Accelerated bone defect regeneration through sequential activation of the M1 and M2 phenotypes of macrophages by a composite BMP-2@SIS hydrogel: An immunomodulatory perspective
The immune response of the host towards foreign body, especially in the form of giant cell reaction against the implanted materials, is a vital factor for determining the repair outcome of bone defect. Biomaterials with good immunomodulatory capacity and suitable degradation may promote the regenera...
Saved in:
Published in | Composites. Part B, Engineering Vol. 243; p. 110149 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1359-8368 1879-1069 |
DOI | 10.1016/j.compositesb.2022.110149 |
Cover
Abstract | The immune response of the host towards foreign body, especially in the form of giant cell reaction against the implanted materials, is a vital factor for determining the repair outcome of bone defect. Biomaterials with good immunomodulatory capacity and suitable degradation may promote the regeneration of bone defect and osteointegration with the host. Small intestine submucosa (SIS), a decellularized material, has been shown to possess a property for inducing the M2 phenotype of macrophages. Our findings suggested that the SIS hydrogel could induce the macrophages to polarize into mixed M1/M2 phenotypes, and such phenotypes have enhanced the migration and tube formation of angiogenesis-associated cells in vitro, whilst having a mild effect on osteoclastogenesis and osteogenesis. Experiment with a rat model for critical-sized bone defect regeneration further demonstrated that the composite BMP-2@SIS hydrogel could sequentially activate M1 and M2 macrophages and promote early-stage angiogenesis, which altogether expedited final bone defect regeneration. |
---|---|
AbstractList | The immune response of the host towards foreign body, especially in the form of giant cell reaction against the implanted materials, is a vital factor for determining the repair outcome of bone defect. Biomaterials with good immunomodulatory capacity and suitable degradation may promote the regeneration of bone defect and osteointegration with the host. Small intestine submucosa (SIS), a decellularized material, has been shown to possess a property for inducing the M2 phenotype of macrophages. Our findings suggested that the SIS hydrogel could induce the macrophages to polarize into mixed M1/M2 phenotypes, and such phenotypes have enhanced the migration and tube formation of angiogenesis-associated cells in vitro, whilst having a mild effect on osteoclastogenesis and osteogenesis. Experiment with a rat model for critical-sized bone defect regeneration further demonstrated that the composite BMP-2@SIS hydrogel could sequentially activate M1 and M2 macrophages and promote early-stage angiogenesis, which altogether expedited final bone defect regeneration. |
ArticleNumber | 110149 |
Author | Jiang, Yan-Lin Xie, Hui-Qi Chen, Jun Zhang, Qing-Yi Sheng, Ning Wang, Rui Yang, Da-Zhi Yi, Wei-Hong Zou, Chen-Yu Li, Qian-Jin Qin, Bo-Quan Song, Yu-Ting Nie, Rong Feng, Zi-Yuan Tan, Jie Huang, Kai |
Author_xml | – sequence: 1 givenname: Jie surname: Tan fullname: Tan, Jie organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China – sequence: 2 givenname: Qing-Yi surname: Zhang fullname: Zhang, Qing-Yi organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China – sequence: 3 givenname: Yu-Ting surname: Song fullname: Song, Yu-Ting organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China – sequence: 4 givenname: Kai surname: Huang fullname: Huang, Kai organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China – sequence: 5 givenname: Yan-Lin surname: Jiang fullname: Jiang, Yan-Lin organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China – sequence: 6 givenname: Jun surname: Chen fullname: Chen, Jun organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China – sequence: 7 givenname: Rui surname: Wang fullname: Wang, Rui organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China – sequence: 8 givenname: Chen-Yu surname: Zou fullname: Zou, Chen-Yu organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China – sequence: 9 givenname: Qian-Jin surname: Li fullname: Li, Qian-Jin organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China – sequence: 10 givenname: Bo-Quan surname: Qin fullname: Qin, Bo-Quan organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China – sequence: 11 givenname: Ning surname: Sheng fullname: Sheng, Ning organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China – sequence: 12 givenname: Rong surname: Nie fullname: Nie, Rong organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China – sequence: 13 givenname: Zi-Yuan surname: Feng fullname: Feng, Zi-Yuan organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China – sequence: 14 givenname: Da-Zhi surname: Yang fullname: Yang, Da-Zhi organization: Department of Spine Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, 518052, China – sequence: 15 givenname: Wei-Hong surname: Yi fullname: Yi, Wei-Hong organization: Department of Spine Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, 518052, China – sequence: 16 givenname: Hui-Qi surname: Xie fullname: Xie, Hui-Qi email: xiehuiqi@scu.edu.cn organization: Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China |
BookMark | eNqNkdtu1DAQhi1UJNrCO5gHyOJD4ibcwLIqUKkrkArXkQ_jjVeJHWxvpbwVj4jDIoS46pXH_mc-z8x_hS588IDQa0o2lFDx5rjRYZpDchmS2jDC2IYWoe6eoUva3nQVJaK7KDFvuqrlon2BrlI6EkLqhrNL9HOrNYwQZQaDVWFjAxZ0xhEO4Nd3FzzOQwynw4AT_DiBz06OWOrsHs9qsCUB8J5i6Q3eMzwP4ENeZkirNkkdwzzIQ7mqBUv8t2P8Yf-1Yu8f7h7wsJgYDjC-xVuP3TSdfJiCOY0yh7jgGWKaYf0RXqLnVo4JXv05r9H3j7ffdp-r-y-f7nbb-0ozLnLFFTVMCdF2tDaNldIqSmSJays4sdIaoiVrGbe1YoqLRohGaUbNDReat4pfo3dnbmk-pQi21y7_njdH6caekn41oD_2_xjQrwb0ZwMKofuPMEc3ybg8qXZ3roUy4qOD2CftwGswLpY99Ca4J1B-AUZ5ryo |
CitedBy_id | crossref_primary_10_1002_adhm_202500163 crossref_primary_10_1016_j_cej_2023_147985 crossref_primary_10_1016_j_compositesb_2023_110726 crossref_primary_10_1016_j_compositesb_2023_110805 crossref_primary_10_1016_j_compositesb_2022_110245 crossref_primary_10_1039_D4TB00772G crossref_primary_10_1016_j_biomaterials_2024_122893 crossref_primary_10_1016_j_bioactmat_2024_11_034 crossref_primary_10_1016_j_compositesb_2023_110521 crossref_primary_10_1016_j_compositesb_2023_110620 crossref_primary_10_1016_j_carbpol_2023_120546 crossref_primary_10_1002_adhm_202302394 crossref_primary_10_1016_j_ijbiomac_2024_136375 crossref_primary_10_1016_j_compositesb_2022_110428 crossref_primary_10_1016_j_ijbiomac_2024_137633 crossref_primary_10_1016_j_mtbio_2024_101032 crossref_primary_10_1016_j_compositesb_2023_110550 crossref_primary_10_1016_j_compositesb_2024_111223 crossref_primary_10_1021_acs_biomac_4c01264 crossref_primary_10_1016_j_colsurfb_2024_113825 crossref_primary_10_1002_adhm_202303737 crossref_primary_10_1016_j_ajoms_2024_07_009 crossref_primary_10_3389_fbioe_2023_1190171 crossref_primary_10_1016_j_cej_2024_150546 crossref_primary_10_1021_acsami_3c17152 crossref_primary_10_3390_cells12131762 crossref_primary_10_1016_j_compositesb_2023_111146 crossref_primary_10_1016_j_compositesb_2024_111566 crossref_primary_10_1016_j_cej_2024_158132 crossref_primary_10_1039_D3TB01555F crossref_primary_10_1016_j_biomaterials_2023_122461 crossref_primary_10_1016_j_compositesb_2023_110554 crossref_primary_10_1016_j_compositesb_2023_111005 crossref_primary_10_1016_j_compositesb_2024_111348 crossref_primary_10_1016_j_ijbiomac_2024_131643 crossref_primary_10_1016_j_compositesb_2023_110612 crossref_primary_10_1016_j_ijbiomac_2025_139575 crossref_primary_10_1093_rb_rbad107 crossref_primary_10_1016_j_bioactmat_2023_05_014 crossref_primary_10_1016_j_cej_2024_158258 crossref_primary_10_1016_j_cej_2024_154333 crossref_primary_10_1016_j_cej_2024_154993 crossref_primary_10_1021_acsami_2c19767 crossref_primary_10_1016_j_compositesb_2024_111256 crossref_primary_10_1016_j_compositesb_2024_111410 crossref_primary_10_1016_j_jot_2024_07_006 crossref_primary_10_1016_j_compositesb_2022_110461 crossref_primary_10_1002_advs_202302674 |
Cites_doi | 10.1186/s12951-021-01236-1 10.1016/j.biomaterials.2010.09.017 10.1016/j.cmet.2022.02.002 10.1039/D1BM00470K 10.1016/j.expneurol.2020.113363 10.1016/j.biomaterials.2021.120806 10.1002/jbm.a.35894 10.1016/j.carbpol.2022.119469 10.1016/S0142-9612(01)00037-0 10.1016/j.biomaterials.2011.05.030 10.1016/j.biomaterials.2021.121037 10.1186/s40001-021-00593-9 10.1021/acsnano.9b00489 10.1021/acsbiomaterials.9b00920 10.1039/C9TB01126A 10.1038/s41423-019-0235-z 10.1016/j.actbio.2018.03.012 10.1002/jbmr.3637 10.1097/BRS.0000000000001834 10.3389/fimmu.2018.00585 10.1016/j.compositesb.2021.109524 10.1021/acs.chemrev.0c00895 10.1016/j.msec.2016.12.077 10.1002/advs.202100584 10.1126/sciadv.aay6391 10.1016/j.actbio.2021.02.023 10.1016/j.biomaterials.2021.121333 10.1016/j.compositesb.2022.109815 10.1186/s13287-020-02024-8 10.1016/j.actbio.2016.07.003 10.1016/j.compositesb.2022.109942 10.1002/smll.202006596 10.1016/j.addr.2017.07.006 10.1016/j.actbio.2015.10.013 10.1016/j.biomaterials.2021.121038 10.1038/natrevmats.2016.40 10.1039/D1BM01096D 10.1016/j.biomaterials.2014.02.012 10.1016/j.biomaterials.2019.119552 10.1016/j.biomaterials.2020.120197 10.1016/j.biomaterials.2014.10.017 10.1126/science.2821619 10.1002/sctm.19-0447 10.1016/j.actbio.2021.07.037 10.1002/adhm.202001502 10.1016/j.actbio.2012.09.009 10.1016/j.biomaterials.2018.07.012 10.1016/j.actbio.2019.01.006 10.1039/D1TB00895A 10.1016/j.semarthrit.2019.11.001 10.1186/s13287-020-01662-2 10.1016/j.addr.2015.09.008 10.1152/physrev.00036.2016 10.1016/j.biomaterials.2020.119833 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compositesb.2022.110149 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1069 |
ExternalDocumentID | 10_1016_j_compositesb_2022_110149 S1359836822005248 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SST SSZ T5K ZMT ~02 ~G- 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AI. AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SEW SSH VH1 |
ID | FETCH-LOGICAL-c236t-3b1d2b668914d5faafb10a14d4f630fafd0ca2823f4b2b365665bc21d736c38b3 |
IEDL.DBID | AIKHN |
ISSN | 1359-8368 |
IngestDate | Tue Jul 01 02:03:17 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Fri Feb 23 02:39:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Regeneration Bone defect Immunomodulation Small intestinal submucosa |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c236t-3b1d2b668914d5faafb10a14d4f630fafd0ca2823f4b2b365665bc21d736c38b3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_compositesb_2022_110149 crossref_primary_10_1016_j_compositesb_2022_110149 elsevier_sciencedirect_doi_10_1016_j_compositesb_2022_110149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-15 |
PublicationDateYYYYMMDD | 2022-08-15 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Composites. Part B, Engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Hu, Liu (bib49) 2020; 50 Li, Yan, Huang (bib52) 2022; 20 Hernandez, Park, Yao (bib13) 2021; 273 Haugen, Monjo, Rubert (bib7) 2013; 9 Cao, He, Fan (bib32) 2021; 9 Sadtler, Singh, Wolf (bib14) 2016; 1 Du, Feng, Cao (bib11) 2021; 6 Runtsch, Angiari, Hooftman (bib46) 2022; 34 Guo, Li, Qi (bib57) 2021; 134 Zhang, Jiang, Hu (bib29) 2021; 6 Gou, Huang, Hu (bib35) 2019; 5 Chen, Xie, Ruan (bib10) 2022; 236 Dong, Qiao, Chen (bib18) 2021; 9 Li, Peng, Yang (bib5) 2018; 71 Bai, Wang, Chen (bib21) 2020; 255 Kao, Lee (bib33) 2001; 22 Yang, Feng, Qu (bib9) 2020; 11 Qiu, Li, Chen (bib15) 2020; 227 Reynolds, Khundkar, Boriani (bib3) 2016; 41 Bashoor-Zadeh, Baroud, Bohner (bib6) 2011; 32 Moncal, Tigli Aydin, Godzik (bib50) 2022; 281 Li, Tan, Martino (bib54) 2018; 9 Wang, Zhang, Chao (bib19) 2016; 29 Min, Li, Wang (bib39) 2022; 238 Li, Wei, Yang (bib53) 2022; S0305–4179 Hu, Mei, Wang (bib4) 2021; 6 Alhamdi, Peng, Al-Naggar (bib40) 2019; 196 Jin, He, Luo (bib60) 2019; 13 Shanley, Mahon, Kelly (bib24) 2021; 133 Yu, Zhang, Liu (bib17) 2022; 230 Fan, Guan, Xiao (bib25) 2021; 6 Li, Li, Yang (bib44) 2022; 290 Liu, Chen, Luo (bib45) 2021; 276 Zou, Sun, Xiang (bib37) 2021; 10 Luo, Chen, Chen (bib36) 2011; 32 Pan, Acevedo-Cintron, Sayanagi (bib47) 2020; 331 Fang, Zhang, Liu (bib51) 2020; 9 Wei, Li, Crawford (bib56) 2019; 86 Ruoslahti, Pierschbacher (bib34) 1987; 238 Tan, Zhang, Huang (bib16) 2021; 9 Whitaker, Hernaez-Estrada, Hernandez (bib22) 2021; 121 Graney, Ben-Shaul, Landau (bib28) 2020; 6 Migliorini, La Padula, Torsiello (bib2) 2021; 26 Kim, Chang, Volin (bib59) 2020; 17 He, Guo, Wang (bib31) 2017; 73 Yuan, Yuan, Zhao (bib8) 2021; 17 Klopfleisch (bib12) 2016; 43 Chung, Maestas, Housseau (bib38) 2017; 114 Spiller, Nassiri, Witherel (bib41) 2015; 37 Duan, Li, Zuo (bib48) 2019; 7 Dziki, Wang, Pineda (bib26) 2017; 105 Qiao, Xie, Fang (bib27) 2021; 276 Zhang, Jiang, Shang (bib1) 2021; 6 Cai, Lin, Li (bib23) 2021; 8 Zhang, Huang, Gao (bib30) 2020; 11 Hankenson, Gagne, Shaughnessy (bib43) 2015; 94 Spiller, Anfang, Spiller (bib42) 2014; 35 Mahon, Browe, Gonzalez-Fernandez (bib55) 2020; 239 Okamoto, Nakashima, Shinohara (bib20) 2017; 97 Zhu, Yu, Bai (bib58) 2019; 34 Chung (10.1016/j.compositesb.2022.110149_bib38) 2017; 114 Mahon (10.1016/j.compositesb.2022.110149_bib55) 2020; 239 Zhang (10.1016/j.compositesb.2022.110149_bib1) 2021; 6 Dong (10.1016/j.compositesb.2022.110149_bib18) 2021; 9 Haugen (10.1016/j.compositesb.2022.110149_bib7) 2013; 9 Qiao (10.1016/j.compositesb.2022.110149_bib27) 2021; 276 Zou (10.1016/j.compositesb.2022.110149_bib37) 2021; 10 Migliorini (10.1016/j.compositesb.2022.110149_bib2) 2021; 26 Li (10.1016/j.compositesb.2022.110149_bib52) 2022; 20 He (10.1016/j.compositesb.2022.110149_bib31) 2017; 73 Fang (10.1016/j.compositesb.2022.110149_bib51) 2020; 9 Li (10.1016/j.compositesb.2022.110149_bib53) 2022; S0305–4179 Alhamdi (10.1016/j.compositesb.2022.110149_bib40) 2019; 196 Li (10.1016/j.compositesb.2022.110149_bib54) 2018; 9 Cao (10.1016/j.compositesb.2022.110149_bib32) 2021; 9 Okamoto (10.1016/j.compositesb.2022.110149_bib20) 2017; 97 Li (10.1016/j.compositesb.2022.110149_bib44) 2022; 290 Jin (10.1016/j.compositesb.2022.110149_bib60) 2019; 13 Wei (10.1016/j.compositesb.2022.110149_bib56) 2019; 86 Bashoor-Zadeh (10.1016/j.compositesb.2022.110149_bib6) 2011; 32 Du (10.1016/j.compositesb.2022.110149_bib11) 2021; 6 Yuan (10.1016/j.compositesb.2022.110149_bib8) 2021; 17 Zhang (10.1016/j.compositesb.2022.110149_bib30) 2020; 11 Kao (10.1016/j.compositesb.2022.110149_bib33) 2001; 22 Hernandez (10.1016/j.compositesb.2022.110149_bib13) 2021; 273 Spiller (10.1016/j.compositesb.2022.110149_bib41) 2015; 37 Wang (10.1016/j.compositesb.2022.110149_bib19) 2016; 29 Kim (10.1016/j.compositesb.2022.110149_bib59) 2020; 17 Bai (10.1016/j.compositesb.2022.110149_bib21) 2020; 255 Reynolds (10.1016/j.compositesb.2022.110149_bib3) 2016; 41 Dziki (10.1016/j.compositesb.2022.110149_bib26) 2017; 105 Luo (10.1016/j.compositesb.2022.110149_bib36) 2011; 32 Chen (10.1016/j.compositesb.2022.110149_bib10) 2022; 236 Klopfleisch (10.1016/j.compositesb.2022.110149_bib12) 2016; 43 Zhang (10.1016/j.compositesb.2022.110149_bib49) 2020; 50 Runtsch (10.1016/j.compositesb.2022.110149_bib46) 2022; 34 Spiller (10.1016/j.compositesb.2022.110149_bib42) 2014; 35 Moncal (10.1016/j.compositesb.2022.110149_bib50) 2022; 281 Yang (10.1016/j.compositesb.2022.110149_bib9) 2020; 11 Tan (10.1016/j.compositesb.2022.110149_bib16) 2021; 9 Hankenson (10.1016/j.compositesb.2022.110149_bib43) 2015; 94 Whitaker (10.1016/j.compositesb.2022.110149_bib22) 2021; 121 Fan (10.1016/j.compositesb.2022.110149_bib25) 2021; 6 Li (10.1016/j.compositesb.2022.110149_bib5) 2018; 71 Cai (10.1016/j.compositesb.2022.110149_bib23) 2021; 8 Min (10.1016/j.compositesb.2022.110149_bib39) 2022; 238 Graney (10.1016/j.compositesb.2022.110149_bib28) 2020; 6 Guo (10.1016/j.compositesb.2022.110149_bib57) 2021; 134 Liu (10.1016/j.compositesb.2022.110149_bib45) 2021; 276 Zhang (10.1016/j.compositesb.2022.110149_bib29) 2021; 6 Hu (10.1016/j.compositesb.2022.110149_bib4) 2021; 6 Duan (10.1016/j.compositesb.2022.110149_bib48) 2019; 7 Sadtler (10.1016/j.compositesb.2022.110149_bib14) 2016; 1 Gou (10.1016/j.compositesb.2022.110149_bib35) 2019; 5 Zhu (10.1016/j.compositesb.2022.110149_bib58) 2019; 34 Shanley (10.1016/j.compositesb.2022.110149_bib24) 2021; 133 Qiu (10.1016/j.compositesb.2022.110149_bib15) 2020; 227 Ruoslahti (10.1016/j.compositesb.2022.110149_bib34) 1987; 238 Yu (10.1016/j.compositesb.2022.110149_bib17) 2022; 230 Pan (10.1016/j.compositesb.2022.110149_bib47) 2020; 331 |
References_xml | – volume: 6 start-page: 928 year: 2021 end-page: 940 ident: bib4 article-title: Implantable PEKK/tantalum microparticles composite with improved surface performances for regulating cell behaviors, promoting bone formation and osseointegration publication-title: Bioact Mater – volume: 35 start-page: 4477 year: 2014 end-page: 4488 ident: bib42 article-title: The role of macrophage phenotype in vascularization of tissue engineering scaffolds publication-title: Biomaterials – volume: 227 year: 2020 ident: bib15 article-title: Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis publication-title: Biomaterials – volume: 8 year: 2021 ident: bib23 article-title: N2-Polarized neutrophils guide bone mesenchymal stem cell recruitment and initiate bone regeneration: a missing piece of the bone regeneration puzzle publication-title: Adv Sci – volume: 5 start-page: 5024 year: 2019 end-page: 5035 ident: bib35 article-title: Epigallocatechin-3-gallate cross-linked small intestinal submucosa for guided bone regeneration publication-title: ACS Biomater Sci Eng – volume: 17 year: 2021 ident: bib8 article-title: Injectable GelMA cryogel microspheres for modularized cell delivery and potential vascularized bone regeneration publication-title: Small – volume: 13 start-page: 6581 year: 2019 end-page: 6595 ident: bib60 article-title: A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration publication-title: ACS Nano – volume: 26 start-page: 118 year: 2021 ident: bib2 article-title: Strategies for large bone defect reconstruction after trauma, infections or tumour excision: a comprehensive review of the literature publication-title: Eur J Med Res – volume: 1 year: 2016 ident: bib14 article-title: Design, clinical translation and immunological response of biomaterials in regenerative medicine publication-title: Nat Rev Mater – volume: 6 start-page: 1827 year: 2021 end-page: 1838 ident: bib29 article-title: Procyanidins-crosslinked small intestine submucosa: a bladder patch promotes smooth muscle regeneration and bladder function restoration in a rabbit model publication-title: Bioact Mater – volume: 273 year: 2021 ident: bib13 article-title: Effect of tissue microenvironment on fibrous capsule formation to biomaterial-coated implants publication-title: Biomaterials – volume: 6 start-page: 2754 year: 2021 end-page: 2766 ident: bib25 article-title: Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration publication-title: Bioact Mater – volume: 238 start-page: 491 year: 1987 end-page: 497 ident: bib34 article-title: New perspectives in cell adhesion: RGD and integrins publication-title: Science – volume: 20 start-page: 38 year: 2022 ident: bib52 article-title: Anti-inflammatory and immunomodulatory effects of the extracellular vesicles derived from human umbilical cord mesenchymal stem cells on osteoarthritis via M2 macrophages publication-title: J Nanobiotechnol – volume: 86 start-page: 480 year: 2019 end-page: 492 ident: bib56 article-title: Exosome-integrated titanium oxide nanotubes for targeted bone regeneration publication-title: Acta Biomater – volume: 71 start-page: 96 year: 2018 end-page: 107 ident: bib5 article-title: 3D-printed IFN-gamma-loading calcium silicate-beta-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone publication-title: Acta Biomater – volume: 34 start-page: 487 year: 2022 end-page: 501 ident: bib46 article-title: Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages publication-title: Cell Metabol – volume: 11 start-page: 522 year: 2020 ident: bib9 article-title: Synthesis of aligned porous polyethylene glycol/silk fibroin/hydroxyapatite scaffolds for osteoinduction in bone tissue engineering publication-title: Stem Cell Res Ther – volume: 9 start-page: 5390 year: 2013 end-page: 5399 ident: bib7 article-title: Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model publication-title: Acta Biomater – volume: 9 start-page: 773 year: 2020 end-page: 785 ident: bib51 article-title: Skeletal muscle stem cells confer maturing macrophages anti-inflammatory properties through insulin-like growth factor-2 publication-title: Stem Cells Transl Med – volume: 133 start-page: 208 year: 2021 end-page: 221 ident: bib24 article-title: Harnessing the innate and adaptive immune system for tissue repair and regeneration: considering more than macrophages publication-title: Acta Biomater – volume: 34 start-page: 739 year: 2019 end-page: 751 ident: bib58 article-title: Cannabinoid receptor 2 agonist prevents local and systemic inflammatory bone destruction in rheumatoid arthritis publication-title: J Bone Miner Res – volume: S0305–4179 year: 2022 ident: bib53 article-title: Apoptotic bodies extracted from adipose mesenchymal stem cells carry microRNA-21-5p to induce M2 polarization of macrophages and augment skin wound healing by targeting KLF6 publication-title: Burns – volume: 6 start-page: 333 year: 2021 end-page: 345 ident: bib11 article-title: The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism publication-title: Bioact Mater – volume: 9 start-page: 6881 year: 2021 end-page: 6894 ident: bib18 article-title: Demineralized and decellularized bone extracellular matrix-incorporated electrospun nanofibrous scaffold for bone regeneration publication-title: J Mater Chem B – volume: 105 start-page: 138 year: 2017 end-page: 147 ident: bib26 article-title: Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype publication-title: J Biomed Mater Res – volume: 97 start-page: 1295 year: 2017 end-page: 1349 ident: bib20 article-title: Osteoimmunology: the conceptual framework unifying the immune and skeletal systems publication-title: Physiol Rev – volume: 73 start-page: 267 year: 2017 end-page: 274 ident: bib31 article-title: Efficacy and safety of small intestinal submucosa in dural defect repair in a canine model publication-title: Mater Sci Eng C Mater Biol Appl – volume: 281 year: 2022 ident: bib50 article-title: Controlled Co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats publication-title: Biomaterials – volume: 7 start-page: 5478 year: 2019 end-page: 5489 ident: bib48 article-title: Migration of endothelial cells and mesenchymal stem cells into hyaluronic acid hydrogels with different moduli under induction of pro-inflammatory macrophages publication-title: J Mater Chem B – volume: 6 start-page: 4027 year: 2021 end-page: 4052 ident: bib1 article-title: Biodegradable metals for bone defect repair: a systematic review and meta-analysis based on animal studies publication-title: Bioact Mater – volume: 9 start-page: 7895 year: 2021 end-page: 7910 ident: bib32 article-title: Exploring the match between the degradation of the ECM-based composites and tissue remodeling in a full-thickness abdominal wall defect model publication-title: Biomater Sci – volume: 331 year: 2020 ident: bib47 article-title: The CCL2/CCR2 axis is critical to recruiting macrophages into acellular nerve allograft bridging a nerve gap to promote angiogenesis and regeneration publication-title: Exp Neurol – volume: 134 start-page: 730 year: 2021 end-page: 743 ident: bib57 article-title: Serial cellular events in bone formation initiated by calcium phosphate ceramics publication-title: Acta Biomater – volume: 239 year: 2020 ident: bib55 article-title: Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner publication-title: Biomaterials – volume: 236 year: 2022 ident: bib10 article-title: Diamond-like carbon coating and surface grafting of osteoprotegerin and alendronate on polyetheretherketone to ameliorate the mechanical performance and osseointegration simultaneously publication-title: Compos B Eng – volume: 10 year: 2021 ident: bib37 article-title: Induction of M2-type macrophage differentiation for bone defect repair via an interpenetration network hydrogel with a GO-based controlled release system publication-title: Adv Healthc Mater – volume: 17 start-page: 728 year: 2020 end-page: 740 ident: bib59 article-title: Macrophages are the primary effector cells in IL-7-induced arthritis publication-title: Cell Mol Immunol – volume: 32 start-page: 6362 year: 2011 end-page: 6373 ident: bib6 article-title: Simulation of the in vivo resorption rate of beta-tricalcium phosphate bone graft substitutes implanted in a sheep model publication-title: Biomaterials – volume: 94 start-page: 3 year: 2015 end-page: 12 ident: bib43 article-title: Extracellular signaling molecules to promote fracture healing and bone regeneration publication-title: Adv Drug Deliv Rev – volume: 29 start-page: 135 year: 2016 end-page: 148 ident: bib19 article-title: Preparation and characterization of pro-angiogenic gel derived from small intestinal submucosa publication-title: Acta Biomater – volume: 121 start-page: 11305 year: 2021 end-page: 11335 ident: bib22 article-title: Immunomodulatory biomaterials for tissue repair publication-title: Chem Rev – volume: 114 start-page: 184 year: 2017 end-page: 192 ident: bib38 article-title: Key players in the immune response to biomaterial scaffolds for regenerative medicine publication-title: Adv Drug Deliv Rev – volume: 41 start-page: S199 year: 2016 end-page: S204 ident: bib3 article-title: Soft tissue and bone defect management in total sacrectomy for primary sacral tumors: a systematic review with expert recommendations publication-title: Spine – volume: 238 year: 2022 ident: bib39 article-title: A novel filler of biocomposites for long-term self-regulated delivery of immunomodulatory and antibacterial components to accelerate bone regeneration publication-title: Compos B Eng – volume: 32 start-page: 706 year: 2011 end-page: 713 ident: bib36 article-title: A multi-step method for preparation of porcine small intestinal submucosa (SIS) publication-title: Biomaterials – volume: 196 start-page: 90 year: 2019 end-page: 99 ident: bib40 article-title: Controlled M1-to-M2 transition of aged macrophages by calcium phosphate coatings publication-title: Biomaterials – volume: 9 start-page: 585 year: 2018 ident: bib54 article-title: Regulatory T-cells: potential regulator of tissue repair and regeneration publication-title: Front Immunol – volume: 43 start-page: 3 year: 2016 end-page: 13 ident: bib12 article-title: Macrophage reaction against biomaterials in the mouse model - phenotypes, functions and markers publication-title: Acta Biomater – volume: 22 start-page: 2901 year: 2001 end-page: 2909 ident: bib33 article-title: In vivo modulation of host response and macrophage behavior by polymer networks grafted with fibronectin-derived biomimetic oligopeptides: the role of RGD and PHSRN domains publication-title: Biomaterials – volume: 37 start-page: 194 year: 2015 end-page: 207 ident: bib41 article-title: Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds publication-title: Biomaterials – volume: 276 year: 2021 ident: bib45 article-title: Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration publication-title: Biomaterials – volume: 11 start-page: 150 year: 2020 ident: bib30 article-title: Hypoxic preconditioning of human urine-derived stem cell-laden small intestinal submucosa enhances wound healing potential publication-title: Stem Cell Res Ther – volume: 9 start-page: 4803 year: 2021 end-page: 4820 ident: bib16 article-title: Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification publication-title: Biomater Sci – volume: 255 year: 2020 ident: bib21 article-title: Biomimetic osteogenic peptide with mussel adhesion and osteoimmunomodulatory functions to ameliorate interfacial osseointegration under chronic inflammation publication-title: Biomaterials – volume: 290 year: 2022 ident: bib44 article-title: 3D bioprinted gelatin/gellan gum-based scaffold with double-crosslinking network for vascularized bone regeneration publication-title: Carbohydr Polym – volume: 276 year: 2021 ident: bib27 article-title: Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration publication-title: Biomaterials – volume: 230 year: 2022 ident: bib17 article-title: Extracellular matrix scaffold-immune microenvironment modulates tissue regeneration publication-title: Compos B Eng – volume: 50 start-page: 198 year: 2020 end-page: 208 ident: bib49 article-title: Articular cartilage regeneration: the role of endogenous mesenchymal stem/progenitor cell recruitment and migration publication-title: Semin Arthritis Rheum – volume: 6 year: 2020 ident: bib28 article-title: Macrophages of diverse phenotypes drive vascularization of engineered tissues publication-title: Sci Adv – volume: 6 start-page: 4027 issue: 11 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib1 article-title: Biodegradable metals for bone defect repair: a systematic review and meta-analysis based on animal studies publication-title: Bioact Mater – volume: 20 start-page: 38 issue: 1 year: 2022 ident: 10.1016/j.compositesb.2022.110149_bib52 article-title: Anti-inflammatory and immunomodulatory effects of the extracellular vesicles derived from human umbilical cord mesenchymal stem cells on osteoarthritis via M2 macrophages publication-title: J Nanobiotechnol doi: 10.1186/s12951-021-01236-1 – volume: 32 start-page: 706 issue: 3 year: 2011 ident: 10.1016/j.compositesb.2022.110149_bib36 article-title: A multi-step method for preparation of porcine small intestinal submucosa (SIS) publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.09.017 – volume: 6 start-page: 1827 issue: 6 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib29 article-title: Procyanidins-crosslinked small intestine submucosa: a bladder patch promotes smooth muscle regeneration and bladder function restoration in a rabbit model publication-title: Bioact Mater – volume: 34 start-page: 487 issue: 3 year: 2022 ident: 10.1016/j.compositesb.2022.110149_bib46 article-title: Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages publication-title: Cell Metabol doi: 10.1016/j.cmet.2022.02.002 – volume: 9 start-page: 4803 issue: 14 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib16 article-title: Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification publication-title: Biomater Sci doi: 10.1039/D1BM00470K – volume: 331 year: 2020 ident: 10.1016/j.compositesb.2022.110149_bib47 article-title: The CCL2/CCR2 axis is critical to recruiting macrophages into acellular nerve allograft bridging a nerve gap to promote angiogenesis and regeneration publication-title: Exp Neurol doi: 10.1016/j.expneurol.2020.113363 – volume: 273 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib13 article-title: Effect of tissue microenvironment on fibrous capsule formation to biomaterial-coated implants publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120806 – volume: 105 start-page: 138 issue: 1 year: 2017 ident: 10.1016/j.compositesb.2022.110149_bib26 article-title: Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype publication-title: J Biomed Mater Res doi: 10.1002/jbm.a.35894 – volume: 290 year: 2022 ident: 10.1016/j.compositesb.2022.110149_bib44 article-title: 3D bioprinted gelatin/gellan gum-based scaffold with double-crosslinking network for vascularized bone regeneration publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2022.119469 – volume: 22 start-page: 2901 issue: 21 year: 2001 ident: 10.1016/j.compositesb.2022.110149_bib33 article-title: In vivo modulation of host response and macrophage behavior by polymer networks grafted with fibronectin-derived biomimetic oligopeptides: the role of RGD and PHSRN domains publication-title: Biomaterials doi: 10.1016/S0142-9612(01)00037-0 – volume: 32 start-page: 6362 issue: 27 year: 2011 ident: 10.1016/j.compositesb.2022.110149_bib6 article-title: Simulation of the in vivo resorption rate of beta-tricalcium phosphate bone graft substitutes implanted in a sheep model publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.05.030 – volume: 276 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib45 article-title: Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121037 – volume: 26 start-page: 118 issue: 1 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib2 article-title: Strategies for large bone defect reconstruction after trauma, infections or tumour excision: a comprehensive review of the literature publication-title: Eur J Med Res doi: 10.1186/s40001-021-00593-9 – volume: 13 start-page: 6581 issue: 6 year: 2019 ident: 10.1016/j.compositesb.2022.110149_bib60 article-title: A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration publication-title: ACS Nano doi: 10.1021/acsnano.9b00489 – volume: 5 start-page: 5024 issue: 10 year: 2019 ident: 10.1016/j.compositesb.2022.110149_bib35 article-title: Epigallocatechin-3-gallate cross-linked small intestinal submucosa for guided bone regeneration publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.9b00920 – volume: 7 start-page: 5478 issue: 36 year: 2019 ident: 10.1016/j.compositesb.2022.110149_bib48 article-title: Migration of endothelial cells and mesenchymal stem cells into hyaluronic acid hydrogels with different moduli under induction of pro-inflammatory macrophages publication-title: J Mater Chem B doi: 10.1039/C9TB01126A – volume: 17 start-page: 728 issue: 7 year: 2020 ident: 10.1016/j.compositesb.2022.110149_bib59 article-title: Macrophages are the primary effector cells in IL-7-induced arthritis publication-title: Cell Mol Immunol doi: 10.1038/s41423-019-0235-z – volume: 71 start-page: 96 year: 2018 ident: 10.1016/j.compositesb.2022.110149_bib5 article-title: 3D-printed IFN-gamma-loading calcium silicate-beta-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone publication-title: Acta Biomater doi: 10.1016/j.actbio.2018.03.012 – volume: 34 start-page: 739 issue: 4 year: 2019 ident: 10.1016/j.compositesb.2022.110149_bib58 article-title: Cannabinoid receptor 2 agonist prevents local and systemic inflammatory bone destruction in rheumatoid arthritis publication-title: J Bone Miner Res doi: 10.1002/jbmr.3637 – volume: 41 start-page: S199 issue: Suppl 20 year: 2016 ident: 10.1016/j.compositesb.2022.110149_bib3 article-title: Soft tissue and bone defect management in total sacrectomy for primary sacral tumors: a systematic review with expert recommendations publication-title: Spine doi: 10.1097/BRS.0000000000001834 – volume: 9 start-page: 585 year: 2018 ident: 10.1016/j.compositesb.2022.110149_bib54 article-title: Regulatory T-cells: potential regulator of tissue repair and regeneration publication-title: Front Immunol doi: 10.3389/fimmu.2018.00585 – volume: 230 year: 2022 ident: 10.1016/j.compositesb.2022.110149_bib17 article-title: Extracellular matrix scaffold-immune microenvironment modulates tissue regeneration publication-title: Compos B Eng doi: 10.1016/j.compositesb.2021.109524 – volume: 121 start-page: 11305 issue: 18 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib22 article-title: Immunomodulatory biomaterials for tissue repair publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c00895 – volume: 73 start-page: 267 year: 2017 ident: 10.1016/j.compositesb.2022.110149_bib31 article-title: Efficacy and safety of small intestinal submucosa in dural defect repair in a canine model publication-title: Mater Sci Eng C Mater Biol Appl doi: 10.1016/j.msec.2016.12.077 – volume: 8 issue: 19 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib23 article-title: N2-Polarized neutrophils guide bone mesenchymal stem cell recruitment and initiate bone regeneration: a missing piece of the bone regeneration puzzle publication-title: Adv Sci doi: 10.1002/advs.202100584 – volume: 6 issue: 18 year: 2020 ident: 10.1016/j.compositesb.2022.110149_bib28 article-title: Macrophages of diverse phenotypes drive vascularization of engineered tissues publication-title: Sci Adv doi: 10.1126/sciadv.aay6391 – volume: 133 start-page: 208 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib24 article-title: Harnessing the innate and adaptive immune system for tissue repair and regeneration: considering more than macrophages publication-title: Acta Biomater doi: 10.1016/j.actbio.2021.02.023 – volume: 281 year: 2022 ident: 10.1016/j.compositesb.2022.110149_bib50 article-title: Controlled Co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121333 – volume: 236 year: 2022 ident: 10.1016/j.compositesb.2022.110149_bib10 article-title: Diamond-like carbon coating and surface grafting of osteoprotegerin and alendronate on polyetheretherketone to ameliorate the mechanical performance and osseointegration simultaneously publication-title: Compos B Eng doi: 10.1016/j.compositesb.2022.109815 – volume: 11 start-page: 522 issue: 1 year: 2020 ident: 10.1016/j.compositesb.2022.110149_bib9 article-title: Synthesis of aligned porous polyethylene glycol/silk fibroin/hydroxyapatite scaffolds for osteoinduction in bone tissue engineering publication-title: Stem Cell Res Ther doi: 10.1186/s13287-020-02024-8 – volume: 6 start-page: 333 issue: 2 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib11 article-title: The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism publication-title: Bioact Mater – volume: 43 start-page: 3 year: 2016 ident: 10.1016/j.compositesb.2022.110149_bib12 article-title: Macrophage reaction against biomaterials in the mouse model - phenotypes, functions and markers publication-title: Acta Biomater doi: 10.1016/j.actbio.2016.07.003 – volume: 238 year: 2022 ident: 10.1016/j.compositesb.2022.110149_bib39 article-title: A novel filler of biocomposites for long-term self-regulated delivery of immunomodulatory and antibacterial components to accelerate bone regeneration publication-title: Compos B Eng doi: 10.1016/j.compositesb.2022.109942 – volume: 6 start-page: 928 issue: 4 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib4 article-title: Implantable PEKK/tantalum microparticles composite with improved surface performances for regulating cell behaviors, promoting bone formation and osseointegration publication-title: Bioact Mater – volume: 17 issue: 11 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib8 article-title: Injectable GelMA cryogel microspheres for modularized cell delivery and potential vascularized bone regeneration publication-title: Small doi: 10.1002/smll.202006596 – volume: 114 start-page: 184 year: 2017 ident: 10.1016/j.compositesb.2022.110149_bib38 article-title: Key players in the immune response to biomaterial scaffolds for regenerative medicine publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2017.07.006 – volume: 29 start-page: 135 year: 2016 ident: 10.1016/j.compositesb.2022.110149_bib19 article-title: Preparation and characterization of pro-angiogenic gel derived from small intestinal submucosa publication-title: Acta Biomater doi: 10.1016/j.actbio.2015.10.013 – volume: 276 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib27 article-title: Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121038 – volume: 1 issue: 7 year: 2016 ident: 10.1016/j.compositesb.2022.110149_bib14 article-title: Design, clinical translation and immunological response of biomaterials in regenerative medicine publication-title: Nat Rev Mater doi: 10.1038/natrevmats.2016.40 – volume: 9 start-page: 7895 issue: 23 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib32 article-title: Exploring the match between the degradation of the ECM-based composites and tissue remodeling in a full-thickness abdominal wall defect model publication-title: Biomater Sci doi: 10.1039/D1BM01096D – volume: S0305–4179 issue: 21 year: 2022 ident: 10.1016/j.compositesb.2022.110149_bib53 article-title: Apoptotic bodies extracted from adipose mesenchymal stem cells carry microRNA-21-5p to induce M2 polarization of macrophages and augment skin wound healing by targeting KLF6 publication-title: Burns – volume: 35 start-page: 4477 issue: 15 year: 2014 ident: 10.1016/j.compositesb.2022.110149_bib42 article-title: The role of macrophage phenotype in vascularization of tissue engineering scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.02.012 – volume: 227 year: 2020 ident: 10.1016/j.compositesb.2022.110149_bib15 article-title: Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119552 – volume: 255 year: 2020 ident: 10.1016/j.compositesb.2022.110149_bib21 article-title: Biomimetic osteogenic peptide with mussel adhesion and osteoimmunomodulatory functions to ameliorate interfacial osseointegration under chronic inflammation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120197 – volume: 37 start-page: 194 year: 2015 ident: 10.1016/j.compositesb.2022.110149_bib41 article-title: Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.10.017 – volume: 6 start-page: 2754 issue: 9 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib25 article-title: Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration publication-title: Bioact Mater – volume: 238 start-page: 491 issue: 4826 year: 1987 ident: 10.1016/j.compositesb.2022.110149_bib34 article-title: New perspectives in cell adhesion: RGD and integrins publication-title: Science doi: 10.1126/science.2821619 – volume: 9 start-page: 773 issue: 7 year: 2020 ident: 10.1016/j.compositesb.2022.110149_bib51 article-title: Skeletal muscle stem cells confer maturing macrophages anti-inflammatory properties through insulin-like growth factor-2 publication-title: Stem Cells Transl Med doi: 10.1002/sctm.19-0447 – volume: 134 start-page: 730 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib57 article-title: Serial cellular events in bone formation initiated by calcium phosphate ceramics publication-title: Acta Biomater doi: 10.1016/j.actbio.2021.07.037 – volume: 10 issue: 6 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib37 article-title: Induction of M2-type macrophage differentiation for bone defect repair via an interpenetration network hydrogel with a GO-based controlled release system publication-title: Adv Healthc Mater doi: 10.1002/adhm.202001502 – volume: 9 start-page: 5390 issue: 2 year: 2013 ident: 10.1016/j.compositesb.2022.110149_bib7 article-title: Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model publication-title: Acta Biomater doi: 10.1016/j.actbio.2012.09.009 – volume: 196 start-page: 90 year: 2019 ident: 10.1016/j.compositesb.2022.110149_bib40 article-title: Controlled M1-to-M2 transition of aged macrophages by calcium phosphate coatings publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.07.012 – volume: 86 start-page: 480 year: 2019 ident: 10.1016/j.compositesb.2022.110149_bib56 article-title: Exosome-integrated titanium oxide nanotubes for targeted bone regeneration publication-title: Acta Biomater doi: 10.1016/j.actbio.2019.01.006 – volume: 9 start-page: 6881 issue: 34 year: 2021 ident: 10.1016/j.compositesb.2022.110149_bib18 article-title: Demineralized and decellularized bone extracellular matrix-incorporated electrospun nanofibrous scaffold for bone regeneration publication-title: J Mater Chem B doi: 10.1039/D1TB00895A – volume: 50 start-page: 198 issue: 2 year: 2020 ident: 10.1016/j.compositesb.2022.110149_bib49 article-title: Articular cartilage regeneration: the role of endogenous mesenchymal stem/progenitor cell recruitment and migration publication-title: Semin Arthritis Rheum doi: 10.1016/j.semarthrit.2019.11.001 – volume: 11 start-page: 150 issue: 1 year: 2020 ident: 10.1016/j.compositesb.2022.110149_bib30 article-title: Hypoxic preconditioning of human urine-derived stem cell-laden small intestinal submucosa enhances wound healing potential publication-title: Stem Cell Res Ther doi: 10.1186/s13287-020-01662-2 – volume: 94 start-page: 3 year: 2015 ident: 10.1016/j.compositesb.2022.110149_bib43 article-title: Extracellular signaling molecules to promote fracture healing and bone regeneration publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2015.09.008 – volume: 97 start-page: 1295 issue: 4 year: 2017 ident: 10.1016/j.compositesb.2022.110149_bib20 article-title: Osteoimmunology: the conceptual framework unifying the immune and skeletal systems publication-title: Physiol Rev doi: 10.1152/physrev.00036.2016 – volume: 239 year: 2020 ident: 10.1016/j.compositesb.2022.110149_bib55 article-title: Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.119833 |
SSID | ssj0004532 |
Score | 2.5502338 |
Snippet | The immune response of the host towards foreign body, especially in the form of giant cell reaction against the implanted materials, is a vital factor for... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 110149 |
SubjectTerms | Bone defect Immunomodulation Regeneration Small intestinal submucosa |
Title | Accelerated bone defect regeneration through sequential activation of the M1 and M2 phenotypes of macrophages by a composite BMP-2@SIS hydrogel: An immunomodulatory perspective |
URI | https://dx.doi.org/10.1016/j.compositesb.2022.110149 |
Volume | 243 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB61qYTggHiKFqgGiauJ9-FljTgQKqoUlAopVOrN2mcblNpRkh5y4TfxE9mJnTZISCBx82PH8u7YM7Ojb74BeJ22DLkyKs-KIGImk8_JTKQmAlHrIsW3Tq3zkKNTNTyTn8-L8x042tTCEKyys_2tTV9b6-5Kv1vN_mwy6Y8Zkc8JlTwc5Tal3oU9LkpV9GBvcPJleLpFGr7uU0bjMxK4A69uYV6E3CZ4VFjYtFvknHDxjJg1_-SmtlzP8QO438WMOGhf6yHshPoR3NtiEnwMPwfOJQdCvA8ebVMH9IGAGjgPF2tiaVp_7JryYIufTv_2FKmuoc3KYhPTgIAjhqb2OOJI8K-GcrQLundlqNvXZbI_C7QrNHgzJ_w4-prxD-OTMV6u_Ly5CNN3OKhxQrUnzVXjqUVYM1_h7Lay8wmcHX_6djTMumYMmeNCLTNhmedWKV0y6YtoTLQsN-lYRiXyaKLPnUn7NxGl5VZQmFhYx5l_K5QT2oqn0KvT9J8BCltybY1MkYyRLvdauPSksgyFtpZJuw96s_aV65jKqWHGtNpA0r5XW2qrSG1Vq7Z94Deis5au41-E3m8UXP327VXJrfxd_OD_xJ_DXTqjPDUrXkBvOb8OL1Ogs7SHsPvmBzvsPudfby0CHA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5RkPo4VPSBoAU6lXp143142VQ9kCJQaDGqFJC4WfuEoGBHSXrIpb-pP7E7tgOphFQkbpa9Y3l31jOzo2--IeRTPDKkUss0yTwPiYg-J9EBmwgEpbIY31pZ5yHzU9k_F98vsosVcrCohUFYZWv7G5teW-v2Tqddzc54OOwMKJLPcRk9HOY2hXpC1kTG9xDX9_k3XaIMr7uU4egEhz8lH-9AXojbRnCUn5p4VmQMUfEUeTXvc1JLjudonbxsI0boNR_1iqz48jV5scQj-Ib86Vkb3QeyPjgwVenBeYRpwMRf1rTSuPrQtuSBBj0d_-wRYFVDk5OFKsQBHnIKunSQM0DwV4UZ2ik-u9HY6-sqWp8pmDlouJ0TfMt_Jmx_cDyAq7mbVJd-9AV6JQyx8qS6qRw2CKsmcxjf1XW-JedHh2cH_aRtxZBYxuUs4YY6ZqRUXSpcFrQOhqY6XosgeRp0cKnV8fTGgzDMcAwSM2MZdXtcWq4M3yCrZZz-JgFuukwZLWIco4VNneI2vqnb9ZkyhgqzRdRi7Qvb8pRju4xRsQCkXRdLaitQbUWjti3CbkXHDVnHQ4S-LhRc_LPziuhU_i_-7nHiH8iz_ll-Upwcn_54T57jE8xY02ybrM4mv_xODHlmZrfe0n8Bqe0C5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+bone+defect+regeneration+through+sequential+activation+of+the+M1+and+M2+phenotypes+of+macrophages+by+a+composite+BMP-2%40SIS+hydrogel%3A+An+immunomodulatory+perspective&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Tan%2C+Jie&rft.au=Zhang%2C+Qing-Yi&rft.au=Song%2C+Yu-Ting&rft.au=Huang%2C+Kai&rft.date=2022-08-15&rft.issn=1359-8368&rft.volume=243&rft.spage=110149&rft_id=info:doi/10.1016%2Fj.compositesb.2022.110149&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compositesb_2022_110149 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon |