Feature selection using binary horse herd optimization algorithm with lightGBA ensemble classification in microarray data

Data analysis presents significant challenges due to its high dimensionality, imbalanced distribution, and complexity. Traditional feature selection methods often fall short of addressing these challenges effectively. In response, this research proposes a novel hybrid methodology that integrates mul...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 312; p. 113168
Main Authors Preyanka Lakshme, R.S., Ganesh Kumar, S.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.03.2025
Subjects
Online AccessGet full text
ISSN0950-7051
DOI10.1016/j.knosys.2025.113168

Cover

Abstract Data analysis presents significant challenges due to its high dimensionality, imbalanced distribution, and complexity. Traditional feature selection methods often fall short of addressing these challenges effectively. In response, this research proposes a novel hybrid methodology that integrates multi-filtering techniques with the Multi-Objective Binary Horse Herd Optimization (MOBHHO) algorithm to tackle gene selection and ensemble classification in microarray data. The study begins by identifying the limitations of existing methods, emphasizing the need for a comprehensive approach that combines the strengths of multi-filtering and metaheuristic optimization. Leveraging various filtering methods, including Information Gain, entropy, Pearson correlation, mutual information, mean absolute deviation, and weighted entropy variance, the proposed methodology aims to mitigate biases and enhance the robustness of feature selection. Subsequently, the MOBHHO wrapper method facilitates multi-objective optimization, optimizing objectives by minimizing selected features and maximizing prediction criteria. Finally, the ensemble prediction model LightGBA capitalizes on the diverse solutions obtained from MOBHHO, striking an optimal balance between feature count and prediction accuracy. The proposed method was evaluated on multiple high-dimensional microarray datasets such as Small Round Blue Cell Tumors (SRBCT), Prostate tumors, Lung cancer, Leukemia, Colon tumor and diffuse large B-cell lymphoma (DLBCL), Lymphoma, ALL-AML-4C, ALL-AML-3C, and MLL datasets are used to assess its effectiveness in feature selection and classification accuracy. The experimental outcomes demonstrate the efficacy of the proposed methodology, showcasing improved prediction accuracy and feature subset selection across diverse datasets.
AbstractList Data analysis presents significant challenges due to its high dimensionality, imbalanced distribution, and complexity. Traditional feature selection methods often fall short of addressing these challenges effectively. In response, this research proposes a novel hybrid methodology that integrates multi-filtering techniques with the Multi-Objective Binary Horse Herd Optimization (MOBHHO) algorithm to tackle gene selection and ensemble classification in microarray data. The study begins by identifying the limitations of existing methods, emphasizing the need for a comprehensive approach that combines the strengths of multi-filtering and metaheuristic optimization. Leveraging various filtering methods, including Information Gain, entropy, Pearson correlation, mutual information, mean absolute deviation, and weighted entropy variance, the proposed methodology aims to mitigate biases and enhance the robustness of feature selection. Subsequently, the MOBHHO wrapper method facilitates multi-objective optimization, optimizing objectives by minimizing selected features and maximizing prediction criteria. Finally, the ensemble prediction model LightGBA capitalizes on the diverse solutions obtained from MOBHHO, striking an optimal balance between feature count and prediction accuracy. The proposed method was evaluated on multiple high-dimensional microarray datasets such as Small Round Blue Cell Tumors (SRBCT), Prostate tumors, Lung cancer, Leukemia, Colon tumor and diffuse large B-cell lymphoma (DLBCL), Lymphoma, ALL-AML-4C, ALL-AML-3C, and MLL datasets are used to assess its effectiveness in feature selection and classification accuracy. The experimental outcomes demonstrate the efficacy of the proposed methodology, showcasing improved prediction accuracy and feature subset selection across diverse datasets.
ArticleNumber 113168
Author Ganesh Kumar, S.
Preyanka Lakshme, R.S.
Author_xml – sequence: 1
  givenname: R.S.
  orcidid: 0000-0003-1643-5474
  surname: Preyanka Lakshme
  fullname: Preyanka Lakshme, R.S.
  email: pr3301@srmist.edu.in
– sequence: 2
  givenname: S.
  surname: Ganesh Kumar
  fullname: Ganesh Kumar, S.
  email: ganeshk1@srmist.edu.in
BookMark eNqFkL1OwzAURj0UibbwBgx-gQTb-XHKgFQqWpAqscBsOY7d3JI4le2CwtOTNkwMsNy73PNdfWeGJrazGqEbSmJKaH67j99t53sfM8KymNKE5sUETckiIxEnGb1EM-_3hBDGaDFF_VrLcHQae91oFaCz-OjB7nAJVroe153zGtfaVbg7BGjhS56PZLPrHIS6xZ_DxA3s6rB5WGJtvW7LRmPVSO_BgBrvweIWlOukc7LHlQzyCl0Y2Xh9_bPn6G39-Lp6irYvm-fVchspluQhyktjKsINTxVPOFtkplS5yQgt8iIldCjICkJVtigVV5KkvKIZ4dSYpKSclTSZo3TMHb5777QRBwft0E1QIk7KxF6MysRJmRiVDdjdL0xBOHcJTkLzH3w_wnoo9gHaCa9AW6UrcINlUXXwd8A3ssSRMg
CitedBy_id crossref_primary_10_1007_s10044_025_01446_5
Cites_doi 10.1109/ACCESS.2020.3000040
10.1007/s11042-023-15023-7
10.1109/JAS.2019.1911447
10.1145/3409382
10.3390/computation11030056
10.1016/j.cmpb.2017.09.005
10.1109/ACCESS.2024.3362228
10.1016/j.swevo.2012.09.002
10.1016/j.eswa.2013.08.089
10.1016/j.neucom.2023.126467
10.1007/s00521-017-2837-7
10.3390/pharmaceutics14091814
10.1109/ACCESS.2020.3013617
10.1007/s00521-022-07148-x
10.1016/j.knosys.2021.107034
10.1109/JAS.2023.123648
10.1016/j.knosys.2020.106711
10.1109/TPAMI.2007.1068
10.1155/2021/6663455
10.1109/TVCG.2014.2346482
10.1080/09540091.2018.1487384
10.1016/j.swevo.2021.100849
10.1016/j.eswa.2022.116822
10.1016/j.jksuci.2017.08.001
10.1155/2021/1162553
10.1016/j.compbiomed.2021.105152
10.1007/s00521-022-08015-5
10.1016/j.jksuci.2024.102205
10.1109/ACCESS.2022.3156593
10.1016/j.patcog.2020.107674
10.1016/j.asoc.2019.105617
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2025.113168
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_knosys_2025_113168
S0950705125002151
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
AAQXK
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
~HD
ID FETCH-LOGICAL-c236t-6bffd07f74c737295fbc6f5018684011132801c59bc7ca047d15071ff3b172b13
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Thu Apr 24 23:12:16 EDT 2025
Wed Oct 01 08:32:59 EDT 2025
Sat May 03 15:57:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Weighted entropy variance
light gradient boosting
Binary horse herd optimization algorithm
Multi-objective
Pearson correlation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-6bffd07f74c737295fbc6f5018684011132801c59bc7ca047d15071ff3b172b13
ORCID 0000-0003-1643-5474
ParticipantIDs crossref_primary_10_1016_j_knosys_2025_113168
crossref_citationtrail_10_1016_j_knosys_2025_113168
elsevier_sciencedirect_doi_10_1016_j_knosys_2025_113168
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-15
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References MiarNaeimi, Azizyan, Rashki (bib0009) 2021; 213
Parul Gupta, Tayal (bib0022) 2024
Farid, Zhang, Rahman, Hossain, Strachan (bib0032) 2014; 41
Elmanakhly, Saleh, Rashed, Abdel-Basset (bib0012) 2022; 10
Zhang, Jiang, Yu (bib0033) 2021; 111
Abdulwahab, Ajitha, Saif, Murshed, Ghanem (bib0037) 2024; 12
ul Hassan, Iqbal, Hussain, AlSalman, Mosleh, Ullah (bib0001) 2021; 2021
Shakhovska, Melnykova, Chopiyak (bib0020) 2022; 70
Xiao, Wu, Lin, Zhao (bib0018) 2018; 153
Janssen, Bennis, Mathôt (bib0008) 2022; 14
Sindhu, Ngadiran, Yacob, Zahri, Hariharan (bib0015) 2017; 28
Nayak, Rout, Jagadev, Swarnkar (bib0016) 2018; 30
Kristiyanti, Sitanggang, Nurdiati (bib0028) 2023; 11
Asghari Varzaneh, Hosseini, Javidi (bib0013) 2023; 82
Zhou, Chen, Wu, Heidari, Chen, Alabdulkreem, Wang (bib0036) 2023; 551
Yu, Guo, Liu, Li, Wang, Ling, Wu (bib0002) 2020; 53
Li, Luo, Zhang, Chen, Zhou (bib0006) 2024; 36
Gao, Ali, Shaban Hassan, Anwar (bib0019) 2021; 2021
Maldonado, Riff, Neveu (bib0007) 2022; 198
Krause, Perer, Bertini (bib0004) 2014; 20
Gong, Zhou, Wu, Zhou, Wen (bib0021) 2023; 10
Al-Tashi, Abdulkadir, Rais, Mirjalili, Alhussian, Ragab, Alqushaibi (bib0010) 2020; 8
Muthukrishnan, Rohini (bib0005) 2016
Awadallah, Hammouri, Al-Betar, Braik, Elaziz (bib0024) 2022; 141
(accessed on 15 January 2022).
Braik (bib0027) 2023; 35
Your machine learning and Data science community. Available online
Gao, Zhou, Luo (bib0038) 2020; 8
Nayak, Rout, Jagadev, Swarnkar (bib0017) 2020; 32
Yue, Suganthan, Liang, Qu, Yu, Zhu, Yan (bib0030) 2021; 62
Zaimoğlu, Yurtay, Demirci, Yurtay (bib0014) 2023; 44
Alomari, Makhadmeh, Al-Betar, Alyasseri, Doush, Abasi, Zitar (bib0025) 2021; 223
Jayadeva, Khemchandani, Chandra (bib0031) 2007; 29
Hosseinalipour, Ghanbarzadeh (bib0011) 2022; 34
Tanveer, Gautam, Suganthan (bib0034) 2019; 83
Liu, Zhou, Liu (bib0003) 2019; 6
Popoola, Oyeniran (bib0023) 2024
Mirjalili, Lewis (bib0029) 2013; 9
Sharawi, Zawbaa, Emary (bib0026) 2017
Al-Tashi (10.1016/j.knosys.2025.113168_bib0010) 2020; 8
Zhang (10.1016/j.knosys.2025.113168_bib0033) 2021; 111
Mirjalili (10.1016/j.knosys.2025.113168_bib0029) 2013; 9
Xiao (10.1016/j.knosys.2025.113168_bib0018) 2018; 153
Muthukrishnan (10.1016/j.knosys.2025.113168_bib0005) 2016
Yue (10.1016/j.knosys.2025.113168_bib0030) 2021; 62
Abdulwahab (10.1016/j.knosys.2025.113168_bib0037) 2024; 12
Asghari Varzaneh (10.1016/j.knosys.2025.113168_bib0013) 2023; 82
Zaimoğlu (10.1016/j.knosys.2025.113168_bib0014) 2023; 44
Tanveer (10.1016/j.knosys.2025.113168_bib0034) 2019; 83
Janssen (10.1016/j.knosys.2025.113168_bib0008) 2022; 14
Sharawi (10.1016/j.knosys.2025.113168_bib0026) 2017
Yu (10.1016/j.knosys.2025.113168_bib0002) 2020; 53
Awadallah (10.1016/j.knosys.2025.113168_bib0024) 2022; 141
Nayak (10.1016/j.knosys.2025.113168_bib0017) 2020; 32
Alomari (10.1016/j.knosys.2025.113168_bib0025) 2021; 223
Liu (10.1016/j.knosys.2025.113168_bib0003) 2019; 6
Zhou (10.1016/j.knosys.2025.113168_bib0036) 2023; 551
Hosseinalipour (10.1016/j.knosys.2025.113168_bib0011) 2022; 34
Gong (10.1016/j.knosys.2025.113168_bib0021) 2023; 10
Braik (10.1016/j.knosys.2025.113168_bib0027) 2023; 35
Farid (10.1016/j.knosys.2025.113168_bib0032) 2014; 41
MiarNaeimi (10.1016/j.knosys.2025.113168_bib0009) 2021; 213
Elmanakhly (10.1016/j.knosys.2025.113168_bib0012) 2022; 10
Sindhu (10.1016/j.knosys.2025.113168_bib0015) 2017; 28
Popoola (10.1016/j.knosys.2025.113168_bib0023) 2024
Kristiyanti (10.1016/j.knosys.2025.113168_bib0028) 2023; 11
10.1016/j.knosys.2025.113168_bib0035
Parul Gupta (10.1016/j.knosys.2025.113168_bib0022) 2024
ul Hassan (10.1016/j.knosys.2025.113168_bib0001) 2021; 2021
Li (10.1016/j.knosys.2025.113168_bib0006) 2024; 36
Gao (10.1016/j.knosys.2025.113168_bib0038) 2020; 8
Krause (10.1016/j.knosys.2025.113168_bib0004) 2014; 20
Jayadeva (10.1016/j.knosys.2025.113168_bib0031) 2007; 29
Gao (10.1016/j.knosys.2025.113168_bib0019) 2021; 2021
Shakhovska (10.1016/j.knosys.2025.113168_bib0020) 2022; 70
Maldonado (10.1016/j.knosys.2025.113168_bib0007) 2022; 198
Nayak (10.1016/j.knosys.2025.113168_bib0016) 2018; 30
References_xml – volume: 20
  start-page: 1614
  year: 2014
  end-page: 1623
  ident: bib0004
  article-title: INFUSE: interactive feature selection for predictive modeling of high-dimensional data
  publication-title: IEEE Trans. Vis. Comput. Graph.
– volume: 213
  year: 2021
  ident: bib0009
  article-title: Horse herd optimization algorithm: a nature-inspired algorithm for high-dimensional optimization problems
  publication-title: Knowl. Based Syst.
– volume: 30
  start-page: 362
  year: 2018
  end-page: 387
  ident: bib0016
  article-title: Elitism-based multi-objective differential evolution with extreme learning machine for feature selection: a novel searching technique
  publication-title: Connect. Sci.
– volume: 111
  year: 2021
  ident: bib0033
  article-title: Attribute and instance weighted naive Bayes
  publication-title: Pattern Recognit.
– volume: 8
  start-page: 106247
  year: 2020
  end-page: 106263
  ident: bib0010
  article-title: Binary multi-objective grey wolf optimizer for feature selection in classification
  publication-title: IEEE Access
– volume: 12
  start-page: 21840
  year: 2024
  end-page: 21867
  ident: bib0037
  article-title: MOBCSA: multi-objective binary cuckoo search algorithm for feature selection in bioinformatics
  publication-title: IEEE Access
– volume: 198
  year: 2022
  ident: bib0007
  article-title: A review of recent approaches on wrapper feature selection for intrusion detection
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 140936
  year: 2020
  end-page: 140963
  ident: bib0038
  article-title: An efficient binary equilibrium optimizer algorithm for feature selection
  publication-title: IEEE Access
– volume: 14
  start-page: 1814
  year: 2022
  ident: bib0008
  article-title: Adoption of machine learning in pharmacometrics: an overview of recent implementations and their considerations
  publication-title: Pharmaceutics
– volume: 44
  year: 2023
  ident: bib0014
  article-title: A binary chaotic horse herd optimization algorithm for feature selection
  publication-title: Eng. Sci. Technol., Int. J.
– volume: 11
  start-page: 56
  year: 2023
  ident: bib0028
  article-title: Feature selection using new version of V-shaped transfer function for Salp Swarm algorithm in sentiment analysis
  publication-title: Computation
– volume: 62
  year: 2021
  ident: bib0030
  article-title: Differential evolution using improved crowding distance for multimodal multiobjective optimization
  publication-title: Swarm Evol. Comput.
– volume: 70
  year: 2022
  ident: bib0020
  article-title: An ensemble methods for medical insurance costs prediction task
  publication-title: Comput. Mater. Contin.
– volume: 141
  year: 2022
  ident: bib0024
  article-title: Binary horse herd optimization algorithm with crossover operators for feature selection
  publication-title: Comput. Biol. Med.
– volume: 35
  start-page: 6153
  year: 2023
  end-page: 6184
  ident: bib0027
  article-title: Enhanced Ali Baba and the forty thieves algorithm for feature selection
  publication-title: Neural Comput. Appl.
– volume: 551
  year: 2023
  ident: bib0036
  article-title: Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection
  publication-title: Neurocomputing
– volume: 53
  start-page: 1
  year: 2020
  end-page: 36
  ident: bib0002
  article-title: Causality-based feature selection: methods and evaluations
  publication-title: ACM Comput. Surv. (CSUR)
– start-page: 105
  year: 2024
  end-page: 117
  ident: bib0022
  article-title: Feature selection with particle swarm for improved classification on high-dimensional datasets
  publication-title: International Conference on Innovative Computing and Communication
– volume: 29
  start-page: 905
  year: 2007
  end-page: 910
  ident: bib0031
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 41
  start-page: 1937
  year: 2014
  end-page: 1946
  ident: bib0032
  article-title: Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks
  publication-title: Expert Syst. Appl.
– reference: (accessed on 15 January 2022).
– volume: 36
  year: 2024
  ident: bib0006
  article-title: IMOABC: an efficient multi-objective filter–wrapper hybrid approach for high-dimensional feature selection
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
– volume: 10
  start-page: 26795
  year: 2022
  end-page: 26816
  ident: bib0012
  article-title: BinHOA: efficient binary horse herd optimization method for feature selection: analysis and validations
  publication-title: IEEE Access
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib0019
  article-title: Improving the accuracy for analyzing heart diseases prediction based on the ensemble method
  publication-title: Complexity
– volume: 28
  start-page: 2947
  year: 2017
  end-page: 2958
  ident: bib0015
  article-title: Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism
  publication-title: Neural Comput. Appl.
– volume: 34
  start-page: 13091
  year: 2022
  end-page: 13105
  ident: bib0011
  article-title: A novel approach for spam detection using horse herd optimization algorithm
  publication-title: Neural Comput. Appl.
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: bib0029
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
– volume: 83
  year: 2019
  ident: bib0034
  article-title: Comprehensive evaluation of twin SVM based classifiers on UCI datasets
  publication-title: Appl. Soft Comput.
– start-page: 18
  year: 2016
  end-page: 20
  ident: bib0005
  article-title: LASSO: a feature selection technique in predictive modeling for machine learning
  publication-title: 2016 IEEE International Conference on Advances in Computer Applications (ICACA)
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib0001
  article-title: A computational intelligence approach for predicting medical insurance cost
  publication-title: Math. Probl. Eng.
– volume: 82
  start-page: 40309
  year: 2023
  end-page: 40343
  ident: bib0013
  article-title: A novel binary horse herd optimization algorithm for feature selection problem
  publication-title: Multimed. Tools Appl.
– volume: 10
  start-page: 1834
  year: 2023
  end-page: 1844
  ident: bib0021
  article-title: A length-adaptive non-dominated sorting genetic algorithm for Bi-objective high-dimensional feature selection
  publication-title: IEEE/CAA J. Autom. Sin.
– start-page: 163
  year: 2017
  end-page: 168
  ident: bib0026
  article-title: Feature selection approach based on whale optimization algorithm
  publication-title: )
– start-page: 61
  year: 2024
  end-page: 68
  ident: bib0023
  article-title: FACO: a novel hybrid feature selection algorithm for high-dimensional data classification
  publication-title: SoutheastCon 2024
– volume: 32
  start-page: 174
  year: 2020
  end-page: 187
  ident: bib0017
  article-title: Elitism based multi-objective differential evolution for feature selection: a filter approach with an efficient redundancy measure
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
– reference: Your machine learning and Data science community. Available online:
– volume: 223
  year: 2021
  ident: bib0025
  article-title: Gene selection for microarray data classification based on gray wolf optimizer enhanced with TRIZ-inspired operators
  publication-title: Knowl. Based Syst.
– volume: 6
  start-page: 703
  year: 2019
  end-page: 715
  ident: bib0003
  article-title: An embedded feature selection method for imbalanced data classification
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 153
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0018
  article-title: A deep learning-based multi-model ensemble method for cancer prediction
  publication-title: Comput. Methods Programs Biomed.
– volume: 8
  start-page: 106247
  year: 2020
  ident: 10.1016/j.knosys.2025.113168_bib0010
  article-title: Binary multi-objective grey wolf optimizer for feature selection in classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000040
– volume: 82
  start-page: 40309
  issue: 26
  year: 2023
  ident: 10.1016/j.knosys.2025.113168_bib0013
  article-title: A novel binary horse herd optimization algorithm for feature selection problem
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-15023-7
– start-page: 61
  year: 2024
  ident: 10.1016/j.knosys.2025.113168_bib0023
  article-title: FACO: a novel hybrid feature selection algorithm for high-dimensional data classification
– volume: 6
  start-page: 703
  issue: 3
  year: 2019
  ident: 10.1016/j.knosys.2025.113168_bib0003
  article-title: An embedded feature selection method for imbalanced data classification
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2019.1911447
– volume: 53
  start-page: 1
  issue: 5
  year: 2020
  ident: 10.1016/j.knosys.2025.113168_bib0002
  article-title: Causality-based feature selection: methods and evaluations
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3409382
– volume: 11
  start-page: 56
  issue: 3
  year: 2023
  ident: 10.1016/j.knosys.2025.113168_bib0028
  article-title: Feature selection using new version of V-shaped transfer function for Salp Swarm algorithm in sentiment analysis
  publication-title: Computation
  doi: 10.3390/computation11030056
– start-page: 18
  year: 2016
  ident: 10.1016/j.knosys.2025.113168_bib0005
  article-title: LASSO: a feature selection technique in predictive modeling for machine learning
– volume: 153
  start-page: 1
  year: 2018
  ident: 10.1016/j.knosys.2025.113168_bib0018
  article-title: A deep learning-based multi-model ensemble method for cancer prediction
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.09.005
– start-page: 105
  year: 2024
  ident: 10.1016/j.knosys.2025.113168_bib0022
  article-title: Feature selection with particle swarm for improved classification on high-dimensional datasets
– volume: 12
  start-page: 21840
  year: 2024
  ident: 10.1016/j.knosys.2025.113168_bib0037
  article-title: MOBCSA: multi-objective binary cuckoo search algorithm for feature selection in bioinformatics
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3362228
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.knosys.2025.113168_bib0029
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.09.002
– volume: 41
  start-page: 1937
  issue: 4
  year: 2014
  ident: 10.1016/j.knosys.2025.113168_bib0032
  article-title: Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.08.089
– volume: 551
  year: 2023
  ident: 10.1016/j.knosys.2025.113168_bib0036
  article-title: Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126467
– volume: 28
  start-page: 2947
  year: 2017
  ident: 10.1016/j.knosys.2025.113168_bib0015
  article-title: Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2837-7
– volume: 14
  start-page: 1814
  issue: 9
  year: 2022
  ident: 10.1016/j.knosys.2025.113168_bib0008
  article-title: Adoption of machine learning in pharmacometrics: an overview of recent implementations and their considerations
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14091814
– volume: 8
  start-page: 140936
  year: 2020
  ident: 10.1016/j.knosys.2025.113168_bib0038
  article-title: An efficient binary equilibrium optimizer algorithm for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013617
– ident: 10.1016/j.knosys.2025.113168_bib0035
– volume: 44
  year: 2023
  ident: 10.1016/j.knosys.2025.113168_bib0014
  article-title: A binary chaotic horse herd optimization algorithm for feature selection
  publication-title: Eng. Sci. Technol., Int. J.
– volume: 34
  start-page: 13091
  issue: 15
  year: 2022
  ident: 10.1016/j.knosys.2025.113168_bib0011
  article-title: A novel approach for spam detection using horse herd optimization algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07148-x
– volume: 223
  year: 2021
  ident: 10.1016/j.knosys.2025.113168_bib0025
  article-title: Gene selection for microarray data classification based on gray wolf optimizer enhanced with TRIZ-inspired operators
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.107034
– volume: 70
  issue: 2
  year: 2022
  ident: 10.1016/j.knosys.2025.113168_bib0020
  article-title: An ensemble methods for medical insurance costs prediction task
  publication-title: Comput. Mater. Contin.
– volume: 10
  start-page: 1834
  issue: 9
  year: 2023
  ident: 10.1016/j.knosys.2025.113168_bib0021
  article-title: A length-adaptive non-dominated sorting genetic algorithm for Bi-objective high-dimensional feature selection
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2023.123648
– volume: 213
  year: 2021
  ident: 10.1016/j.knosys.2025.113168_bib0009
  article-title: Horse herd optimization algorithm: a nature-inspired algorithm for high-dimensional optimization problems
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.106711
– volume: 29
  start-page: 905
  issue: 5
  year: 2007
  ident: 10.1016/j.knosys.2025.113168_bib0031
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1068
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.knosys.2025.113168_bib0019
  article-title: Improving the accuracy for analyzing heart diseases prediction based on the ensemble method
  publication-title: Complexity
  doi: 10.1155/2021/6663455
– volume: 20
  start-page: 1614
  issue: 12
  year: 2014
  ident: 10.1016/j.knosys.2025.113168_bib0004
  article-title: INFUSE: interactive feature selection for predictive modeling of high-dimensional data
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2014.2346482
– volume: 30
  start-page: 362
  issue: 4
  year: 2018
  ident: 10.1016/j.knosys.2025.113168_bib0016
  article-title: Elitism-based multi-objective differential evolution with extreme learning machine for feature selection: a novel searching technique
  publication-title: Connect. Sci.
  doi: 10.1080/09540091.2018.1487384
– volume: 62
  year: 2021
  ident: 10.1016/j.knosys.2025.113168_bib0030
  article-title: Differential evolution using improved crowding distance for multimodal multiobjective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100849
– volume: 198
  year: 2022
  ident: 10.1016/j.knosys.2025.113168_bib0007
  article-title: A review of recent approaches on wrapper feature selection for intrusion detection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116822
– volume: 32
  start-page: 174
  issue: 2
  year: 2020
  ident: 10.1016/j.knosys.2025.113168_bib0017
  article-title: Elitism based multi-objective differential evolution for feature selection: a filter approach with an efficient redundancy measure
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2017.08.001
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.knosys.2025.113168_bib0001
  article-title: A computational intelligence approach for predicting medical insurance cost
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/1162553
– volume: 141
  year: 2022
  ident: 10.1016/j.knosys.2025.113168_bib0024
  article-title: Binary horse herd optimization algorithm with crossover operators for feature selection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105152
– volume: 35
  start-page: 6153
  issue: 8
  year: 2023
  ident: 10.1016/j.knosys.2025.113168_bib0027
  article-title: Enhanced Ali Baba and the forty thieves algorithm for feature selection
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-08015-5
– volume: 36
  issue: 9
  year: 2024
  ident: 10.1016/j.knosys.2025.113168_bib0006
  article-title: IMOABC: an efficient multi-objective filter–wrapper hybrid approach for high-dimensional feature selection
  publication-title: J. King Saud Univ. - Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2024.102205
– start-page: 163
  year: 2017
  ident: 10.1016/j.knosys.2025.113168_bib0026
  article-title: Feature selection approach based on whale optimization algorithm
– volume: 10
  start-page: 26795
  year: 2022
  ident: 10.1016/j.knosys.2025.113168_bib0012
  article-title: BinHOA: efficient binary horse herd optimization method for feature selection: analysis and validations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3156593
– volume: 111
  year: 2021
  ident: 10.1016/j.knosys.2025.113168_bib0033
  article-title: Attribute and instance weighted naive Bayes
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107674
– volume: 83
  year: 2019
  ident: 10.1016/j.knosys.2025.113168_bib0034
  article-title: Comprehensive evaluation of twin SVM based classifiers on UCI datasets
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105617
SSID ssj0002218
Score 2.449074
Snippet Data analysis presents significant challenges due to its high dimensionality, imbalanced distribution, and complexity. Traditional feature selection methods...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113168
SubjectTerms Binary horse herd optimization algorithm
light gradient boosting
Multi-objective
Pearson correlation
Weighted entropy variance
Title Feature selection using binary horse herd optimization algorithm with lightGBA ensemble classification in microarray data
URI https://dx.doi.org/10.1016/j.knosys.2025.113168
Volume 312
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0950-7051
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002218
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0950-7051
  databaseCode: ACRLP
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002218
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0950-7051
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002218
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0950-7051
  databaseCode: AIKHN
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002218
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0950-7051
  databaseCode: AKRWK
  dateStart: 19871201
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpSXPLCaJo4T07FUlAKiC1TqFtmO0wbyqNJ06MJvx5cHDwmBxJjoLEXny91n67v7ELowZwZhWz1NLKYEMZBaEaGkTZTmIoR6TSk0OD-OvdGE3U_daQsNml4YoFXWub_K6WW2rt90a292F1HUfTLgwMSrKVhuVbigg51xUDG4fPukeVBa3vGBMQHrpn2u5Hi9ptlyDUO7qQviJjYMXP2pPH0pOcMdtFVjRdyvPmcXtXS6h7YbHQZc_5b7aA04bpVrvCxFbYynMdDZZ1iWzbZ4nuVLjc3mBDgzGSKpWy-xiGdZHhXzBMNtLI7hnH573cfmZKsTGWusAFoDl6iyj1KcAH9P5LlYY-CWHqDJ8OZ5MCK1pAJR1PEK4skwDCwecqZAn6bnhlJ5IQz1g6Evpey8KVnK7UnFlbAYD0rAGIaONEhH2s4haqdZqo8QZpaiTHLqacZZEDg9ABsBo8KkckvQqw5yGk_6qp43DrIXsd8Qy178yv8--N-v_N9B5GPVopq38Yc9bzbJ_xY3vikJv648_vfKE7QJT8BEs91T1C7ylT4z0KSQ52XsnaON_t3DaPwO1mDlrg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD6ymiePEdCwVpUDbhVbqFtmOQwttUqXp0IXfji8PHhICiTU5S9HZue8767s7hC5NziBsq6GJxZQghlIrIpS0idJchIDXlEKBc6_vdYbsYeSOKqhV1sKArLKI_XlMz6J18aReeLM-n0zqT4YcmPNqAMvNgWsNrTOXcsjArt4-dR6UZpd8YE3AvKyfy0Rer1G8WEHXburCdBMbOq7-hE9fMKe9g7YKsoib-ffsooqO9tB2OYgBF__lPloBkVsmGi-yqTbG1Rj07M9YZtW2eBwnC43N7gQ4NiFiVtReYjF9jpNJOp5huI7FU0jU726a2KS2eianGivg1iAmyu0nEZ6BgE8kiVhhEJceoGH7dtDqkGKmAlHU8VLiyTAMLB5ypmBATcMNpfJC6OoHXV-yufMGs5TbkIorYTEeZIwxDB1pqI60nUNUjeJIHyHMLEWZ5NTTjLMgcBrANgJGhYnllqDXNeSUnvRV0XAc5l5M_VJZ9uLn_vfB_37u_xoiH6vmecONP-x5uUn-t4PjG0z4deXxv1deoI3OoNf1u_f9xxO0CW9Alma7p6iaJkt9ZnhKKs-zc_gOOInnQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+using+binary+horse+herd+optimization+algorithm+with+lightGBA+ensemble+classification+in+microarray+data&rft.jtitle=Knowledge-based+systems&rft.au=Preyanka+Lakshme%2C+R.S.&rft.au=Ganesh+Kumar%2C+S.&rft.date=2025-03-15&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.volume=312&rft_id=info:doi/10.1016%2Fj.knosys.2025.113168&rft.externalDocID=S0950705125002151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon