Feature selection using binary horse herd optimization algorithm with lightGBA ensemble classification in microarray data
Data analysis presents significant challenges due to its high dimensionality, imbalanced distribution, and complexity. Traditional feature selection methods often fall short of addressing these challenges effectively. In response, this research proposes a novel hybrid methodology that integrates mul...
Saved in:
| Published in | Knowledge-based systems Vol. 312; p. 113168 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
15.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0950-7051 |
| DOI | 10.1016/j.knosys.2025.113168 |
Cover
| Abstract | Data analysis presents significant challenges due to its high dimensionality, imbalanced distribution, and complexity. Traditional feature selection methods often fall short of addressing these challenges effectively. In response, this research proposes a novel hybrid methodology that integrates multi-filtering techniques with the Multi-Objective Binary Horse Herd Optimization (MOBHHO) algorithm to tackle gene selection and ensemble classification in microarray data. The study begins by identifying the limitations of existing methods, emphasizing the need for a comprehensive approach that combines the strengths of multi-filtering and metaheuristic optimization. Leveraging various filtering methods, including Information Gain, entropy, Pearson correlation, mutual information, mean absolute deviation, and weighted entropy variance, the proposed methodology aims to mitigate biases and enhance the robustness of feature selection. Subsequently, the MOBHHO wrapper method facilitates multi-objective optimization, optimizing objectives by minimizing selected features and maximizing prediction criteria. Finally, the ensemble prediction model LightGBA capitalizes on the diverse solutions obtained from MOBHHO, striking an optimal balance between feature count and prediction accuracy. The proposed method was evaluated on multiple high-dimensional microarray datasets such as Small Round Blue Cell Tumors (SRBCT), Prostate tumors, Lung cancer, Leukemia, Colon tumor and diffuse large B-cell lymphoma (DLBCL), Lymphoma, ALL-AML-4C, ALL-AML-3C, and MLL datasets are used to assess its effectiveness in feature selection and classification accuracy. The experimental outcomes demonstrate the efficacy of the proposed methodology, showcasing improved prediction accuracy and feature subset selection across diverse datasets. |
|---|---|
| AbstractList | Data analysis presents significant challenges due to its high dimensionality, imbalanced distribution, and complexity. Traditional feature selection methods often fall short of addressing these challenges effectively. In response, this research proposes a novel hybrid methodology that integrates multi-filtering techniques with the Multi-Objective Binary Horse Herd Optimization (MOBHHO) algorithm to tackle gene selection and ensemble classification in microarray data. The study begins by identifying the limitations of existing methods, emphasizing the need for a comprehensive approach that combines the strengths of multi-filtering and metaheuristic optimization. Leveraging various filtering methods, including Information Gain, entropy, Pearson correlation, mutual information, mean absolute deviation, and weighted entropy variance, the proposed methodology aims to mitigate biases and enhance the robustness of feature selection. Subsequently, the MOBHHO wrapper method facilitates multi-objective optimization, optimizing objectives by minimizing selected features and maximizing prediction criteria. Finally, the ensemble prediction model LightGBA capitalizes on the diverse solutions obtained from MOBHHO, striking an optimal balance between feature count and prediction accuracy. The proposed method was evaluated on multiple high-dimensional microarray datasets such as Small Round Blue Cell Tumors (SRBCT), Prostate tumors, Lung cancer, Leukemia, Colon tumor and diffuse large B-cell lymphoma (DLBCL), Lymphoma, ALL-AML-4C, ALL-AML-3C, and MLL datasets are used to assess its effectiveness in feature selection and classification accuracy. The experimental outcomes demonstrate the efficacy of the proposed methodology, showcasing improved prediction accuracy and feature subset selection across diverse datasets. |
| ArticleNumber | 113168 |
| Author | Ganesh Kumar, S. Preyanka Lakshme, R.S. |
| Author_xml | – sequence: 1 givenname: R.S. orcidid: 0000-0003-1643-5474 surname: Preyanka Lakshme fullname: Preyanka Lakshme, R.S. email: pr3301@srmist.edu.in – sequence: 2 givenname: S. surname: Ganesh Kumar fullname: Ganesh Kumar, S. email: ganeshk1@srmist.edu.in |
| BookMark | eNqFkL1OwzAURj0UibbwBgx-gQTb-XHKgFQqWpAqscBsOY7d3JI4le2CwtOTNkwMsNy73PNdfWeGJrazGqEbSmJKaH67j99t53sfM8KymNKE5sUETckiIxEnGb1EM-_3hBDGaDFF_VrLcHQae91oFaCz-OjB7nAJVroe153zGtfaVbg7BGjhS56PZLPrHIS6xZ_DxA3s6rB5WGJtvW7LRmPVSO_BgBrvweIWlOukc7LHlQzyCl0Y2Xh9_bPn6G39-Lp6irYvm-fVchspluQhyktjKsINTxVPOFtkplS5yQgt8iIldCjICkJVtigVV5KkvKIZ4dSYpKSclTSZo3TMHb5777QRBwft0E1QIk7KxF6MysRJmRiVDdjdL0xBOHcJTkLzH3w_wnoo9gHaCa9AW6UrcINlUXXwd8A3ssSRMg |
| CitedBy_id | crossref_primary_10_1007_s10044_025_01446_5 |
| Cites_doi | 10.1109/ACCESS.2020.3000040 10.1007/s11042-023-15023-7 10.1109/JAS.2019.1911447 10.1145/3409382 10.3390/computation11030056 10.1016/j.cmpb.2017.09.005 10.1109/ACCESS.2024.3362228 10.1016/j.swevo.2012.09.002 10.1016/j.eswa.2013.08.089 10.1016/j.neucom.2023.126467 10.1007/s00521-017-2837-7 10.3390/pharmaceutics14091814 10.1109/ACCESS.2020.3013617 10.1007/s00521-022-07148-x 10.1016/j.knosys.2021.107034 10.1109/JAS.2023.123648 10.1016/j.knosys.2020.106711 10.1109/TPAMI.2007.1068 10.1155/2021/6663455 10.1109/TVCG.2014.2346482 10.1080/09540091.2018.1487384 10.1016/j.swevo.2021.100849 10.1016/j.eswa.2022.116822 10.1016/j.jksuci.2017.08.001 10.1155/2021/1162553 10.1016/j.compbiomed.2021.105152 10.1007/s00521-022-08015-5 10.1016/j.jksuci.2024.102205 10.1109/ACCESS.2022.3156593 10.1016/j.patcog.2020.107674 10.1016/j.asoc.2019.105617 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.knosys.2025.113168 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_knosys_2025_113168 S0950705125002151 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I AAQXK AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c236t-6bffd07f74c737295fbc6f5018684011132801c59bc7ca047d15071ff3b172b13 |
| IEDL.DBID | .~1 |
| ISSN | 0950-7051 |
| IngestDate | Thu Apr 24 23:12:16 EDT 2025 Wed Oct 01 08:32:59 EDT 2025 Sat May 03 15:57:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Weighted entropy variance light gradient boosting Binary horse herd optimization algorithm Multi-objective Pearson correlation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c236t-6bffd07f74c737295fbc6f5018684011132801c59bc7ca047d15071ff3b172b13 |
| ORCID | 0000-0003-1643-5474 |
| ParticipantIDs | crossref_primary_10_1016_j_knosys_2025_113168 crossref_citationtrail_10_1016_j_knosys_2025_113168 elsevier_sciencedirect_doi_10_1016_j_knosys_2025_113168 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-15 |
| PublicationDateYYYYMMDD | 2025-03-15 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | MiarNaeimi, Azizyan, Rashki (bib0009) 2021; 213 Parul Gupta, Tayal (bib0022) 2024 Farid, Zhang, Rahman, Hossain, Strachan (bib0032) 2014; 41 Elmanakhly, Saleh, Rashed, Abdel-Basset (bib0012) 2022; 10 Zhang, Jiang, Yu (bib0033) 2021; 111 Abdulwahab, Ajitha, Saif, Murshed, Ghanem (bib0037) 2024; 12 ul Hassan, Iqbal, Hussain, AlSalman, Mosleh, Ullah (bib0001) 2021; 2021 Shakhovska, Melnykova, Chopiyak (bib0020) 2022; 70 Xiao, Wu, Lin, Zhao (bib0018) 2018; 153 Janssen, Bennis, Mathôt (bib0008) 2022; 14 Sindhu, Ngadiran, Yacob, Zahri, Hariharan (bib0015) 2017; 28 Nayak, Rout, Jagadev, Swarnkar (bib0016) 2018; 30 Kristiyanti, Sitanggang, Nurdiati (bib0028) 2023; 11 Asghari Varzaneh, Hosseini, Javidi (bib0013) 2023; 82 Zhou, Chen, Wu, Heidari, Chen, Alabdulkreem, Wang (bib0036) 2023; 551 Yu, Guo, Liu, Li, Wang, Ling, Wu (bib0002) 2020; 53 Li, Luo, Zhang, Chen, Zhou (bib0006) 2024; 36 Gao, Ali, Shaban Hassan, Anwar (bib0019) 2021; 2021 Maldonado, Riff, Neveu (bib0007) 2022; 198 Krause, Perer, Bertini (bib0004) 2014; 20 Gong, Zhou, Wu, Zhou, Wen (bib0021) 2023; 10 Al-Tashi, Abdulkadir, Rais, Mirjalili, Alhussian, Ragab, Alqushaibi (bib0010) 2020; 8 Muthukrishnan, Rohini (bib0005) 2016 Awadallah, Hammouri, Al-Betar, Braik, Elaziz (bib0024) 2022; 141 (accessed on 15 January 2022). Braik (bib0027) 2023; 35 Your machine learning and Data science community. Available online Gao, Zhou, Luo (bib0038) 2020; 8 Nayak, Rout, Jagadev, Swarnkar (bib0017) 2020; 32 Yue, Suganthan, Liang, Qu, Yu, Zhu, Yan (bib0030) 2021; 62 Zaimoğlu, Yurtay, Demirci, Yurtay (bib0014) 2023; 44 Alomari, Makhadmeh, Al-Betar, Alyasseri, Doush, Abasi, Zitar (bib0025) 2021; 223 Jayadeva, Khemchandani, Chandra (bib0031) 2007; 29 Hosseinalipour, Ghanbarzadeh (bib0011) 2022; 34 Tanveer, Gautam, Suganthan (bib0034) 2019; 83 Liu, Zhou, Liu (bib0003) 2019; 6 Popoola, Oyeniran (bib0023) 2024 Mirjalili, Lewis (bib0029) 2013; 9 Sharawi, Zawbaa, Emary (bib0026) 2017 Al-Tashi (10.1016/j.knosys.2025.113168_bib0010) 2020; 8 Zhang (10.1016/j.knosys.2025.113168_bib0033) 2021; 111 Mirjalili (10.1016/j.knosys.2025.113168_bib0029) 2013; 9 Xiao (10.1016/j.knosys.2025.113168_bib0018) 2018; 153 Muthukrishnan (10.1016/j.knosys.2025.113168_bib0005) 2016 Yue (10.1016/j.knosys.2025.113168_bib0030) 2021; 62 Abdulwahab (10.1016/j.knosys.2025.113168_bib0037) 2024; 12 Asghari Varzaneh (10.1016/j.knosys.2025.113168_bib0013) 2023; 82 Zaimoğlu (10.1016/j.knosys.2025.113168_bib0014) 2023; 44 Tanveer (10.1016/j.knosys.2025.113168_bib0034) 2019; 83 Janssen (10.1016/j.knosys.2025.113168_bib0008) 2022; 14 Sharawi (10.1016/j.knosys.2025.113168_bib0026) 2017 Yu (10.1016/j.knosys.2025.113168_bib0002) 2020; 53 Awadallah (10.1016/j.knosys.2025.113168_bib0024) 2022; 141 Nayak (10.1016/j.knosys.2025.113168_bib0017) 2020; 32 Alomari (10.1016/j.knosys.2025.113168_bib0025) 2021; 223 Liu (10.1016/j.knosys.2025.113168_bib0003) 2019; 6 Zhou (10.1016/j.knosys.2025.113168_bib0036) 2023; 551 Hosseinalipour (10.1016/j.knosys.2025.113168_bib0011) 2022; 34 Gong (10.1016/j.knosys.2025.113168_bib0021) 2023; 10 Braik (10.1016/j.knosys.2025.113168_bib0027) 2023; 35 Farid (10.1016/j.knosys.2025.113168_bib0032) 2014; 41 MiarNaeimi (10.1016/j.knosys.2025.113168_bib0009) 2021; 213 Elmanakhly (10.1016/j.knosys.2025.113168_bib0012) 2022; 10 Sindhu (10.1016/j.knosys.2025.113168_bib0015) 2017; 28 Popoola (10.1016/j.knosys.2025.113168_bib0023) 2024 Kristiyanti (10.1016/j.knosys.2025.113168_bib0028) 2023; 11 10.1016/j.knosys.2025.113168_bib0035 Parul Gupta (10.1016/j.knosys.2025.113168_bib0022) 2024 ul Hassan (10.1016/j.knosys.2025.113168_bib0001) 2021; 2021 Li (10.1016/j.knosys.2025.113168_bib0006) 2024; 36 Gao (10.1016/j.knosys.2025.113168_bib0038) 2020; 8 Krause (10.1016/j.knosys.2025.113168_bib0004) 2014; 20 Jayadeva (10.1016/j.knosys.2025.113168_bib0031) 2007; 29 Gao (10.1016/j.knosys.2025.113168_bib0019) 2021; 2021 Shakhovska (10.1016/j.knosys.2025.113168_bib0020) 2022; 70 Maldonado (10.1016/j.knosys.2025.113168_bib0007) 2022; 198 Nayak (10.1016/j.knosys.2025.113168_bib0016) 2018; 30 |
| References_xml | – volume: 20 start-page: 1614 year: 2014 end-page: 1623 ident: bib0004 article-title: INFUSE: interactive feature selection for predictive modeling of high-dimensional data publication-title: IEEE Trans. Vis. Comput. Graph. – volume: 213 year: 2021 ident: bib0009 article-title: Horse herd optimization algorithm: a nature-inspired algorithm for high-dimensional optimization problems publication-title: Knowl. Based Syst. – volume: 30 start-page: 362 year: 2018 end-page: 387 ident: bib0016 article-title: Elitism-based multi-objective differential evolution with extreme learning machine for feature selection: a novel searching technique publication-title: Connect. Sci. – volume: 111 year: 2021 ident: bib0033 article-title: Attribute and instance weighted naive Bayes publication-title: Pattern Recognit. – volume: 8 start-page: 106247 year: 2020 end-page: 106263 ident: bib0010 article-title: Binary multi-objective grey wolf optimizer for feature selection in classification publication-title: IEEE Access – volume: 12 start-page: 21840 year: 2024 end-page: 21867 ident: bib0037 article-title: MOBCSA: multi-objective binary cuckoo search algorithm for feature selection in bioinformatics publication-title: IEEE Access – volume: 198 year: 2022 ident: bib0007 article-title: A review of recent approaches on wrapper feature selection for intrusion detection publication-title: Expert Syst. Appl. – volume: 8 start-page: 140936 year: 2020 end-page: 140963 ident: bib0038 article-title: An efficient binary equilibrium optimizer algorithm for feature selection publication-title: IEEE Access – volume: 14 start-page: 1814 year: 2022 ident: bib0008 article-title: Adoption of machine learning in pharmacometrics: an overview of recent implementations and their considerations publication-title: Pharmaceutics – volume: 44 year: 2023 ident: bib0014 article-title: A binary chaotic horse herd optimization algorithm for feature selection publication-title: Eng. Sci. Technol., Int. J. – volume: 11 start-page: 56 year: 2023 ident: bib0028 article-title: Feature selection using new version of V-shaped transfer function for Salp Swarm algorithm in sentiment analysis publication-title: Computation – volume: 62 year: 2021 ident: bib0030 article-title: Differential evolution using improved crowding distance for multimodal multiobjective optimization publication-title: Swarm Evol. Comput. – volume: 70 year: 2022 ident: bib0020 article-title: An ensemble methods for medical insurance costs prediction task publication-title: Comput. Mater. Contin. – volume: 141 year: 2022 ident: bib0024 article-title: Binary horse herd optimization algorithm with crossover operators for feature selection publication-title: Comput. Biol. Med. – volume: 35 start-page: 6153 year: 2023 end-page: 6184 ident: bib0027 article-title: Enhanced Ali Baba and the forty thieves algorithm for feature selection publication-title: Neural Comput. Appl. – volume: 551 year: 2023 ident: bib0036 article-title: Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection publication-title: Neurocomputing – volume: 53 start-page: 1 year: 2020 end-page: 36 ident: bib0002 article-title: Causality-based feature selection: methods and evaluations publication-title: ACM Comput. Surv. (CSUR) – start-page: 105 year: 2024 end-page: 117 ident: bib0022 article-title: Feature selection with particle swarm for improved classification on high-dimensional datasets publication-title: International Conference on Innovative Computing and Communication – volume: 29 start-page: 905 year: 2007 end-page: 910 ident: bib0031 article-title: Twin support vector machines for pattern classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 41 start-page: 1937 year: 2014 end-page: 1946 ident: bib0032 article-title: Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks publication-title: Expert Syst. Appl. – reference: (accessed on 15 January 2022). – volume: 36 year: 2024 ident: bib0006 article-title: IMOABC: an efficient multi-objective filter–wrapper hybrid approach for high-dimensional feature selection publication-title: J. King Saud Univ. - Comput. Inf. Sci. – volume: 10 start-page: 26795 year: 2022 end-page: 26816 ident: bib0012 article-title: BinHOA: efficient binary horse herd optimization method for feature selection: analysis and validations publication-title: IEEE Access – volume: 2021 start-page: 1 year: 2021 end-page: 10 ident: bib0019 article-title: Improving the accuracy for analyzing heart diseases prediction based on the ensemble method publication-title: Complexity – volume: 28 start-page: 2947 year: 2017 end-page: 2958 ident: bib0015 article-title: Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism publication-title: Neural Comput. Appl. – volume: 34 start-page: 13091 year: 2022 end-page: 13105 ident: bib0011 article-title: A novel approach for spam detection using horse herd optimization algorithm publication-title: Neural Comput. Appl. – volume: 9 start-page: 1 year: 2013 end-page: 14 ident: bib0029 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol. Comput. – volume: 83 year: 2019 ident: bib0034 article-title: Comprehensive evaluation of twin SVM based classifiers on UCI datasets publication-title: Appl. Soft Comput. – start-page: 18 year: 2016 end-page: 20 ident: bib0005 article-title: LASSO: a feature selection technique in predictive modeling for machine learning publication-title: 2016 IEEE International Conference on Advances in Computer Applications (ICACA) – volume: 2021 start-page: 1 year: 2021 end-page: 13 ident: bib0001 article-title: A computational intelligence approach for predicting medical insurance cost publication-title: Math. Probl. Eng. – volume: 82 start-page: 40309 year: 2023 end-page: 40343 ident: bib0013 article-title: A novel binary horse herd optimization algorithm for feature selection problem publication-title: Multimed. Tools Appl. – volume: 10 start-page: 1834 year: 2023 end-page: 1844 ident: bib0021 article-title: A length-adaptive non-dominated sorting genetic algorithm for Bi-objective high-dimensional feature selection publication-title: IEEE/CAA J. Autom. Sin. – start-page: 163 year: 2017 end-page: 168 ident: bib0026 article-title: Feature selection approach based on whale optimization algorithm publication-title: ) – start-page: 61 year: 2024 end-page: 68 ident: bib0023 article-title: FACO: a novel hybrid feature selection algorithm for high-dimensional data classification publication-title: SoutheastCon 2024 – volume: 32 start-page: 174 year: 2020 end-page: 187 ident: bib0017 article-title: Elitism based multi-objective differential evolution for feature selection: a filter approach with an efficient redundancy measure publication-title: J. King Saud Univ. - Comput. Inf. Sci. – reference: Your machine learning and Data science community. Available online: – volume: 223 year: 2021 ident: bib0025 article-title: Gene selection for microarray data classification based on gray wolf optimizer enhanced with TRIZ-inspired operators publication-title: Knowl. Based Syst. – volume: 6 start-page: 703 year: 2019 end-page: 715 ident: bib0003 article-title: An embedded feature selection method for imbalanced data classification publication-title: IEEE/CAA J. Autom. Sin. – volume: 153 start-page: 1 year: 2018 end-page: 9 ident: bib0018 article-title: A deep learning-based multi-model ensemble method for cancer prediction publication-title: Comput. Methods Programs Biomed. – volume: 8 start-page: 106247 year: 2020 ident: 10.1016/j.knosys.2025.113168_bib0010 article-title: Binary multi-objective grey wolf optimizer for feature selection in classification publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3000040 – volume: 82 start-page: 40309 issue: 26 year: 2023 ident: 10.1016/j.knosys.2025.113168_bib0013 article-title: A novel binary horse herd optimization algorithm for feature selection problem publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-15023-7 – start-page: 61 year: 2024 ident: 10.1016/j.knosys.2025.113168_bib0023 article-title: FACO: a novel hybrid feature selection algorithm for high-dimensional data classification – volume: 6 start-page: 703 issue: 3 year: 2019 ident: 10.1016/j.knosys.2025.113168_bib0003 article-title: An embedded feature selection method for imbalanced data classification publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2019.1911447 – volume: 53 start-page: 1 issue: 5 year: 2020 ident: 10.1016/j.knosys.2025.113168_bib0002 article-title: Causality-based feature selection: methods and evaluations publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3409382 – volume: 11 start-page: 56 issue: 3 year: 2023 ident: 10.1016/j.knosys.2025.113168_bib0028 article-title: Feature selection using new version of V-shaped transfer function for Salp Swarm algorithm in sentiment analysis publication-title: Computation doi: 10.3390/computation11030056 – start-page: 18 year: 2016 ident: 10.1016/j.knosys.2025.113168_bib0005 article-title: LASSO: a feature selection technique in predictive modeling for machine learning – volume: 153 start-page: 1 year: 2018 ident: 10.1016/j.knosys.2025.113168_bib0018 article-title: A deep learning-based multi-model ensemble method for cancer prediction publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.09.005 – start-page: 105 year: 2024 ident: 10.1016/j.knosys.2025.113168_bib0022 article-title: Feature selection with particle swarm for improved classification on high-dimensional datasets – volume: 12 start-page: 21840 year: 2024 ident: 10.1016/j.knosys.2025.113168_bib0037 article-title: MOBCSA: multi-objective binary cuckoo search algorithm for feature selection in bioinformatics publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3362228 – volume: 9 start-page: 1 year: 2013 ident: 10.1016/j.knosys.2025.113168_bib0029 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.09.002 – volume: 41 start-page: 1937 issue: 4 year: 2014 ident: 10.1016/j.knosys.2025.113168_bib0032 article-title: Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.08.089 – volume: 551 year: 2023 ident: 10.1016/j.knosys.2025.113168_bib0036 article-title: Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126467 – volume: 28 start-page: 2947 year: 2017 ident: 10.1016/j.knosys.2025.113168_bib0015 article-title: Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2837-7 – volume: 14 start-page: 1814 issue: 9 year: 2022 ident: 10.1016/j.knosys.2025.113168_bib0008 article-title: Adoption of machine learning in pharmacometrics: an overview of recent implementations and their considerations publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14091814 – volume: 8 start-page: 140936 year: 2020 ident: 10.1016/j.knosys.2025.113168_bib0038 article-title: An efficient binary equilibrium optimizer algorithm for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3013617 – ident: 10.1016/j.knosys.2025.113168_bib0035 – volume: 44 year: 2023 ident: 10.1016/j.knosys.2025.113168_bib0014 article-title: A binary chaotic horse herd optimization algorithm for feature selection publication-title: Eng. Sci. Technol., Int. J. – volume: 34 start-page: 13091 issue: 15 year: 2022 ident: 10.1016/j.knosys.2025.113168_bib0011 article-title: A novel approach for spam detection using horse herd optimization algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07148-x – volume: 223 year: 2021 ident: 10.1016/j.knosys.2025.113168_bib0025 article-title: Gene selection for microarray data classification based on gray wolf optimizer enhanced with TRIZ-inspired operators publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2021.107034 – volume: 70 issue: 2 year: 2022 ident: 10.1016/j.knosys.2025.113168_bib0020 article-title: An ensemble methods for medical insurance costs prediction task publication-title: Comput. Mater. Contin. – volume: 10 start-page: 1834 issue: 9 year: 2023 ident: 10.1016/j.knosys.2025.113168_bib0021 article-title: A length-adaptive non-dominated sorting genetic algorithm for Bi-objective high-dimensional feature selection publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2023.123648 – volume: 213 year: 2021 ident: 10.1016/j.knosys.2025.113168_bib0009 article-title: Horse herd optimization algorithm: a nature-inspired algorithm for high-dimensional optimization problems publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2020.106711 – volume: 29 start-page: 905 issue: 5 year: 2007 ident: 10.1016/j.knosys.2025.113168_bib0031 article-title: Twin support vector machines for pattern classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1068 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.knosys.2025.113168_bib0019 article-title: Improving the accuracy for analyzing heart diseases prediction based on the ensemble method publication-title: Complexity doi: 10.1155/2021/6663455 – volume: 20 start-page: 1614 issue: 12 year: 2014 ident: 10.1016/j.knosys.2025.113168_bib0004 article-title: INFUSE: interactive feature selection for predictive modeling of high-dimensional data publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2014.2346482 – volume: 30 start-page: 362 issue: 4 year: 2018 ident: 10.1016/j.knosys.2025.113168_bib0016 article-title: Elitism-based multi-objective differential evolution with extreme learning machine for feature selection: a novel searching technique publication-title: Connect. Sci. doi: 10.1080/09540091.2018.1487384 – volume: 62 year: 2021 ident: 10.1016/j.knosys.2025.113168_bib0030 article-title: Differential evolution using improved crowding distance for multimodal multiobjective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100849 – volume: 198 year: 2022 ident: 10.1016/j.knosys.2025.113168_bib0007 article-title: A review of recent approaches on wrapper feature selection for intrusion detection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116822 – volume: 32 start-page: 174 issue: 2 year: 2020 ident: 10.1016/j.knosys.2025.113168_bib0017 article-title: Elitism based multi-objective differential evolution for feature selection: a filter approach with an efficient redundancy measure publication-title: J. King Saud Univ. - Comput. Inf. Sci. doi: 10.1016/j.jksuci.2017.08.001 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.knosys.2025.113168_bib0001 article-title: A computational intelligence approach for predicting medical insurance cost publication-title: Math. Probl. Eng. doi: 10.1155/2021/1162553 – volume: 141 year: 2022 ident: 10.1016/j.knosys.2025.113168_bib0024 article-title: Binary horse herd optimization algorithm with crossover operators for feature selection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105152 – volume: 35 start-page: 6153 issue: 8 year: 2023 ident: 10.1016/j.knosys.2025.113168_bib0027 article-title: Enhanced Ali Baba and the forty thieves algorithm for feature selection publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-08015-5 – volume: 36 issue: 9 year: 2024 ident: 10.1016/j.knosys.2025.113168_bib0006 article-title: IMOABC: an efficient multi-objective filter–wrapper hybrid approach for high-dimensional feature selection publication-title: J. King Saud Univ. - Comput. Inf. Sci. doi: 10.1016/j.jksuci.2024.102205 – start-page: 163 year: 2017 ident: 10.1016/j.knosys.2025.113168_bib0026 article-title: Feature selection approach based on whale optimization algorithm – volume: 10 start-page: 26795 year: 2022 ident: 10.1016/j.knosys.2025.113168_bib0012 article-title: BinHOA: efficient binary horse herd optimization method for feature selection: analysis and validations publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3156593 – volume: 111 year: 2021 ident: 10.1016/j.knosys.2025.113168_bib0033 article-title: Attribute and instance weighted naive Bayes publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107674 – volume: 83 year: 2019 ident: 10.1016/j.knosys.2025.113168_bib0034 article-title: Comprehensive evaluation of twin SVM based classifiers on UCI datasets publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105617 |
| SSID | ssj0002218 |
| Score | 2.449074 |
| Snippet | Data analysis presents significant challenges due to its high dimensionality, imbalanced distribution, and complexity. Traditional feature selection methods... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 113168 |
| SubjectTerms | Binary horse herd optimization algorithm light gradient boosting Multi-objective Pearson correlation Weighted entropy variance |
| Title | Feature selection using binary horse herd optimization algorithm with lightGBA ensemble classification in microarray data |
| URI | https://dx.doi.org/10.1016/j.knosys.2025.113168 |
| Volume | 312 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0950-7051 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0950-7051 databaseCode: ACRLP dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0950-7051 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0950-7051 databaseCode: AIKHN dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002218 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0950-7051 databaseCode: AKRWK dateStart: 19871201 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpSXPLCaJo4T07FUlAKiC1TqFtmO0wbyqNJ06MJvx5cHDwmBxJjoLEXny91n67v7ELowZwZhWz1NLKYEMZBaEaGkTZTmIoR6TSk0OD-OvdGE3U_daQsNml4YoFXWub_K6WW2rt90a292F1HUfTLgwMSrKVhuVbigg51xUDG4fPukeVBa3vGBMQHrpn2u5Hi9ptlyDUO7qQviJjYMXP2pPH0pOcMdtFVjRdyvPmcXtXS6h7YbHQZc_5b7aA04bpVrvCxFbYynMdDZZ1iWzbZ4nuVLjc3mBDgzGSKpWy-xiGdZHhXzBMNtLI7hnH573cfmZKsTGWusAFoDl6iyj1KcAH9P5LlYY-CWHqDJ8OZ5MCK1pAJR1PEK4skwDCwecqZAn6bnhlJ5IQz1g6Evpey8KVnK7UnFlbAYD0rAGIaONEhH2s4haqdZqo8QZpaiTHLqacZZEDg9ABsBo8KkckvQqw5yGk_6qp43DrIXsd8Qy178yv8--N-v_N9B5GPVopq38Yc9bzbJ_xY3vikJv648_vfKE7QJT8BEs91T1C7ylT4z0KSQ52XsnaON_t3DaPwO1mDlrg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD6ymiePEdCwVpUDbhVbqFtmOQwttUqXp0IXfji8PHhICiTU5S9HZue8767s7hC5NziBsq6GJxZQghlIrIpS0idJchIDXlEKBc6_vdYbsYeSOKqhV1sKArLKI_XlMz6J18aReeLM-n0zqT4YcmPNqAMvNgWsNrTOXcsjArt4-dR6UZpd8YE3AvKyfy0Rer1G8WEHXburCdBMbOq7-hE9fMKe9g7YKsoib-ffsooqO9tB2OYgBF__lPloBkVsmGi-yqTbG1Rj07M9YZtW2eBwnC43N7gQ4NiFiVtReYjF9jpNJOp5huI7FU0jU726a2KS2eianGivg1iAmyu0nEZ6BgE8kiVhhEJceoGH7dtDqkGKmAlHU8VLiyTAMLB5ypmBATcMNpfJC6OoHXV-yufMGs5TbkIorYTEeZIwxDB1pqI60nUNUjeJIHyHMLEWZ5NTTjLMgcBrANgJGhYnllqDXNeSUnvRV0XAc5l5M_VJZ9uLn_vfB_37u_xoiH6vmecONP-x5uUn-t4PjG0z4deXxv1deoI3OoNf1u_f9xxO0CW9Alma7p6iaJkt9ZnhKKs-zc_gOOInnQw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+using+binary+horse+herd+optimization+algorithm+with+lightGBA+ensemble+classification+in+microarray+data&rft.jtitle=Knowledge-based+systems&rft.au=Preyanka+Lakshme%2C+R.S.&rft.au=Ganesh+Kumar%2C+S.&rft.date=2025-03-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.volume=312&rft_id=info:doi/10.1016%2Fj.knosys.2025.113168&rft.externalDocID=S0950705125002151 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |