning
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2021.104177
– volume: 260
  year: 2020
  ident: 10.1016/j.mtcomm.2023.105547_bib28
  article-title: The role of bauxite and fly-ash on the water stability and microstructural densification of magnesium phosphate cement composites
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119953
– volume: 284
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib60
  article-title: Mix design and rheological properties of magnesium potassium phosphate cement composites based on the 3D printing extrusion system
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.122797
– volume: 209
  start-page: 490
  year: 2017
  ident: 10.1016/j.mtcomm.2023.105547_bib62
  article-title: Potential large-volume beneficial use of low-grade fly ash in magnesia-phosphate cement based materials
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.08.028
– volume: 8
  year: 2019
  ident: 10.1016/j.mtcomm.2023.105547_bib81
  article-title: A state-of-the-art survey on deep learning theory and architectures
  publication-title: Electron
– volume: 168
  start-page: 204
  year: 2019
  ident: 10.1016/j.mtcomm.2023.105547_bib50
  article-title: A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2018.12.065
– volume: 235
  year: 2020
  ident: 10.1016/j.mtcomm.2023.105547_bib54
  article-title: Mechanical strength and flexural parameters analysis of micro-steel, polyvinyl and basalt fibre reinforced magnesium phosphate cement mortars
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117447
– volume: 49
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib74
  article-title: Effects of steel slag on the microstructure and mechanical properties of magnesium phosphate cement
  publication-title: J. Build. Eng.
– volume: 252
  year: 2020
  ident: 10.1016/j.mtcomm.2023.105547_bib51
  article-title: Factors assessment of a repair material for brick masonry loaded cracks using magnesium phosphate cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119098
– volume: 16
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib9
  article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP)
  publication-title: Case Stud. Constr. Mater.
– volume: 32
  start-page: 04020360
  year: 2020
  ident: 10.1016/j.mtcomm.2023.105547_bib55
  article-title: Effects of aluminum silicate on mechanical strength and microstructural improvement of magnesium phosphate cement mortar
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0003413
– volume: 29
  start-page: 1279
  year: 2018
  ident: 10.1016/j.mtcomm.2023.105547_bib84
  article-title: Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic
  publication-title: Constr. Build. Mater.
– volume: 283
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib78
  article-title: Compressive strength development and microstructure of magnesium phosphate cement concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.122585
– volume: 264
  year: 2020
  ident: 10.1016/j.mtcomm.2023.105547_bib57
  article-title: Effect of nano-silica on properties and microstructures of magnesium phosphate cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.120728
– volume: 235
  year: 2020
  ident: 10.1016/j.mtcomm.2023.105547_bib77
  article-title: Preliminary investigation of the hydration mechanism of MgO-SiO2-K2HPO4 cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117471
– volume: 260
  year: 2020
  ident: 10.1016/j.mtcomm.2023.105547_bib37
  article-title: Properties of red mud blended with magnesium phosphate cement paste: feasibility of grouting material preparation
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119704
– volume: 369
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib27
  article-title: Water-resisting performances and mechanisms of magnesium phosphate cement mortars comprising with fly-ash and silica fume
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.133347
– volume: 99
  start-page: 86
  year: 2017
  ident: 10.1016/j.mtcomm.2023.105547_bib31
  article-title: Influence of fly ash on compressive strength and micro-characteristics of magnesium potassium phosphate cement mortars
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2017.05.008
– volume: 90
  start-page: 169
  year: 2018
  ident: 10.1016/j.mtcomm.2023.105547_bib76
  article-title: Properties of fly ash blended magnesium potassium phosphate mortars: effect of the ratio between fly ash and magnesia
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2018.04.002
– volume: 276
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib10
  article-title: Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various machine learning techniques
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2022.108914
– volume: 333
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib34
  article-title: Influence of supplementary materials on the early age hydration reactions and microstructural progress of magnesium phosphate cement matrices
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.130086
– ident: 10.1016/j.mtcomm.2023.105547_bib83
  doi: 10.1109/ASCC.2017.8287531
– volume: 333
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib71
  article-title: Effects of the fly ash and water glass on the mechanical properties and water stability of the high ductile magnesium phosphate cement-based composite
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127395
– volume: 51
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib73
  article-title: Experimental study of magnesium ammonium phosphate cements modified by fly ash and metakaolin
  publication-title: J. Build. Eng.
– volume: 3
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib87
  article-title: Optimization algorithms as training approach with hybrid deep learning methods to develop an ultraviolet index forecasting model
  publication-title: Stoch. Environ. Res. Risk Assess.
– volume: 211
  start-page: 885
  year: 2019
  ident: 10.1016/j.mtcomm.2023.105547_bib39
  article-title: Research progresses on magnesium phosphate cement: a review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.03.304
– volume: 316
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib11
  article-title: Analyzing the mechanical performance of fly ash-based geopolymer concrete with different machine learning techniques
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125785
– volume: 106
  start-page: 415
  year: 2016
  ident: 10.1016/j.mtcomm.2023.105547_bib72
  article-title: Effect of the combination of fly ash and silica fume on water resistance of Magnesium-Potassium Phosphate Cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.12.085
– volume: 316
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib46
  article-title: Preparation and study of magnesium ammonium phosphate cement from waste lithium slag
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128371
– volume: 245
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib21
  article-title: A hybrid CNN-GRU model for predicting soil moisture in maize root zone
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2020.106649
– volume: 65
  start-page: 177
  year: 2014
  ident: 10.1016/j.mtcomm.2023.105547_bib68
  article-title: Experimental study of magnesia and M/P ratio influencing properties of magnesium phosphate cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.04.136
– volume: 235
  year: 2020
  ident: 10.1016/j.mtcomm.2023.105547_bib40
  article-title: Influence of silica fume on the setting time and mechanical properties of a new magnesium phosphate cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117544
– volume: 24
  start-page: 520
  year: 2013
  ident: 10.1016/j.mtcomm.2023.105547_bib36
  article-title: Optimizing the dimensions of magnesium ammonium phosphate to maximize its ammonia uptake ability
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2012.10.001
– volume: 27
  start-page: 11
  year: 2005
  ident: 10.1016/j.mtcomm.2023.105547_bib65
  article-title: Effect of aggregates and water contents on the properties of magnesium phospho-silicate cement
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2004.03.003
– volume: 234
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib80
  article-title: Development and characterization of magnesium phosphate cement based ultra-high performance concrete
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2022.109694
– volume: 288
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib59
  article-title: Influencing mechanism of mineral admixtures on rheological properties of fresh magnesium phosphate cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.123130
– volume: 330
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib90
  article-title: Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127298
– volume: 14
  start-page: 1052
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib92
  article-title: Investigation of feature contribution to shield tunneling-induced settlement using Shapley additive explanations method
  publication-title: J. Rock. Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2022.01.002
– volume: 15
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib70
  article-title: Hydration and properties of magnesium potassium phosphate cement modified by granulated blast-furnace slag: influence of fineness
  publication-title: Materials
– volume: 599
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib89
  article-title: Deep learning hybrid model with Boruta-Random forest optimiser algorithm for streamflow forecasting with climate mode indices, rainfall, and periodicity
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126350
– volume: 271
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib3
  article-title: Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121584
– volume: 27
  start-page: 373
  year: 2015
  ident: 10.1016/j.mtcomm.2023.105547_bib66
  article-title: Effects of fly ash, retarder and calcination of magnesia on properties of magnesia-phosphate cement
  publication-title: Adv. Cem. Res.
  doi: 10.1680/adcr.14.00029
– start-page: 4766
  year: 2017
  ident: 10.1016/j.mtcomm.2023.105547_bib88
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neural Inf. Process. Syst. 2017-Decem
– volume: 123
  start-page: 719
  year: 2016
  ident: 10.1016/j.mtcomm.2023.105547_bib35
  article-title: Experimental study of magnesium phosphate cements modified by metakaolin
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.07.092
– volume: 319
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib8
  article-title: Hybrid deep learning model for concrete incorporating microencapsulated phase change materials
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.126146
– volume: 90
  start-page: 169
  year: 2018
  ident: 10.1016/j.mtcomm.2023.105547_bib30
  article-title: Properties of fly ash blended magnesium potassium phosphate mortars: effect of the ratio between fly ash and magnesia
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2018.04.002
– volume: 314
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib69
  article-title: Influence mechanisms of fly ash in magnesium ammonium phosphate cement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125581
– volume: 227
  year: 2019
  ident: 10.1016/j.mtcomm.2023.105547_bib47
  article-title: Engineering properties and microstructure analysis of magnesium phosphate cement mortar containing bentonite clay
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.08.037
– volume: 63
  year: 2023
  ident: 10.1016/j.mtcomm.2023.105547_bib6
  article-title: Predictive models for concrete properties using machine learning and deep learning approaches: a review
  publication-title: J. Build. Eng.
– year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib82
  article-title: Compressive strength prediction of high-strength concrete using long short-term memory and machine learning algorithms
  publication-title: Buildings
– volume: 36
  start-page: 831
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib18
  article-title: Hybrid deep learning method for a week-ahead evapotranspiration forecasting
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-021-02078-x
– volume: 145
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib1
  article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2021.106449
– volume: 8
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib24
  article-title: Machine learning in concrete science: applications, challenges, and best practices
  publication-title: Npj Comput. Mater.
  doi: 10.1038/s41524-022-00810-x
– volume: 203
  start-page: 589
  year: 2019
  ident: 10.1016/j.mtcomm.2023.105547_bib64
  article-title: Properties of magnesium potassium phosphate cement pastes exposed to water curing: a comparison study on the influences of fly ash and metakaolin
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.01.134
– volume: 302
  year: 2021
  ident: 10.1016/j.mtcomm.2023.105547_bib52
  article-title: A study on magnesium phosphate cement mortars reinforced by polyvinyl alcohol fibers
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.124154
– volume: 13
  start-page: 1
  year: 2020
  ident: 10.1016/j.mtcomm.2023.105547_bib23
  article-title: Mixture optimization of recycled aggregate concrete using hybrid machine learning model
  publication-title: Materials
  doi: 10.3390/ma13194331
– volume: 190
  year: 2023
  ident: 10.1016/j.mtcomm.2023.105547_bib5
  article-title: Modeling the mechanical properties of recycled aggregate concrete using hybrid machine learning algorithms
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2022.106812
– volume: 175
  start-page: 562
  year: 2018
  ident: 10.1016/j.mtcomm.2023.105547_bib16
  article-title: Compressive strength prediction of recycled concrete based on deep learning
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.04.169
– year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib25
  article-title: Machine-Learning-Algorithm to predict the High-Performance concrete compressive strength using multiple data
  publication-title: J. Eng. Des. Technol.
– volume: 22
  start-page: 231
  year: 2018
  ident: 10.1016/j.mtcomm.2023.105547_bib49
  article-title: Properties and reaction mechanisms of magnesium phosphate cement mixed with acetic acid
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-017-1408-x
– volume: 68
  start-page: 1
  year: 2015
  ident: 10.1016/j.mtcomm.2023.105547_bib67
  article-title: Influence of magnesia-to-phosphate molar ratio on microstructures, mechanical properties and thermal conductivity of magnesium potassium phosphate cement paste with large water-to-solid ratio
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2014.10.019
– volume: 831
  year: 2022
  ident: 10.1016/j.mtcomm.2023.105547_bib86
  article-title: New double decomposition deep learning methods for river water level forecasting
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.154722
– volume: 65
  start-page: 695
  year: 2020
  ident: 10.1016/j.mtcomm.2023.105547_bib41
  article-title: Hydration characteristics and microstructure of magnesium phosphate cement in presence of Cu2
  publication-title: Constr. Build. Mater.
– volume: 205
  start-page: 668
  year: 2019
  ident: 10.1016/j.mtcomm.2023.105547_bib44
  article-title: Influence of nickel slag powders on properties of magnesium potassium phosphate cement paste
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.02.014
– volume: 261
  year: 2020
  ident: 10.1016/j.mtcomm.2023.105547_bib56
  article-title: Improvement of physico-mechanical and microstructural properties of magnesium phosphate cement composites comprising with Phosphogypsum
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.121268
SSID ssj0001850494
Score 2.4291635
Snippet Nowadays, hybrid soft computing technics are attracting the scholars of construction materials field due to their high adaptability and prediction performances...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105547
SubjectTerms Hybrid artificial intelligence approaches
Magnesium phosphate cement
Shapely additive explanation
Strength prediction
Supplementary materials
Title Hybrid intelligence models for compressive strength prediction of MPC composites and parametric analysis with SHAP algorithm
URI https://dx.doi.org/10.1016/j.mtcomm.2023.105547
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2352-4928
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001850494
  issn: 2352-4928
  databaseCode: ACRLP
  dateStart: 20140901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 2352-4928
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001850494
  issn: 2352-4928
  databaseCode: AIKHN
  dateStart: 20140901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2352-4928
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001850494
  issn: 2352-4928
  databaseCode: AKRWK
  dateStart: 20140901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe_Eiior1xR68hqab3TyOpViipVJsxd5C9pFaadPSRkHwxzuTh1YQBU9hlxkSJsvM7O433xByxcEr-olwLaaMhA1KAn4wQYy74qrtcNP2HKxGHty54QO_nYhJjXSrWhiEVZa-v_DpubcuZ1qlNVur2aw1YpA78IDhTREEHo_vkAbEH9-vk0bnph_efR21-AJZUPI2c4JZqFMV0eVIr0UG78CqdOZg21uBrVZ-ClJbgae3T_bKjJF2io86IDWTHpL38A1Lrehsi1GT5l1tNhTSUIpI8Rzh-mooloOk0-yJwoye5XUMdJnQwbCbiyFqy2xonGqKPOALbLGlYFiQlVA8qKWjsDOk8Xy6XMNocUTGvetxN7TKRgqWYo6bWbEQGrZFXLtM-soxni1j7XPlgtWkSCTsUoVGhmLmm6BtQNA2gRISrJr4kAEek3q6TM0JoXhOpONAJAGzQZVLqUFaOrFre4nUukmcynCRKknGsdfFPKrQZM9RYe4IzR0V5m4S61NrVZBs_CHvVf8k-rZYIogDv2qe_lvzjOziqECJnZN6tn4xF5CPZPKyXG_47N8_9j8AfTPh9w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9CLKCrW5x68hqab3TyOpVhSbUuhFbyF7CNasWlpoyD4453JQyuIgsfdzJDwZTMzu_lmhpArDlbRT4RrMWUkbFASsIMJctwVV22Hm7bnYDbycOSGd_zmXtzXSLfKhUFaZWn7C5ueW-typlWi2VrOZq0Jg9iBBwz_FIHj8fgWaXDhePB1Njr923D0ddTiC6yCkreZE8xCnSqJLmd6zTO4B2alMwfb3gpstfKTk9pwPL09sltGjLRTPNQ-qZn0gLyHb5hqRWcbFTVp3tVmTSEMpcgUzxmur4ZiOkj6kD1SmNGzPI-BLhI6HHdzMWRtmTWNU02xDvgcW2wpGBbFSige1NJJ2BnT-PlhsYLR_JBMe9fTbmiVjRQsxRw3s2IhNGyLuHaZ9JVjPFvG2ufKBdSkSCTsUoXGCsXMN0HbgKBtAiUkoJr4EAEekXq6SM0xoXhOpONAJAGzQZVLqUFaOrFre4nUukmcCrhIlUXGsdfFc1SxyZ6iAu4I4Y4KuJvE-tRaFkU2_pD3qncSfVssEfiBXzVP_q15SbbD6XAQDfqj21Oyg1cKxtgZqWerF3MOsUkmL8q19wECmeM1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+intelligence+models+for+compressive+strength+prediction+of+MPC+composites+and+parametric+analysis+with+SHAP+algorithm&rft.jtitle=Materials+today+communications&rft.au=Haque%2C+M.+Aminul&rft.au=Chen%2C+Bing&rft.au=Kashem%2C+Abul&rft.au=Qureshi%2C+Tanvir&rft.date=2023-06-01&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=35&rft.spage=105547&rft_id=info:doi/10.1016%2Fj.mtcomm.2023.105547&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtcomm_2023_105547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon