Hybrid intelligence models for compressive strength prediction of MPC composites and parametric analysis with SHAP algorithm
Nowadays, hybrid soft computing technics are attracting the scholars of construction materials field due to their high adaptability and prediction performances to data information. Hence, the current research aims to predict the compressive strength of magnesium phosphate cement (MPC) composites usi...
Saved in:
| Published in | Materials today communications Vol. 35; p. 105547 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.06.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2352-4928 2352-4928 |
| DOI | 10.1016/j.mtcomm.2023.105547 |
Cover
| Abstract | Nowadays, hybrid soft computing technics are attracting the scholars of construction materials field due to their high adaptability and prediction performances to data information. Hence, the current research aims to predict the compressive strength of magnesium phosphate cement (MPC) composites using the deep learning and machine learning based hybrid models, which is rarely seen in the literature. Data was collected from published papers, where 70% data used for training the models and 30% for testing stage. Four different hybrid models like CNN-LSTM, CNN-GRU, DTR-RFR and GBR-RFR were formulated to achieve the goals by comparing their forecasting performances with statistical parameters. Additionally, governing input variable parameters and prediction process explanation were also interpreted by SHAP algorithm under hybrid models. As is observed, all selected hybrid models presented the good corroboration to output CS data with higher accuracy results. Besides, CNN-LSTM and GBR-RFR models exhibited the superior fitness (R2 ≈ 0.99) to strength properties in relation to other three models at both phases. Average error ranges were observed very condense to ± 5%. Moreover, testing age was observed as the most influential variable to model outputs. Furthermore, it was exposed that CNN-LSTM model can well interpret the interactions of inputs to outputs and inner-working process of prediction, whereas GBR-RFR describes the dependence plot at decent level to elucidate the connections among the inputs for model outputs. However, the proposed hybrid approaches of the research might be a potential solution to optimize the mix design of MPC mixtures containing supplementary cementitious materials (SCMs) and well predict the strength characteristics of MPC matrices for real field applications by engineering practitioners.
[Display omitted]
•Hybrid intelligence approaches were employed to predict strength properties.•Literature data was gathered on MPC matrices with inputs and outputs parameters.•Five hybrid models were formulated to justify their predicting accuracy.•CNN-LSTM and GBR-RFR displayed healthy performances.•Testing age, FA and slag were revealed as influential inputs to model outputs. |
|---|---|
| AbstractList | Nowadays, hybrid soft computing technics are attracting the scholars of construction materials field due to their high adaptability and prediction performances to data information. Hence, the current research aims to predict the compressive strength of magnesium phosphate cement (MPC) composites using the deep learning and machine learning based hybrid models, which is rarely seen in the literature. Data was collected from published papers, where 70% data used for training the models and 30% for testing stage. Four different hybrid models like CNN-LSTM, CNN-GRU, DTR-RFR and GBR-RFR were formulated to achieve the goals by comparing their forecasting performances with statistical parameters. Additionally, governing input variable parameters and prediction process explanation were also interpreted by SHAP algorithm under hybrid models. As is observed, all selected hybrid models presented the good corroboration to output CS data with higher accuracy results. Besides, CNN-LSTM and GBR-RFR models exhibited the superior fitness (R2 ≈ 0.99) to strength properties in relation to other three models at both phases. Average error ranges were observed very condense to ± 5%. Moreover, testing age was observed as the most influential variable to model outputs. Furthermore, it was exposed that CNN-LSTM model can well interpret the interactions of inputs to outputs and inner-working process of prediction, whereas GBR-RFR describes the dependence plot at decent level to elucidate the connections among the inputs for model outputs. However, the proposed hybrid approaches of the research might be a potential solution to optimize the mix design of MPC mixtures containing supplementary cementitious materials (SCMs) and well predict the strength characteristics of MPC matrices for real field applications by engineering practitioners.
[Display omitted]
•Hybrid intelligence approaches were employed to predict strength properties.•Literature data was gathered on MPC matrices with inputs and outputs parameters.•Five hybrid models were formulated to justify their predicting accuracy.•CNN-LSTM and GBR-RFR displayed healthy performances.•Testing age, FA and slag were revealed as influential inputs to model outputs. |
| ArticleNumber | 105547 |
| Author | Ahmed, Abul Abrar Masrur Chen, Bing Kashem, Abul Qureshi, Tanvir Haque, M. Aminul |
| Author_xml | – sequence: 1 givenname: M. Aminul surname: Haque fullname: Haque, M. Aminul organization: Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China – sequence: 2 givenname: Bing orcidid: 0000-0003-2862-3392 surname: Chen fullname: Chen, Bing email: hntchen@sjtu.edu.cn organization: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China – sequence: 3 givenname: Abul surname: Kashem fullname: Kashem, Abul organization: Department of Civil Engineering, Leading University, Sylhet, Bangladesh – sequence: 4 givenname: Tanvir surname: Qureshi fullname: Qureshi, Tanvir organization: Department of Engineering Design and Mathematics, UWE Bristol, United Kingdom – sequence: 5 givenname: Abul Abrar Masrur surname: Ahmed fullname: Ahmed, Abul Abrar Masrur organization: Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia |
| BookMark | eNqFkMtKAzEUhoMoWGvfwEVeoDWTy3TGhSBFraAo6D5kkjP1lJlJSYJS8OFNrQtxoatz4Xw_h--EHA5-AELOCjYrWFGer2d9sr7vZ5xxkVdKyfkBGXGh-FTWvDr80R-TSYxrxlhRKSZrOSIfy20T0FEcEnQdrmCwQHvvoIu09YHm5E2AGPENaEwBhlV6pXnj0Cb0A_UtfXhafJ35iAkiNYOjGxNMDymgzaPpthEjfcdMPi-vnqjpVj7kqT8lR63pIky-65i83Fy_LJbT-8fbu8XV_dRyUaapUcoVpZSu5E1lBcxZY1wlbSnmslFtIyqhXK1qwSuoC8iHDGqrGi7mbVVzMSYX-1gbfIwBWm0xmd37KRjsdMH0zqRe671JvTOp9yYzLH_Bm4C9Cdv_sMs9lkXCG0LQ0eJOrsMANmnn8e-AT6bflB4 |
| CitedBy_id | crossref_primary_10_1007_s42107_023_00847_3 crossref_primary_10_1007_s42107_024_01219_1 crossref_primary_10_1038_s41598_024_68276_z crossref_primary_10_1038_s41598_024_73713_0 crossref_primary_10_4028_p_8SbAEJ crossref_primary_10_1007_s42107_024_01064_2 crossref_primary_10_1007_s41939_024_00651_9 crossref_primary_10_1007_s41939_024_00476_6 crossref_primary_10_1007_s40996_024_01569_5 crossref_primary_10_3390_buildings14092894 crossref_primary_10_1007_s42107_023_00980_z crossref_primary_10_1038_s41598_024_66957_3 crossref_primary_10_1007_s41024_024_00445_z crossref_primary_10_1007_s42107_023_00922_9 crossref_primary_10_1080_10298436_2023_2257852 crossref_primary_10_3390_polym15193962 crossref_primary_10_1007_s40996_024_01594_4 crossref_primary_10_1007_s42107_024_01153_2 crossref_primary_10_1038_s41598_024_73498_2 crossref_primary_10_1007_s44242_024_00042_w |
| Cites_doi | 10.1016/S0008-8846(98)00230-0 10.3390/en14216958 10.1016/j.conbuildmat.2018.09.143 10.1016/j.conbuildmat.2019.117795 10.1016/j.matdes.2008.04.005 10.3389/frai.2020.00004 10.1016/j.conbuildmat.2022.127490 10.1016/j.conbuildmat.2021.122264 10.1016/j.conbuildmat.2013.05.103 10.1016/j.cemconres.2015.01.015 10.1016/j.cmpb.2021.106584 10.1016/j.conbuildmat.2019.04.158 10.1007/s00521-020-05470-w 10.1016/j.conbuildmat.2020.118349 10.1007/s11356-021-12877-y 10.1016/j.conbuildmat.2019.07.184 10.1016/j.jhazmat.2007.12.110 10.1016/j.conbuildmat.2018.11.085 10.1016/j.cemconres.2018.06.003 10.1016/j.cemconcomp.2021.104079 10.1016/j.conbuildmat.2021.125021 10.1016/j.cemconcomp.2021.104177 10.1016/j.conbuildmat.2020.119953 10.1016/j.conbuildmat.2021.122797 10.1016/j.fuel.2017.08.028 10.1016/j.compositesb.2018.12.065 10.1016/j.conbuildmat.2019.117447 10.1016/j.conbuildmat.2020.119098 10.1061/(ASCE)MT.1943-5533.0003413 10.1016/j.conbuildmat.2021.122585 10.1016/j.conbuildmat.2020.120728 10.1016/j.conbuildmat.2019.117471 10.1016/j.conbuildmat.2020.119704 10.1016/j.jclepro.2022.133347 10.1016/j.cemconres.2017.05.008 10.1016/j.cemconcomp.2018.04.002 10.1016/j.engfracmech.2022.108914 10.1016/j.jclepro.2021.130086 10.1109/ASCC.2017.8287531 10.1016/j.conbuildmat.2022.127395 10.1016/j.conbuildmat.2019.03.304 10.1016/j.conbuildmat.2021.125785 10.1016/j.conbuildmat.2015.12.085 10.1016/j.jclepro.2021.128371 10.1016/j.agwat.2020.106649 10.1016/j.conbuildmat.2014.04.136 10.1016/j.conbuildmat.2019.117544 10.1016/j.apt.2012.10.001 10.1016/j.cemconcomp.2004.03.003 10.1016/j.compositesb.2022.109694 10.1016/j.conbuildmat.2021.123130 10.1016/j.conbuildmat.2022.127298 10.1016/j.jrmge.2022.01.002 10.1016/j.jhydrol.2021.126350 10.1016/j.conbuildmat.2020.121584 10.1680/adcr.14.00029 10.1016/j.conbuildmat.2016.07.092 10.1016/j.conbuildmat.2021.126146 10.1016/j.conbuildmat.2021.125581 10.1016/j.conbuildmat.2019.08.037 10.1007/s00477-021-02078-x 10.1016/j.cemconres.2021.106449 10.1038/s41524-022-00810-x 10.1016/j.conbuildmat.2019.01.134 10.1016/j.conbuildmat.2021.124154 10.3390/ma13194331 10.1016/j.resconrec.2022.106812 10.1016/j.conbuildmat.2018.04.169 10.1007/s12205-017-1408-x 10.1016/j.cemconres.2014.10.019 10.1016/j.scitotenv.2022.154722 10.1016/j.conbuildmat.2019.02.014 10.1016/j.jclepro.2020.121268 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.mtcomm.2023.105547 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2352-4928 |
| ExternalDocumentID | 10_1016_j_mtcomm_2023_105547 S2352492823002374 |
| GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABXZ AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE ROL SPC SPCBC SSM SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS |
| ID | FETCH-LOGICAL-c236t-a55d1644d62b8c3e70bad84c6374b5fb3835d959328e91e44d0e9c5b237f8923 |
| IEDL.DBID | AIKHN |
| ISSN | 2352-4928 |
| IngestDate | Wed Oct 01 02:49:33 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Fri Feb 23 02:34:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Supplementary materials Strength prediction Shapely additive explanation Magnesium phosphate cement Hybrid artificial intelligence approaches |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c236t-a55d1644d62b8c3e70bad84c6374b5fb3835d959328e91e44d0e9c5b237f8923 |
| ORCID | 0000-0003-2862-3392 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_mtcomm_2023_105547 crossref_primary_10_1016_j_mtcomm_2023_105547 elsevier_sciencedirect_doi_10_1016_j_mtcomm_2023_105547 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2023 2023-06-00 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Materials today communications |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Emmert-Streib, Yang, Feng, Tripathi, Dehmer (bib14) 2020; 3 Riaz, Chen, Yu (bib32) 2019; 168 Xu, Lothenbach, Ma (bib30) 2018; 90 Ekanayake, Meddage, Rathnayake (bib9) 2022; 16 Yu, Zhou, Cheng, Yang (bib78) 2021; 283 Qin, Dai, Ma, Dai, Li, Jia, Qian (bib80) 2022; 234 Wu, Zhou (bib90) 2022; 330 Topçu, Karakurt, Saridemir (bib2) 2008; 29 Xu, Ma, Shao, Li, Lothenbach (bib31) 2017; 99 Gupta, Sachdeva (bib17) 2021; 33 Kamath, Prashanth, Kumar, Tantri (bib25) 2022 Xu, Ma, Li (bib67) 2015; 68 Haque, Chen, Liu (bib28) 2020; 260 Qi, Changjuan, Jianming, Linlin, Xuancheng, Xuancheng (bib44) 2019; 205 Feng, Liang, Pang, Zhao, Wang, Ahmed Sheikha (bib71) 2022; 333 Xie, Lin, Pan, Ji (bib77) 2020; 235 Zhang, Li, Li, Liu, Gao, Qi (bib37) 2020; 260 Ruan, Ma, Liao, Ma, Zhu, Zhou (bib74) 2022; 49 Feng, Li, Wang, Liu, Zhang, Gao (bib53) 2021; 121 Masuda, Ogino, Mukai (bib36) 2013; 24 Yu, Zhang, Xu, Dong, Zhangzhong (bib21) 2021; 245 R. Xie, Y. Ding, K. Hao, L. Chen, T. Wang, Using gated recurrence units neural network for prediction of melt spinning properties, 2017 Asian Control Conf. ASCC 2017. 2018-Janua (2018) 2286–2291. Aykut Bilginer, Erdoğan (bib61) 2021; 277 Zheng, Ji, Wang, Sun, Lin, Hossain (bib72) 2016; 106 Song, Ahmad, Farooq, Ostrowski, Maślak, Czarnecki, Aslam (bib4) 2021; 308 Man, Aminul Haque, Chen (bib47) 2019; 227 Yang, Wu (bib48) 1999; 29 Aminul Haque, Chen, Liu, Farasat Ali Shah, Ahmad (bib56) 2020; 261 Ding, Li (bib65) 2005; 27 Liu, Ma, Zhang, Han (bib70) 2022; 15 Tanyildizi, Marani, Türk, Nehdi (bib8) 2022; 319 Dong, Ahmad, Chen, Munir, Kazmi (bib46) 2021; 316 Jin, Chen, Chen (bib51) 2020; 252 Ahmed, Deo, Feng, Ghahramani, Raj, Yin, Yang (bib18) 2022; 36 Haque, Chen, Maierdan (bib34) 2022; 333 Liu, Chen (bib58) 2019; 214 Dehestani, Kazemi, Abdi, Nitka (bib10) 2022; 276 . Yang, Liu, Wang, Liu (bib63) 2020; 244 Ahmad, Chen (bib79) 2020; 237 Li, Chen (bib29) 2013; 47 Nohara, Matsumoto, Soejima, Nakashima (bib91) 2022; 214 Lu, Wang, Han, Ji (bib73) 2022; 51 Peng, Unluer (bib5) 2023; 190 Deng, He, Zhou, Yu, Cheng, Wu (bib16) 2018; 175 Latif (bib19) 2021; 28 Zhao, Chen, Xu, Li, Huang, Yang, Zhao, Lu (bib60) 2021; 284 Peng, Unluer (bib11) 2022; 316 Liu, Qian, Zhou, Li, Xu, Qin (bib43) 2008; 157 Diaz, Fokoue-Nkoutche, Nannicini, Samulowitz (bib85) 2017; 9 Aminul Haque, Chen, Riaz Ahmad, farasat ali shah (bib54) 2020; 235 Li, Yoon, Zhang, Rajabipour, Srubar, Dabo, Radlińska (bib24) 2022; 8 Jiang, Ahmad, Chen (bib45) 2019; 195 Mateus, Mendes, Farinha, Assis, Cardoso (bib22) 2021; 14 Ahmad, Chen, Yu (bib50) 2019; 168 Alzubaidi, Zhang, Humaidi, Al-Dujaili, Duan, Al-Shamma, Santamaría, Fadhel, Al-Amidie, Farhan (bib15) 2021 Tang, Lee, Amran, Fediuk, Vatin, Kueh, Lee (bib12) 2022; 14 Ahmad, Chen (bib33) 2018; 190 Ma, Liu, Zhou, Jiang, Ren, He (bib59) 2021; 288 Masrur Ahmed, Deo, Feng, Ghahramani, Raj, Yin, Yang (bib89) 2021; 599 Tanyildizi (bib20) 2021; 123 Asteris, Skentou, Bardhan, Samui, Pilakoutas (bib1) 2021; 145 Xin, Zhenyu, Tao, Jie, Zhongyuan, Shuzhen, Feng, Xiaolong (bib41) 2020; 65 Dong, Ahmad, Chen, Munir, Kazmi (bib52) 2021; 302 Haque, Pen, Chen (bib55) 2020; 32 Li, Sun, Li, Shi (bib66) 2015; 27 Topcu, Karakurt, Saridemir (bib84) 2018; 29 Mo, Lv, Deng, Qian (bib75) 2018; 111 Ahmed, Deo, Ghahramani, Feng, Raj, Yin, Yang (bib86) 2022; 831 Lv, Huang, Mo, Deng, Qian, Wang (bib64) 2019; 203 Li, Sun, Chen (bib68) 2014; 65 Ahmed, Deo, Ghahramani, Raj, Feng, Yin, Yang (bib13) 2021 Dahiya, Saini, Chalak (bib26) 2021 He, Lai, Yan, Wu, Lu, Lv, Li, Fan (bib38) 2019; 225 Liu, Chen, Qin (bib57) 2020; 264 Mohtasham Moein, Saradar, Rahmati, Ghasemzadeh Mousavinejad, Bristow, Aramali, Karakouzian (bib6) 2023; 63 Nunez, Marani, Nehdi (bib23) 2020; 13 Xu, Lothenbach, Ma (bib76) 2018; 90 Lundberg, Lee (bib88) 2017 Ahmed, Ahmed, Saha, Ahmed, Sutradhar (bib87) 2022; 3 Çalışkan, Demirhan, Tekin (bib7) 2022; 335 Xu, Lin, Pan, Ji, Liang, Zhang (bib40) 2020; 235 Kannangara, Zhou, Ding, Hong (bib92) 2022; 14 Haque, Chen, Li (bib27) 2022; 369 Gardner, Bernal, Walling, Corkhill, Provis, Hyatt (bib42) 2015; 74 Li, sheng Ji, dong Huang, zhan Xu, hong Yan (bib49) 2018; 22 Alom, Taha, Yakopcic, Westberg, Sidike, Nasrin, Hasan, Van Essen, Awwal, Asari (bib81) 2019; 8 Haque, Chen (bib39) 2019; 211 Liu, Chen, Dong, Wang, Xing (bib69) 2022; 314 Sevim, Bilgic, Cansiz, Ozturk, Atis (bib3) 2021; 271 Lu, Chen (bib35) 2016; 123 Liao, Ma, Sun, Huang, Wang (bib62) 2017; 209 Chen, Li, Wu, Zhou (bib82) 2022 Xu (10.1016/j.mtcomm.2023.105547_bib31) 2017; 99 Song (10.1016/j.mtcomm.2023.105547_bib4) 2021; 308 Dahiya (10.1016/j.mtcomm.2023.105547_bib26) 2021 Li (10.1016/j.mtcomm.2023.105547_bib29) 2013; 47 10.1016/j.mtcomm.2023.105547_bib83 Emmert-Streib (10.1016/j.mtcomm.2023.105547_bib14) 2020; 3 Mohtasham Moein (10.1016/j.mtcomm.2023.105547_bib6) 2023; 63 Haque (10.1016/j.mtcomm.2023.105547_bib55) 2020; 32 Xin (10.1016/j.mtcomm.2023.105547_bib41) 2020; 65 Ahmed (10.1016/j.mtcomm.2023.105547_bib87) 2022; 3 Mo (10.1016/j.mtcomm.2023.105547_bib75) 2018; 111 Ekanayake (10.1016/j.mtcomm.2023.105547_bib9) 2022; 16 Lv (10.1016/j.mtcomm.2023.105547_bib64) 2019; 203 Jin (10.1016/j.mtcomm.2023.105547_bib51) 2020; 252 Tanyildizi (10.1016/j.mtcomm.2023.105547_bib20) 2021; 123 Wu (10.1016/j.mtcomm.2023.105547_bib90) 2022; 330 Aykut Bilginer (10.1016/j.mtcomm.2023.105547_bib61) 2021; 277 Li (10.1016/j.mtcomm.2023.105547_bib68) 2014; 65 Aminul Haque (10.1016/j.mtcomm.2023.105547_bib54) 2020; 235 Topçu (10.1016/j.mtcomm.2023.105547_bib2) 2008; 29 Lu (10.1016/j.mtcomm.2023.105547_bib73) 2022; 51 Xu (10.1016/j.mtcomm.2023.105547_bib40) 2020; 235 Qi (10.1016/j.mtcomm.2023.105547_bib44) 2019; 205 Deng (10.1016/j.mtcomm.2023.105547_bib16) 2018; 175 Dehestani (10.1016/j.mtcomm.2023.105547_bib10) 2022; 276 Haque (10.1016/j.mtcomm.2023.105547_bib28) 2020; 260 Xu (10.1016/j.mtcomm.2023.105547_bib76) 2018; 90 Yang (10.1016/j.mtcomm.2023.105547_bib63) 2020; 244 Dong (10.1016/j.mtcomm.2023.105547_bib46) 2021; 316 Xu (10.1016/j.mtcomm.2023.105547_bib67) 2015; 68 Xie (10.1016/j.mtcomm.2023.105547_bib77) 2020; 235 Ahmad (10.1016/j.mtcomm.2023.105547_bib50) 2019; 168 Chen (10.1016/j.mtcomm.2023.105547_bib82) 2022 Jiang (10.1016/j.mtcomm.2023.105547_bib45) 2019; 195 Liu (10.1016/j.mtcomm.2023.105547_bib69) 2022; 314 Ruan (10.1016/j.mtcomm.2023.105547_bib74) 2022; 49 Yu (10.1016/j.mtcomm.2023.105547_bib21) 2021; 245 Liu (10.1016/j.mtcomm.2023.105547_bib70) 2022; 15 Yu (10.1016/j.mtcomm.2023.105547_bib78) 2021; 283 Ma (10.1016/j.mtcomm.2023.105547_bib59) 2021; 288 Liao (10.1016/j.mtcomm.2023.105547_bib62) 2017; 209 Topcu (10.1016/j.mtcomm.2023.105547_bib84) 2018; 29 Feng (10.1016/j.mtcomm.2023.105547_bib71) 2022; 333 Li (10.1016/j.mtcomm.2023.105547_bib24) 2022; 8 Liu (10.1016/j.mtcomm.2023.105547_bib57) 2020; 264 Kamath (10.1016/j.mtcomm.2023.105547_bib25) 2022 Alom (10.1016/j.mtcomm.2023.105547_bib81) 2019; 8 Man (10.1016/j.mtcomm.2023.105547_bib47) 2019; 227 Ahmad (10.1016/j.mtcomm.2023.105547_bib79) 2020; 237 Tang (10.1016/j.mtcomm.2023.105547_bib12) 2022; 14 Masuda (10.1016/j.mtcomm.2023.105547_bib36) 2013; 24 Ding (10.1016/j.mtcomm.2023.105547_bib65) 2005; 27 Mateus (10.1016/j.mtcomm.2023.105547_bib22) 2021; 14 Yang (10.1016/j.mtcomm.2023.105547_bib48) 1999; 29 Zhao (10.1016/j.mtcomm.2023.105547_bib60) 2021; 284 Li (10.1016/j.mtcomm.2023.105547_bib66) 2015; 27 Nohara (10.1016/j.mtcomm.2023.105547_bib91) 2022; 214 Sevim (10.1016/j.mtcomm.2023.105547_bib3) 2021; 271 Aminul Haque (10.1016/j.mtcomm.2023.105547_bib56) 2020; 261 Riaz (10.1016/j.mtcomm.2023.105547_bib32) 2019; 168 Zheng (10.1016/j.mtcomm.2023.105547_bib72) 2016; 106 Li (10.1016/j.mtcomm.2023.105547_bib49) 2018; 22 Zhang (10.1016/j.mtcomm.2023.105547_bib37) 2020; 260 He (10.1016/j.mtcomm.2023.105547_bib38) 2019; 225 Gardner (10.1016/j.mtcomm.2023.105547_bib42) 2015; 74 Diaz (10.1016/j.mtcomm.2023.105547_bib85) 2017; 9 Tanyildizi (10.1016/j.mtcomm.2023.105547_bib8) 2022; 319 Ahmad (10.1016/j.mtcomm.2023.105547_bib33) 2018; 190 Masrur Ahmed (10.1016/j.mtcomm.2023.105547_bib89) 2021; 599 Ahmed (10.1016/j.mtcomm.2023.105547_bib18) 2022; 36 Haque (10.1016/j.mtcomm.2023.105547_bib39) 2019; 211 Nunez (10.1016/j.mtcomm.2023.105547_bib23) 2020; 13 Haque (10.1016/j.mtcomm.2023.105547_bib27) 2022; 369 Lu (10.1016/j.mtcomm.2023.105547_bib35) 2016; 123 Alzubaidi (10.1016/j.mtcomm.2023.105547_bib15) 2021 Asteris (10.1016/j.mtcomm.2023.105547_bib1) 2021; 145 Liu (10.1016/j.mtcomm.2023.105547_bib58) 2019; 214 Dong (10.1016/j.mtcomm.2023.105547_bib52) 2021; 302 Ahmed (10.1016/j.mtcomm.2023.105547_bib86) 2022; 831 Latif (10.1016/j.mtcomm.2023.105547_bib19) 2021; 28 Peng (10.1016/j.mtcomm.2023.105547_bib11) 2022; 316 Xu (10.1016/j.mtcomm.2023.105547_bib30) 2018; 90 Lundberg (10.1016/j.mtcomm.2023.105547_bib88) 2017 Ahmed (10.1016/j.mtcomm.2023.105547_bib13) 2021 Çalışkan (10.1016/j.mtcomm.2023.105547_bib7) 2022; 335 Feng (10.1016/j.mtcomm.2023.105547_bib53) 2021; 121 Gupta (10.1016/j.mtcomm.2023.105547_bib17) 2021; 33 Peng (10.1016/j.mtcomm.2023.105547_bib5) 2023; 190 Qin (10.1016/j.mtcomm.2023.105547_bib80) 2022; 234 Haque (10.1016/j.mtcomm.2023.105547_bib34) 2022; 333 Liu (10.1016/j.mtcomm.2023.105547_bib43) 2008; 157 Kannangara (10.1016/j.mtcomm.2023.105547_bib92) 2022; 14 |
| References_xml | – volume: 13 start-page: 1 year: 2020 end-page: 24 ident: bib23 article-title: Mixture optimization of recycled aggregate concrete using hybrid machine learning model publication-title: Materials – volume: 14 start-page: 1 year: 2021 end-page: 21 ident: bib22 article-title: Comparing LSTM and GRU models to predict the condition of a pulp paper press publication-title: Energies – volume: 369 year: 2022 ident: bib27 article-title: Water-resisting performances and mechanisms of magnesium phosphate cement mortars comprising with fly-ash and silica fume publication-title: J. Clean. Prod. – reference: R. Xie, Y. Ding, K. Hao, L. Chen, T. Wang, Using gated recurrence units neural network for prediction of melt spinning properties, 2017 Asian Control Conf. ASCC 2017. 2018-Janua (2018) 2286–2291. – volume: 3 year: 2022 ident: bib87 article-title: Optimization algorithms as training approach with hybrid deep learning methods to develop an ultraviolet index forecasting model publication-title: Stoch. Environ. Res. Risk Assess. – volume: 168 start-page: 204 year: 2019 end-page: 217 ident: bib50 article-title: A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash publication-title: Compos. Part B Eng. – year: 2021 ident: bib15 article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions publication-title: Springe Int. Publ. – volume: 333 year: 2022 ident: bib34 article-title: Influence of supplementary materials on the early age hydration reactions and microstructural progress of magnesium phosphate cement matrices publication-title: J. Clean. Prod. – volume: 234 year: 2022 ident: bib80 article-title: Development and characterization of magnesium phosphate cement based ultra-high performance concrete publication-title: Compos. Part B Eng. – volume: 111 start-page: 116 year: 2018 end-page: 129 ident: bib75 article-title: Influence of fly ash and metakaolin on the microstructure and compressive strength of magnesium potassium phosphate cement paste publication-title: Cem. Concr. Res. – volume: 74 start-page: 78 year: 2015 end-page: 87 ident: bib42 article-title: Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag publication-title: Cem. Concr. Res. – volume: 319 year: 2022 ident: bib8 article-title: Hybrid deep learning model for concrete incorporating microencapsulated phase change materials publication-title: Constr. Build. Mater. – volume: 68 start-page: 1 year: 2015 end-page: 9 ident: bib67 article-title: Influence of magnesia-to-phosphate molar ratio on microstructures, mechanical properties and thermal conductivity of magnesium potassium phosphate cement paste with large water-to-solid ratio publication-title: Cem. Concr. Res. – volume: 123 year: 2021 ident: bib20 article-title: Predicting the geopolymerization process of fly ash-based geopolymer using deep long short-term memory and machine learning publication-title: Cem. Concr. Compos. – volume: 3 start-page: 1 year: 2020 end-page: 23 ident: bib14 article-title: An introductory review of deep learning for prediction models with big data publication-title: Front. Artif. Intell. – volume: 261 year: 2020 ident: bib56 article-title: Improvement of physico-mechanical and microstructural properties of magnesium phosphate cement composites comprising with Phosphogypsum publication-title: J. Clean. Prod. – volume: 227 year: 2019 ident: bib47 article-title: Engineering properties and microstructure analysis of magnesium phosphate cement mortar containing bentonite clay publication-title: Constr. Build. Mater. – volume: 65 start-page: 177 year: 2014 end-page: 183 ident: bib68 article-title: Experimental study of magnesia and M/P ratio influencing properties of magnesium phosphate cement publication-title: Constr. Build. Mater. – volume: 599 year: 2021 ident: bib89 article-title: Deep learning hybrid model with Boruta-Random forest optimiser algorithm for streamflow forecasting with climate mode indices, rainfall, and periodicity publication-title: J. Hydrol. – volume: 244 year: 2020 ident: bib63 article-title: Properties of fly ash blended magnesium potassium phosphate cement cured in presence of sulfuric acid publication-title: Constr. Build. Mater. – volume: 288 year: 2021 ident: bib59 article-title: Influencing mechanism of mineral admixtures on rheological properties of fresh magnesium phosphate cement publication-title: Constr. Build. Mater. – volume: 284 year: 2021 ident: bib60 article-title: Mix design and rheological properties of magnesium potassium phosphate cement composites based on the 3D printing extrusion system publication-title: Constr. Build. Mater. – volume: 145 year: 2021 ident: bib1 article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models publication-title: Cem. Concr. Res. – volume: 9 start-page: 11 year: 2017 ident: bib85 article-title: An effective algorithm for hyperparameter optimization of neural networks publication-title: IBM J. Res. Dev. – volume: 260 year: 2020 ident: bib37 article-title: Properties of red mud blended with magnesium phosphate cement paste: feasibility of grouting material preparation publication-title: Constr. Build. Mater. – volume: 277 year: 2021 ident: bib61 article-title: Effect of mixture proportioning on the strength and mineralogy of magnesium phosphate cements publication-title: Constr. Build. Mater. – volume: 333 year: 2022 ident: bib71 article-title: Effects of the fly ash and water glass on the mechanical properties and water stability of the high ductile magnesium phosphate cement-based composite publication-title: Constr. Build. Mater. – year: 2021 ident: bib13 article-title: LSTM integrated with Boruta-random forest optimiser for soil moisture estimation under RCP4.5 and RCP8.5 global warming scenarios publication-title: Springe Berl. Heidelb. – volume: 22 start-page: 231 year: 2018 end-page: 235 ident: bib49 article-title: Properties and reaction mechanisms of magnesium phosphate cement mixed with acetic acid publication-title: KSCE J. Civ. Eng. – volume: 211 start-page: 885 year: 2019 end-page: 898 ident: bib39 article-title: Research progresses on magnesium phosphate cement: a review publication-title: Constr. Build. Mater. – volume: 335 year: 2022 ident: bib7 article-title: Comparison of different machine learning methods for estimating compressive strength of mortars publication-title: Constr. Build. Mater. – volume: 121 year: 2021 ident: bib53 article-title: Deflection hardening behaviour of ductile fibre reinforced magnesium phosphate cement-based composite publication-title: Cem. Concr. Compos. – volume: 302 year: 2021 ident: bib52 article-title: A study on magnesium phosphate cement mortars reinforced by polyvinyl alcohol fibers publication-title: Constr. Build. Mater. – volume: 264 year: 2020 ident: bib57 article-title: Effect of nano-silica on properties and microstructures of magnesium phosphate cement publication-title: Constr. Build. Mater. – volume: 16 year: 2022 ident: bib9 article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP) publication-title: Case Stud. Constr. Mater. – volume: 252 year: 2020 ident: bib51 article-title: Factors assessment of a repair material for brick masonry loaded cracks using magnesium phosphate cement publication-title: Constr. Build. Mater. – volume: 235 year: 2020 ident: bib54 article-title: Mechanical strength and flexural parameters analysis of micro-steel, polyvinyl and basalt fibre reinforced magnesium phosphate cement mortars publication-title: Constr. Build. Mater. – volume: 24 start-page: 520 year: 2013 end-page: 524 ident: bib36 article-title: Optimizing the dimensions of magnesium ammonium phosphate to maximize its ammonia uptake ability publication-title: Adv. Powder Technol. – volume: 106 start-page: 415 year: 2016 end-page: 421 ident: bib72 article-title: Effect of the combination of fly ash and silica fume on water resistance of Magnesium-Potassium Phosphate Cement publication-title: Constr. Build. Mater. – volume: 15 year: 2022 ident: bib70 article-title: Hydration and properties of magnesium potassium phosphate cement modified by granulated blast-furnace slag: influence of fineness publication-title: Materials – volume: 29 start-page: 1279 year: 2018 end-page: 1286 ident: bib84 article-title: Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic publication-title: Constr. Build. Mater. – volume: 276 year: 2022 ident: bib10 article-title: Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various machine learning techniques publication-title: Eng. Fract. Mech. – volume: 175 start-page: 562 year: 2018 end-page: 569 ident: bib16 article-title: Compressive strength prediction of recycled concrete based on deep learning publication-title: Constr. Build. Mater. – volume: 90 start-page: 169 year: 2018 end-page: 177 ident: bib30 article-title: Properties of fly ash blended magnesium potassium phosphate mortars: effect of the ratio between fly ash and magnesia publication-title: Cem. Concr. Compos. – volume: 33 start-page: 6951 year: 2021 end-page: 6963 ident: bib17 article-title: Recurrent neural network-based prediction of compressive and flexural strength of steel slag mixed concrete publication-title: Neural Comput. Appl. – volume: 235 year: 2020 ident: bib77 article-title: Preliminary investigation of the hydration mechanism of MgO-SiO2-K2HPO4 cement publication-title: Constr. Build. Mater. – volume: 316 year: 2021 ident: bib46 article-title: Preparation and study of magnesium ammonium phosphate cement from waste lithium slag publication-title: J. Clean. Prod. – volume: 831 year: 2022 ident: bib86 article-title: New double decomposition deep learning methods for river water level forecasting publication-title: Sci. Total Environ. – volume: 237 year: 2020 ident: bib79 article-title: Microstructural characterization of basalt fiber reinforced magnesium phosphate cement supplemented by silica fume publication-title: Constr. Build. Mater. – volume: 63 year: 2023 ident: bib6 article-title: Predictive models for concrete properties using machine learning and deep learning approaches: a review publication-title: J. Build. Eng. – volume: 123 start-page: 719 year: 2016 end-page: 726 ident: bib35 article-title: Experimental study of magnesium phosphate cements modified by metakaolin publication-title: Constr. Build. Mater. – volume: 209 start-page: 490 year: 2017 end-page: 497 ident: bib62 article-title: Potential large-volume beneficial use of low-grade fly ash in magnesia-phosphate cement based materials publication-title: Fuel – volume: 195 start-page: 140 year: 2019 end-page: 147 ident: bib45 article-title: Properties of magnesium phosphate cement containing steel slag powder publication-title: Constr. Build. Mater. – volume: 47 start-page: 977 year: 2013 end-page: 983 ident: bib29 article-title: Factors that affect the properties of magnesium phosphate cement publication-title: Constr. Build. Mater. – volume: 99 start-page: 86 year: 2017 end-page: 94 ident: bib31 article-title: Influence of fly ash on compressive strength and micro-characteristics of magnesium potassium phosphate cement mortars publication-title: Cem. Concr. Res. – volume: 283 year: 2021 ident: bib78 article-title: Compressive strength development and microstructure of magnesium phosphate cement concrete publication-title: Constr. Build. Mater. – volume: 316 year: 2022 ident: bib11 article-title: Analyzing the mechanical performance of fly ash-based geopolymer concrete with different machine learning techniques publication-title: Constr. Build. Mater. – volume: 205 start-page: 668 year: 2019 end-page: 678 ident: bib44 article-title: Influence of nickel slag powders on properties of magnesium potassium phosphate cement paste publication-title: Constr. Build. Mater. – volume: 214 year: 2022 ident: bib91 article-title: Explanation of machine learning models using shapley additive explanation and application for real data in hospital publication-title: Comput. Methods Prog. Biomed. – volume: 314 year: 2022 ident: bib69 article-title: Influence mechanisms of fly ash in magnesium ammonium phosphate cement publication-title: Constr. Build. Mater. – volume: 14 start-page: 1052 year: 2022 end-page: 1063 ident: bib92 article-title: Investigation of feature contribution to shield tunneling-induced settlement using Shapley additive explanations method publication-title: J. Rock. Mech. Geotech. Eng. – volume: 32 start-page: 04020360 year: 2020 ident: bib55 article-title: Effects of aluminum silicate on mechanical strength and microstructural improvement of magnesium phosphate cement mortar publication-title: J. Mater. Civ. Eng. – year: 2021 ident: bib26 article-title: Gradient boosting-based regression modelling for estimating the time period of the irregular precast concrete structural system with cross bracing publication-title: J. King Saud. Univ. Eng. Sci. – volume: 308 year: 2021 ident: bib4 article-title: Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms publication-title: Constr. Build. Mater. – volume: 65 start-page: 695 year: 2020 end-page: 700 ident: bib41 article-title: Hydration characteristics and microstructure of magnesium phosphate cement in presence of Cu2 publication-title: Constr. Build. Mater. – volume: 29 start-page: 389 year: 1999 end-page: 396 ident: bib48 article-title: Factors influencing properties of phosphate cement-based binder for rapid repair of concrete publication-title: Cem. Concr. Res. – volume: 214 start-page: 516 year: 2019 end-page: 526 ident: bib58 article-title: Research on the preparation and properties of a novel grouting material based on magnesium phosphate cement publication-title: Constr. Build. Mater. – year: 2022 ident: bib82 article-title: Compressive strength prediction of high-strength concrete using long short-term memory and machine learning algorithms publication-title: Buildings – volume: 190 start-page: 466 year: 2018 end-page: 478 ident: bib33 article-title: Effect of silica fume and basalt fiber on the mechanical properties and microstructure of magnesium phosphate cement (MPC) mortar publication-title: Constr. Build. Mater. – volume: 235 year: 2020 ident: bib40 article-title: Influence of silica fume on the setting time and mechanical properties of a new magnesium phosphate cement publication-title: Constr. Build. Mater. – volume: 203 start-page: 589 year: 2019 end-page: 600 ident: bib64 article-title: Properties of magnesium potassium phosphate cement pastes exposed to water curing: a comparison study on the influences of fly ash and metakaolin publication-title: Constr. Build. Mater. – volume: 27 start-page: 373 year: 2015 end-page: 380 ident: bib66 article-title: Effects of fly ash, retarder and calcination of magnesia on properties of magnesia-phosphate cement publication-title: Adv. Cem. Res. – volume: 36 start-page: 831 year: 2022 end-page: 849 ident: bib18 article-title: Hybrid deep learning method for a week-ahead evapotranspiration forecasting publication-title: Stoch. Environ. Res. Risk Assess. – volume: 8 year: 2022 ident: bib24 article-title: Machine learning in concrete science: applications, challenges, and best practices publication-title: Npj Comput. Mater. – year: 2022 ident: bib25 article-title: Machine-Learning-Algorithm to predict the High-Performance concrete compressive strength using multiple data publication-title: J. Eng. Des. Technol. – volume: 157 start-page: 146 year: 2008 end-page: 153 ident: bib43 article-title: Improvement of ground granulated blast furnace slag on stabilization/solidification of simulated mercury-doped wastes in chemically bonded phosphate ceramics publication-title: J. Hazard. Mater. – volume: 51 year: 2022 ident: bib73 article-title: Experimental study of magnesium ammonium phosphate cements modified by fly ash and metakaolin publication-title: J. Build. Eng. – volume: 245 year: 2021 ident: bib21 article-title: A hybrid CNN-GRU model for predicting soil moisture in maize root zone publication-title: Agric. Water Manag – volume: 14 year: 2022 ident: bib12 article-title: Artificial neural network-forecasted compression strength of alkaline-activated slag concretes publication-title: Sustain – volume: 168 start-page: 204 year: 2019 end-page: 217 ident: bib32 publication-title: A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultra fine fly ash – volume: 190 year: 2023 ident: bib5 article-title: Modeling the mechanical properties of recycled aggregate concrete using hybrid machine learning algorithms publication-title: Resour. Conserv. Recycl. – reference: . – volume: 27 start-page: 11 year: 2005 end-page: 18 ident: bib65 article-title: Effect of aggregates and water contents on the properties of magnesium phospho-silicate cement publication-title: Cem. Concr. Compos. – volume: 8 year: 2019 ident: bib81 article-title: A state-of-the-art survey on deep learning theory and architectures publication-title: Electron – volume: 29 start-page: 1986 year: 2008 end-page: 1991 ident: bib2 article-title: Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic publication-title: Mater. Des. – volume: 260 year: 2020 ident: bib28 article-title: The role of bauxite and fly-ash on the water stability and microstructural densification of magnesium phosphate cement composites publication-title: Constr. Build. Mater. – start-page: 4766 year: 2017 end-page: 4775 ident: bib88 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inf. Process. Syst. 2017-Decem – volume: 49 year: 2022 ident: bib74 article-title: Effects of steel slag on the microstructure and mechanical properties of magnesium phosphate cement publication-title: J. Build. Eng. – volume: 271 year: 2021 ident: bib3 article-title: Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques publication-title: Constr. Build. Mater. – volume: 90 start-page: 169 year: 2018 end-page: 177 ident: bib76 article-title: Properties of fly ash blended magnesium potassium phosphate mortars: effect of the ratio between fly ash and magnesia publication-title: Cem. Concr. Compos. – volume: 28 start-page: 30294 year: 2021 end-page: 30302 ident: bib19 article-title: Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment publication-title: Environ. Sci. Pollut. Res. – volume: 330 year: 2022 ident: bib90 article-title: Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete publication-title: Constr. Build. Mater. – volume: 225 start-page: 234 year: 2019 end-page: 242 ident: bib38 article-title: Hydration characteristics and microstructure of magnesium phosphate cement in presence of Cu2 publication-title: Constr. Build. Mater. – volume: 168 start-page: 204 year: 2019 ident: 10.1016/j.mtcomm.2023.105547_bib32 publication-title: A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultra fine fly ash – year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib13 article-title: LSTM integrated with Boruta-random forest optimiser for soil moisture estimation under RCP4.5 and RCP8.5 global warming scenarios publication-title: Springe Berl. Heidelb. – volume: 29 start-page: 389 year: 1999 ident: 10.1016/j.mtcomm.2023.105547_bib48 article-title: Factors influencing properties of phosphate cement-based binder for rapid repair of concrete publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(98)00230-0 – volume: 14 start-page: 1 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib22 article-title: Comparing LSTM and GRU models to predict the condition of a pulp paper press publication-title: Energies doi: 10.3390/en14216958 – volume: 190 start-page: 466 year: 2018 ident: 10.1016/j.mtcomm.2023.105547_bib33 article-title: Effect of silica fume and basalt fiber on the mechanical properties and microstructure of magnesium phosphate cement (MPC) mortar publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.09.143 – volume: 237 year: 2020 ident: 10.1016/j.mtcomm.2023.105547_bib79 article-title: Microstructural characterization of basalt fiber reinforced magnesium phosphate cement supplemented by silica fume publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117795 – volume: 29 start-page: 1986 year: 2008 ident: 10.1016/j.mtcomm.2023.105547_bib2 article-title: Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic publication-title: Mater. Des. doi: 10.1016/j.matdes.2008.04.005 – volume: 3 start-page: 1 year: 2020 ident: 10.1016/j.mtcomm.2023.105547_bib14 article-title: An introductory review of deep learning for prediction models with big data publication-title: Front. Artif. Intell. doi: 10.3389/frai.2020.00004 – year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib15 article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions publication-title: Springe Int. Publ. – volume: 335 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib7 article-title: Comparison of different machine learning methods for estimating compressive strength of mortars publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.127490 – volume: 277 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib61 article-title: Effect of mixture proportioning on the strength and mineralogy of magnesium phosphate cements publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.122264 – volume: 47 start-page: 977 year: 2013 ident: 10.1016/j.mtcomm.2023.105547_bib29 article-title: Factors that affect the properties of magnesium phosphate cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.05.103 – volume: 74 start-page: 78 year: 2015 ident: 10.1016/j.mtcomm.2023.105547_bib42 article-title: Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2015.01.015 – volume: 214 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib91 article-title: Explanation of machine learning models using shapley additive explanation and application for real data in hospital publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2021.106584 – volume: 214 start-page: 516 year: 2019 ident: 10.1016/j.mtcomm.2023.105547_bib58 article-title: Research on the preparation and properties of a novel grouting material based on magnesium phosphate cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.04.158 – volume: 33 start-page: 6951 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib17 article-title: Recurrent neural network-based prediction of compressive and flexural strength of steel slag mixed concrete publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05470-w – volume: 244 year: 2020 ident: 10.1016/j.mtcomm.2023.105547_bib63 article-title: Properties of fly ash blended magnesium potassium phosphate cement cured in presence of sulfuric acid publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118349 – volume: 28 start-page: 30294 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib19 article-title: Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-12877-y – volume: 225 start-page: 234 year: 2019 ident: 10.1016/j.mtcomm.2023.105547_bib38 article-title: Hydration characteristics and microstructure of magnesium phosphate cement in presence of Cu2 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.07.184 – volume: 157 start-page: 146 year: 2008 ident: 10.1016/j.mtcomm.2023.105547_bib43 article-title: Improvement of ground granulated blast furnace slag on stabilization/solidification of simulated mercury-doped wastes in chemically bonded phosphate ceramics publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.12.110 – volume: 195 start-page: 140 year: 2019 ident: 10.1016/j.mtcomm.2023.105547_bib45 article-title: Properties of magnesium phosphate cement containing steel slag powder publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.11.085 – volume: 111 start-page: 116 year: 2018 ident: 10.1016/j.mtcomm.2023.105547_bib75 article-title: Influence of fly ash and metakaolin on the microstructure and compressive strength of magnesium potassium phosphate cement paste publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2018.06.003 – year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib26 article-title: Gradient boosting-based regression modelling for estimating the time period of the irregular precast concrete structural system with cross bracing publication-title: J. King Saud. Univ. Eng. Sci. – volume: 121 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib53 article-title: Deflection hardening behaviour of ductile fibre reinforced magnesium phosphate cement-based composite publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2021.104079 – volume: 9 start-page: 11 issue: 1–9 year: 2017 ident: 10.1016/j.mtcomm.2023.105547_bib85 article-title: An effective algorithm for hyperparameter optimization of neural networks publication-title: IBM J. Res. Dev. – volume: 308 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib4 article-title: Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125021 – volume: 14 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib12 article-title: Artificial neural network-forecasted compression strength of alkaline-activated slag concretes publication-title: Sustain – volume: 123 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib20 article-title: Predicting the geopolymerization process of fly ash-based geopolymer using deep long short-term memory and machine learning publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2021.104177 – volume: 260 year: 2020 ident: 10.1016/j.mtcomm.2023.105547_bib28 article-title: The role of bauxite and fly-ash on the water stability and microstructural densification of magnesium phosphate cement composites publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119953 – volume: 284 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib60 article-title: Mix design and rheological properties of magnesium potassium phosphate cement composites based on the 3D printing extrusion system publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.122797 – volume: 209 start-page: 490 year: 2017 ident: 10.1016/j.mtcomm.2023.105547_bib62 article-title: Potential large-volume beneficial use of low-grade fly ash in magnesia-phosphate cement based materials publication-title: Fuel doi: 10.1016/j.fuel.2017.08.028 – volume: 8 year: 2019 ident: 10.1016/j.mtcomm.2023.105547_bib81 article-title: A state-of-the-art survey on deep learning theory and architectures publication-title: Electron – volume: 168 start-page: 204 year: 2019 ident: 10.1016/j.mtcomm.2023.105547_bib50 article-title: A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2018.12.065 – volume: 235 year: 2020 ident: 10.1016/j.mtcomm.2023.105547_bib54 article-title: Mechanical strength and flexural parameters analysis of micro-steel, polyvinyl and basalt fibre reinforced magnesium phosphate cement mortars publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117447 – volume: 49 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib74 article-title: Effects of steel slag on the microstructure and mechanical properties of magnesium phosphate cement publication-title: J. Build. Eng. – volume: 252 year: 2020 ident: 10.1016/j.mtcomm.2023.105547_bib51 article-title: Factors assessment of a repair material for brick masonry loaded cracks using magnesium phosphate cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119098 – volume: 16 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib9 article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP) publication-title: Case Stud. Constr. Mater. – volume: 32 start-page: 04020360 year: 2020 ident: 10.1016/j.mtcomm.2023.105547_bib55 article-title: Effects of aluminum silicate on mechanical strength and microstructural improvement of magnesium phosphate cement mortar publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0003413 – volume: 29 start-page: 1279 year: 2018 ident: 10.1016/j.mtcomm.2023.105547_bib84 article-title: Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic publication-title: Constr. Build. Mater. – volume: 283 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib78 article-title: Compressive strength development and microstructure of magnesium phosphate cement concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.122585 – volume: 264 year: 2020 ident: 10.1016/j.mtcomm.2023.105547_bib57 article-title: Effect of nano-silica on properties and microstructures of magnesium phosphate cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120728 – volume: 235 year: 2020 ident: 10.1016/j.mtcomm.2023.105547_bib77 article-title: Preliminary investigation of the hydration mechanism of MgO-SiO2-K2HPO4 cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117471 – volume: 260 year: 2020 ident: 10.1016/j.mtcomm.2023.105547_bib37 article-title: Properties of red mud blended with magnesium phosphate cement paste: feasibility of grouting material preparation publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119704 – volume: 369 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib27 article-title: Water-resisting performances and mechanisms of magnesium phosphate cement mortars comprising with fly-ash and silica fume publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.133347 – volume: 99 start-page: 86 year: 2017 ident: 10.1016/j.mtcomm.2023.105547_bib31 article-title: Influence of fly ash on compressive strength and micro-characteristics of magnesium potassium phosphate cement mortars publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2017.05.008 – volume: 90 start-page: 169 year: 2018 ident: 10.1016/j.mtcomm.2023.105547_bib76 article-title: Properties of fly ash blended magnesium potassium phosphate mortars: effect of the ratio between fly ash and magnesia publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2018.04.002 – volume: 276 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib10 article-title: Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various machine learning techniques publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2022.108914 – volume: 333 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib34 article-title: Influence of supplementary materials on the early age hydration reactions and microstructural progress of magnesium phosphate cement matrices publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.130086 – ident: 10.1016/j.mtcomm.2023.105547_bib83 doi: 10.1109/ASCC.2017.8287531 – volume: 333 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib71 article-title: Effects of the fly ash and water glass on the mechanical properties and water stability of the high ductile magnesium phosphate cement-based composite publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.127395 – volume: 51 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib73 article-title: Experimental study of magnesium ammonium phosphate cements modified by fly ash and metakaolin publication-title: J. Build. Eng. – volume: 3 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib87 article-title: Optimization algorithms as training approach with hybrid deep learning methods to develop an ultraviolet index forecasting model publication-title: Stoch. Environ. Res. Risk Assess. – volume: 211 start-page: 885 year: 2019 ident: 10.1016/j.mtcomm.2023.105547_bib39 article-title: Research progresses on magnesium phosphate cement: a review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.03.304 – volume: 316 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib11 article-title: Analyzing the mechanical performance of fly ash-based geopolymer concrete with different machine learning techniques publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125785 – volume: 106 start-page: 415 year: 2016 ident: 10.1016/j.mtcomm.2023.105547_bib72 article-title: Effect of the combination of fly ash and silica fume on water resistance of Magnesium-Potassium Phosphate Cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.12.085 – volume: 316 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib46 article-title: Preparation and study of magnesium ammonium phosphate cement from waste lithium slag publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128371 – volume: 245 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib21 article-title: A hybrid CNN-GRU model for predicting soil moisture in maize root zone publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2020.106649 – volume: 65 start-page: 177 year: 2014 ident: 10.1016/j.mtcomm.2023.105547_bib68 article-title: Experimental study of magnesia and M/P ratio influencing properties of magnesium phosphate cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.04.136 – volume: 235 year: 2020 ident: 10.1016/j.mtcomm.2023.105547_bib40 article-title: Influence of silica fume on the setting time and mechanical properties of a new magnesium phosphate cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117544 – volume: 24 start-page: 520 year: 2013 ident: 10.1016/j.mtcomm.2023.105547_bib36 article-title: Optimizing the dimensions of magnesium ammonium phosphate to maximize its ammonia uptake ability publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2012.10.001 – volume: 27 start-page: 11 year: 2005 ident: 10.1016/j.mtcomm.2023.105547_bib65 article-title: Effect of aggregates and water contents on the properties of magnesium phospho-silicate cement publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2004.03.003 – volume: 234 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib80 article-title: Development and characterization of magnesium phosphate cement based ultra-high performance concrete publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2022.109694 – volume: 288 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib59 article-title: Influencing mechanism of mineral admixtures on rheological properties of fresh magnesium phosphate cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.123130 – volume: 330 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib90 article-title: Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.127298 – volume: 14 start-page: 1052 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib92 article-title: Investigation of feature contribution to shield tunneling-induced settlement using Shapley additive explanations method publication-title: J. Rock. Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2022.01.002 – volume: 15 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib70 article-title: Hydration and properties of magnesium potassium phosphate cement modified by granulated blast-furnace slag: influence of fineness publication-title: Materials – volume: 599 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib89 article-title: Deep learning hybrid model with Boruta-Random forest optimiser algorithm for streamflow forecasting with climate mode indices, rainfall, and periodicity publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126350 – volume: 271 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib3 article-title: Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121584 – volume: 27 start-page: 373 year: 2015 ident: 10.1016/j.mtcomm.2023.105547_bib66 article-title: Effects of fly ash, retarder and calcination of magnesia on properties of magnesia-phosphate cement publication-title: Adv. Cem. Res. doi: 10.1680/adcr.14.00029 – start-page: 4766 year: 2017 ident: 10.1016/j.mtcomm.2023.105547_bib88 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inf. Process. Syst. 2017-Decem – volume: 123 start-page: 719 year: 2016 ident: 10.1016/j.mtcomm.2023.105547_bib35 article-title: Experimental study of magnesium phosphate cements modified by metakaolin publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.07.092 – volume: 319 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib8 article-title: Hybrid deep learning model for concrete incorporating microencapsulated phase change materials publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.126146 – volume: 90 start-page: 169 year: 2018 ident: 10.1016/j.mtcomm.2023.105547_bib30 article-title: Properties of fly ash blended magnesium potassium phosphate mortars: effect of the ratio between fly ash and magnesia publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2018.04.002 – volume: 314 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib69 article-title: Influence mechanisms of fly ash in magnesium ammonium phosphate cement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125581 – volume: 227 year: 2019 ident: 10.1016/j.mtcomm.2023.105547_bib47 article-title: Engineering properties and microstructure analysis of magnesium phosphate cement mortar containing bentonite clay publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.08.037 – volume: 63 year: 2023 ident: 10.1016/j.mtcomm.2023.105547_bib6 article-title: Predictive models for concrete properties using machine learning and deep learning approaches: a review publication-title: J. Build. Eng. – year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib82 article-title: Compressive strength prediction of high-strength concrete using long short-term memory and machine learning algorithms publication-title: Buildings – volume: 36 start-page: 831 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib18 article-title: Hybrid deep learning method for a week-ahead evapotranspiration forecasting publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-021-02078-x – volume: 145 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib1 article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2021.106449 – volume: 8 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib24 article-title: Machine learning in concrete science: applications, challenges, and best practices publication-title: Npj Comput. Mater. doi: 10.1038/s41524-022-00810-x – volume: 203 start-page: 589 year: 2019 ident: 10.1016/j.mtcomm.2023.105547_bib64 article-title: Properties of magnesium potassium phosphate cement pastes exposed to water curing: a comparison study on the influences of fly ash and metakaolin publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.01.134 – volume: 302 year: 2021 ident: 10.1016/j.mtcomm.2023.105547_bib52 article-title: A study on magnesium phosphate cement mortars reinforced by polyvinyl alcohol fibers publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.124154 – volume: 13 start-page: 1 year: 2020 ident: 10.1016/j.mtcomm.2023.105547_bib23 article-title: Mixture optimization of recycled aggregate concrete using hybrid machine learning model publication-title: Materials doi: 10.3390/ma13194331 – volume: 190 year: 2023 ident: 10.1016/j.mtcomm.2023.105547_bib5 article-title: Modeling the mechanical properties of recycled aggregate concrete using hybrid machine learning algorithms publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2022.106812 – volume: 175 start-page: 562 year: 2018 ident: 10.1016/j.mtcomm.2023.105547_bib16 article-title: Compressive strength prediction of recycled concrete based on deep learning publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.04.169 – year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib25 article-title: Machine-Learning-Algorithm to predict the High-Performance concrete compressive strength using multiple data publication-title: J. Eng. Des. Technol. – volume: 22 start-page: 231 year: 2018 ident: 10.1016/j.mtcomm.2023.105547_bib49 article-title: Properties and reaction mechanisms of magnesium phosphate cement mixed with acetic acid publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-017-1408-x – volume: 68 start-page: 1 year: 2015 ident: 10.1016/j.mtcomm.2023.105547_bib67 article-title: Influence of magnesia-to-phosphate molar ratio on microstructures, mechanical properties and thermal conductivity of magnesium potassium phosphate cement paste with large water-to-solid ratio publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2014.10.019 – volume: 831 year: 2022 ident: 10.1016/j.mtcomm.2023.105547_bib86 article-title: New double decomposition deep learning methods for river water level forecasting publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.154722 – volume: 65 start-page: 695 year: 2020 ident: 10.1016/j.mtcomm.2023.105547_bib41 article-title: Hydration characteristics and microstructure of magnesium phosphate cement in presence of Cu2 publication-title: Constr. Build. Mater. – volume: 205 start-page: 668 year: 2019 ident: 10.1016/j.mtcomm.2023.105547_bib44 article-title: Influence of nickel slag powders on properties of magnesium potassium phosphate cement paste publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.02.014 – volume: 261 year: 2020 ident: 10.1016/j.mtcomm.2023.105547_bib56 article-title: Improvement of physico-mechanical and microstructural properties of magnesium phosphate cement composites comprising with Phosphogypsum publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.121268 |
| SSID | ssj0001850494 |
| Score | 2.4291635 |
| Snippet | Nowadays, hybrid soft computing technics are attracting the scholars of construction materials field due to their high adaptability and prediction performances... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105547 |
| SubjectTerms | Hybrid artificial intelligence approaches Magnesium phosphate cement Shapely additive explanation Strength prediction Supplementary materials |
| Title | Hybrid intelligence models for compressive strength prediction of MPC composites and parametric analysis with SHAP algorithm |
| URI | https://dx.doi.org/10.1016/j.mtcomm.2023.105547 |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2352-4928 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001850494 issn: 2352-4928 databaseCode: ACRLP dateStart: 20140901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 2352-4928 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001850494 issn: 2352-4928 databaseCode: AIKHN dateStart: 20140901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2352-4928 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001850494 issn: 2352-4928 databaseCode: AKRWK dateStart: 20140901 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe_Eiior1xR68hqab3TyOpViipVJsxd5C9pFaadPSRkHwxzuTh1YQBU9hlxkSJsvM7O433xByxcEr-olwLaaMhA1KAn4wQYy74qrtcNP2HKxGHty54QO_nYhJjXSrWhiEVZa-v_DpubcuZ1qlNVur2aw1YpA78IDhTREEHo_vkAbEH9-vk0bnph_efR21-AJZUPI2c4JZqFMV0eVIr0UG78CqdOZg21uBrVZ-ClJbgae3T_bKjJF2io86IDWTHpL38A1Lrehsi1GT5l1tNhTSUIpI8Rzh-mooloOk0-yJwoye5XUMdJnQwbCbiyFqy2xonGqKPOALbLGlYFiQlVA8qKWjsDOk8Xy6XMNocUTGvetxN7TKRgqWYo6bWbEQGrZFXLtM-soxni1j7XPlgtWkSCTsUoVGhmLmm6BtQNA2gRISrJr4kAEek3q6TM0JoXhOpONAJAGzQZVLqUFaOrFre4nUukmcynCRKknGsdfFPKrQZM9RYe4IzR0V5m4S61NrVZBs_CHvVf8k-rZYIogDv2qe_lvzjOziqECJnZN6tn4xF5CPZPKyXG_47N8_9j8AfTPh9w |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9CLKCrW5x68hqab3TyOpVhSbUuhFbyF7CNasWlpoyD4453JQyuIgsfdzJDwZTMzu_lmhpArDlbRT4RrMWUkbFASsIMJctwVV22Hm7bnYDbycOSGd_zmXtzXSLfKhUFaZWn7C5ueW-typlWi2VrOZq0Jg9iBBwz_FIHj8fgWaXDhePB1Njr923D0ddTiC6yCkreZE8xCnSqJLmd6zTO4B2alMwfb3gpstfKTk9pwPL09sltGjLRTPNQ-qZn0gLyHb5hqRWcbFTVp3tVmTSEMpcgUzxmur4ZiOkj6kD1SmNGzPI-BLhI6HHdzMWRtmTWNU02xDvgcW2wpGBbFSige1NJJ2BnT-PlhsYLR_JBMe9fTbmiVjRQsxRw3s2IhNGyLuHaZ9JVjPFvG2ufKBdSkSCTsUoXGCsXMN0HbgKBtAiUkoJr4EAEekXq6SM0xoXhOpONAJAGzQZVLqUFaOrFre4nUukmcCrhIlUXGsdfFc1SxyZ6iAu4I4Y4KuJvE-tRaFkU2_pD3qncSfVssEfiBXzVP_q15SbbD6XAQDfqj21Oyg1cKxtgZqWerF3MOsUkmL8q19wECmeM1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+intelligence+models+for+compressive+strength+prediction+of+MPC+composites+and+parametric+analysis+with+SHAP+algorithm&rft.jtitle=Materials+today+communications&rft.au=Haque%2C+M.+Aminul&rft.au=Chen%2C+Bing&rft.au=Kashem%2C+Abul&rft.au=Qureshi%2C+Tanvir&rft.date=2023-06-01&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=35&rft.spage=105547&rft_id=info:doi/10.1016%2Fj.mtcomm.2023.105547&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtcomm_2023_105547 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon |