A two-phase gene selection method using anomaly detection and genetic algorithm for microarray data

Cancer diagnosis based on gene analysis is one of the main research areas in bioinformatics and machine learning. Microarray is a technology that can simultaneously study the expression level of thousands of genes in a sample. However, mutation or change in gene expression of only a small number of...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 262; p. 110249
Main Authors Akhavan, Motahare, Hasheminejad, Seyed Mohammad Hossein
Format Journal Article
LanguageEnglish
Published Elsevier B.V 28.02.2023
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2022.110249

Cover

Abstract Cancer diagnosis based on gene analysis is one of the main research areas in bioinformatics and machine learning. Microarray is a technology that can simultaneously study the expression level of thousands of genes in a sample. However, mutation or change in gene expression of only a small number of genes can lead to cancer, and basically, the expression level of most genes is the same between cancerous and healthy samples. On the other hand, the main challenge in microarray data is the high number of genes compared to the very small number of samples. This issue makes gene selection an essential step in microarray analysis. In this paper, we have proposed a new two-phase gene selection method for microarray data. In the first stage of this method, with a different approach, the genes that are the main features of the microarray are considered as training samples instead of cancerous and healthy samples; afterward, we reduce the number of genes to a great extent via anomaly detection. In the second stage, we apply a guided genetic algorithm to the genes obtained from the previous step to reach the final effective genes. Based on the experimental results, our method can reduce the number of genes up to at least 99% on all datasets. Besides, in addition to the very high reduction rate of genes, we managed to significantly increase the classification accuracy using the selected genes.
AbstractList Cancer diagnosis based on gene analysis is one of the main research areas in bioinformatics and machine learning. Microarray is a technology that can simultaneously study the expression level of thousands of genes in a sample. However, mutation or change in gene expression of only a small number of genes can lead to cancer, and basically, the expression level of most genes is the same between cancerous and healthy samples. On the other hand, the main challenge in microarray data is the high number of genes compared to the very small number of samples. This issue makes gene selection an essential step in microarray analysis. In this paper, we have proposed a new two-phase gene selection method for microarray data. In the first stage of this method, with a different approach, the genes that are the main features of the microarray are considered as training samples instead of cancerous and healthy samples; afterward, we reduce the number of genes to a great extent via anomaly detection. In the second stage, we apply a guided genetic algorithm to the genes obtained from the previous step to reach the final effective genes. Based on the experimental results, our method can reduce the number of genes up to at least 99% on all datasets. Besides, in addition to the very high reduction rate of genes, we managed to significantly increase the classification accuracy using the selected genes.
ArticleNumber 110249
Author Hasheminejad, Seyed Mohammad Hossein
Akhavan, Motahare
Author_xml – sequence: 1
  givenname: Motahare
  surname: Akhavan
  fullname: Akhavan, Motahare
  email: motahare.akhavan@gmail.com
– sequence: 2
  givenname: Seyed Mohammad Hossein
  surname: Hasheminejad
  fullname: Hasheminejad, Seyed Mohammad Hossein
  email: smh.hasheminejad@alzahra.ac.ir
BookMark eNqFkMlOwzAQQC1UJNrCH3DwDyTYjrOYA1JVsUmVuMDZcuxJ65LYlW1A_XtS2hMHOM1IM2-WN0MT5x0gdE1JTgmtbrb5u_NxH3NGGMspJYyLMzSlTc2ymhMxQVMiSpLVpKQXaBbjlpCxkzZTpBc4fflst1ER8Boc4Ag96GS9wwOkjTf4I1q3xsr5QfV7bCCdysqZHyJZjVW_9sGmzYA7H_BgdfAqBDW2q6Qu0Xmn-ghXpzhHbw_3r8unbPXy-LxcrDLNiiplRSFMRaqCVsY0IFQLlWk4FbyDUrExr0ndGg6Cc4COAeOs7UjLykaJSnRNMUe3x7nj9hgDdFLbpA63pqBsLymRB11yK4-65EGXPOoaYf4L3gU7qLD_D7s7YjA-9mkhyKgtOA3GhtGTNN7-PeAb4ReK6Q
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125126
crossref_primary_10_1007_s11042_024_18327_4
crossref_primary_10_1016_j_cmpb_2024_108291
crossref_primary_10_1016_j_chemolab_2023_104989
crossref_primary_10_1007_s10115_024_02292_3
crossref_primary_10_1016_j_heliyon_2025_e42544
crossref_primary_10_1186_s12859_023_05605_5
crossref_primary_10_1016_j_knosys_2024_111481
crossref_primary_10_1371_journal_pone_0316536
crossref_primary_10_1007_s10115_025_02340_6
crossref_primary_10_1155_2023_3489461
crossref_primary_10_1016_j_compbiomed_2023_107674
crossref_primary_10_1007_s00521_024_09965_8
crossref_primary_10_1016_j_compbiomed_2023_107221
Cites_doi 10.1016/j.neucom.2017.11.077
10.1007/s13042-019-00932-7
10.1109/TCBB.2019.2893170
10.1109/TKDE.2011.181
10.1038/s41568-018-0060-1
10.1016/j.eswa.2018.06.057
10.1016/j.engappai.2015.05.005
10.1186/s40537-021-00514-x
10.1145/3136625
10.1038/s41598-017-00090-2
10.1016/j.eswa.2017.06.032
10.1016/j.procs.2018.01.126
10.1016/j.jmb.2016.10.030
10.1007/s12065-019-00306-6
10.1007/s00500-019-04203-z
10.1016/j.imu.2021.100662
10.1093/bioinformatics/btm344
10.1093/bib/bbl022
10.1016/j.jbi.2016.05.007
10.1016/j.asoc.2018.06.019
10.1371/journal.pcbi.1002955
10.1186/1471-2105-11-497
10.1145/1541880.1541882
10.7554/eLife.51254
10.1016/j.knosys.2015.04.007
10.1186/1471-2105-7-509
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2022.110249
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2022_110249
S0950705122013454
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
~HD
ID FETCH-LOGICAL-c236t-339d606316dd8e9abe6d84194fe5a26d8707bd4e944eef2e242bf0b258a969f83
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Thu Apr 24 23:07:27 EDT 2025
Sat Oct 25 05:52:30 EDT 2025
Fri Feb 23 02:35:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gene selection
Genetic algorithm
Feature selection, Microarray
Anomaly detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-339d606316dd8e9abe6d84194fe5a26d8707bd4e944eef2e242bf0b258a969f83
ParticipantIDs crossref_citationtrail_10_1016_j_knosys_2022_110249
crossref_primary_10_1016_j_knosys_2022_110249
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_110249
PublicationCentury 2000
PublicationDate 2023-02-28
PublicationDateYYYYMMDD 2023-02-28
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-28
  day: 28
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Prasad, Biswas, Hanmandlu (b15) 2018; 71
Bouazza, Auhmani, Zeroual, Hamdi (b12) 2018; 127
Minter (b31) 1975
Moradi, Rostami (b40) 2015; 44
Cai, Luo, Wang, Yang (b6) 2018; 300
Ghosh, Begum, Sarkar, Chakraborty, Maulik (b9) 2019; 116
Song, Ni, Wang (b38) 2013; 25
Fayyad, Piatetsky-Shapiro, Smyth (b7) 1996; 17
Babu (b30) 2004
Aydadenta, Adiwijaya (b19) 2018; 14
Manikandan, Abirami (b3) 2018
Liu (b22) 2018
Watson (b26) 2006; 7
Ray, Maulik (b23) 2017; 7
Schölkopf, Williamson, Smola, Shawe-Taylor, Piatt (b32) 2000
Jackson, Castro, Saldi, Bonneau, Gresham (b28) 2020; 9
Jansi Rani, Devaraj (b16) 2019; 43
Wang, Wang, Jiang, Liang, Xu (b24) 2017; 429
Shukla, Tripathi, Reddy, Chandramohan (b13) 2020; 13
Chen, Zhang, Gutman (b11) 2016; 62
Aittokallio, Schwikowski (b17) 2006; 7
Sondka, Bamford, Cole, Ward, Dunham, Forbes (b10) 2018; 18
Saeys, Inza, Larrañaga (b5) 2007; 23
Moradi, Rostami (b41) 2015; 84
Tesson, Breitling, Jansen (b25) 2010; 11
Amar, Safer, Shamir (b27) 2013; 9
Wang, Zhou, Tay, Jiang (b8) 2021; 25
Bakhshandeh, Azmi, Teshnehlab (b20) 2020; 11
Chandola, Banerjee, Kumar (b36) 2009; 41
Das, Goswami, Chakrabarti, Chakraborty (b39) 2017; 88
Uthman, Fadl Mutaher, Suad (b1) 2020
Ghojogh (b2) 2019
Chowdhury, Bhattacharyya, Kalita (b21) 2020; 17
Kanterakis, Dimitris, Vassilis, George (b29) 2008
Seliya, Abdollah Zadeh, Khoshgoftaar (b35) 2021; 8
Li (b4) 2017; 50
Akhavan, Hasheminejad (b37) 2021
Amer, Goldstein, Abdennadher (b33) 2013
Han, Li, Liu, Wang (b14) 2020; 24
Uzma, Al-Obeidat, Tubaishat, Shah, Halim (b18) 2020
Kingma, Ba (b34) 2015
Uthman (10.1016/j.knosys.2022.110249_b1) 2020
Moradi (10.1016/j.knosys.2022.110249_b41) 2015; 84
Shukla (10.1016/j.knosys.2022.110249_b13) 2020; 13
Sondka (10.1016/j.knosys.2022.110249_b10) 2018; 18
Ghosh (10.1016/j.knosys.2022.110249_b9) 2019; 116
Chandola (10.1016/j.knosys.2022.110249_b36) 2009; 41
Kanterakis (10.1016/j.knosys.2022.110249_b29) 2008
Amer (10.1016/j.knosys.2022.110249_b33) 2013
Akhavan (10.1016/j.knosys.2022.110249_b37) 2021
Prasad (10.1016/j.knosys.2022.110249_b15) 2018; 71
Chen (10.1016/j.knosys.2022.110249_b11) 2016; 62
Aittokallio (10.1016/j.knosys.2022.110249_b17) 2006; 7
Wang (10.1016/j.knosys.2022.110249_b24) 2017; 429
Tesson (10.1016/j.knosys.2022.110249_b25) 2010; 11
Jackson (10.1016/j.knosys.2022.110249_b28) 2020; 9
Minter (10.1016/j.knosys.2022.110249_b31) 1975
Moradi (10.1016/j.knosys.2022.110249_b40) 2015; 44
Wang (10.1016/j.knosys.2022.110249_b8) 2021; 25
Bakhshandeh (10.1016/j.knosys.2022.110249_b20) 2020; 11
Fayyad (10.1016/j.knosys.2022.110249_b7) 1996; 17
Das (10.1016/j.knosys.2022.110249_b39) 2017; 88
Li (10.1016/j.knosys.2022.110249_b4) 2017; 50
Jansi Rani (10.1016/j.knosys.2022.110249_b16) 2019; 43
Kingma (10.1016/j.knosys.2022.110249_b34) 2015
Manikandan (10.1016/j.knosys.2022.110249_b3) 2018
Liu (10.1016/j.knosys.2022.110249_b22) 2018
Chowdhury (10.1016/j.knosys.2022.110249_b21) 2020; 17
Saeys (10.1016/j.knosys.2022.110249_b5) 2007; 23
Cai (10.1016/j.knosys.2022.110249_b6) 2018; 300
Uzma (10.1016/j.knosys.2022.110249_b18) 2020
Han (10.1016/j.knosys.2022.110249_b14) 2020; 24
Schölkopf (10.1016/j.knosys.2022.110249_b32) 2000
Ghojogh (10.1016/j.knosys.2022.110249_b2) 2019
Babu (10.1016/j.knosys.2022.110249_b30) 2004
Aydadenta (10.1016/j.knosys.2022.110249_b19) 2018; 14
Ray (10.1016/j.knosys.2022.110249_b23) 2017; 7
Bouazza (10.1016/j.knosys.2022.110249_b12) 2018; 127
Amar (10.1016/j.knosys.2022.110249_b27) 2013; 9
Song (10.1016/j.knosys.2022.110249_b38) 2013; 25
Watson (10.1016/j.knosys.2022.110249_b26) 2006; 7
Seliya (10.1016/j.knosys.2022.110249_b35) 2021; 8
References_xml – volume: 127
  year: 2018
  ident: b12
  article-title: Selecting significant marker genes from microarray data by filter approach for cancer diagnosis
  publication-title: Procedia Comput. Sci.
– year: 1975
  ident: b31
  article-title: Single-class classification
– volume: 13
  year: 2020
  ident: b13
  article-title: A study on metaheuristics approaches for gene selection in microarray data: algorithms, applications and open challenges
  publication-title: Evol. Intell.
– year: 2000
  ident: b32
  article-title: Support vector method for novelty detection
– volume: 7
  year: 2017
  ident: b23
  article-title: Identifying differentially coexpressed module during HIV disease progression: A multiobjective approach
  publication-title: Sci. Rep.
– volume: 116
  year: 2019
  ident: b9
  article-title: Recursive Memetic Algorithm for gene selection in microarray data
  publication-title: Expert Syst. Appl.
– volume: 7
  year: 2006
  ident: b17
  article-title: Graph-based methods for analysing networks in cell biology
  publication-title: Brief. Bioinform.
– volume: 71
  year: 2018
  ident: b15
  article-title: A recursive PSO scheme for gene selection in microarray data
  publication-title: Appl. Soft Comput.
– volume: 44
  year: 2015
  ident: b40
  article-title: A graph theoretic approach for unsupervised feature selection
  publication-title: Eng. Appl. Artif. Intell.
– volume: 17
  year: 2020
  ident: b21
  article-title: (Differential) co-expression analysis of gene expression: A survey of best practices
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– year: 2015
  ident: b34
  article-title: Adam: A method for stochastic optimization
– volume: 25
  year: 2013
  ident: b38
  article-title: A fast clustering-based feature subset selection algorithm for high-dimensional data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 11
  year: 2020
  ident: b20
  article-title: Symmetric uncertainty class-feature association map for feature selection in microarray dataset
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 9
  year: 2020
  ident: b28
  article-title: Gene regulatory network reconstruction using single-cell rna sequencing of barcoded genotypes in diverse environments
  publication-title: Elife
– year: 2004
  ident: b30
  article-title: Chapter 11 An introduction to microarray data analysis
  publication-title: Computational Genomics: Theory and Application
– start-page: 106
  year: 2020
  end-page: 116
  ident: b1
  article-title: A survey on feature selection in microarray data: Methods algorithms and challenges
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 50
  year: 2017
  ident: b4
  article-title: Feature selection: A data perspective
  publication-title: ACM Comput. Surv.
– volume: 17
  year: 1996
  ident: b7
  article-title: From data mining to knowledge discovery in databases
  publication-title: AI Mag.
– volume: 88
  year: 2017
  ident: b39
  article-title: A new hybrid feature selection approach using feature association map for supervised and unsupervised classification
  publication-title: Expert Syst. Appl.
– volume: 62
  year: 2016
  ident: b11
  article-title: A kernel-based clustering method for gene selection with gene expression data
  publication-title: J. Biomed. Inform.
– volume: 14
  year: 2018
  ident: b19
  article-title: A clustering approach for feature selection in microarray data classification using random forest
  publication-title: J. Inf. Process. Syst.
– year: 2019
  ident: b2
  article-title: Feature selection and feature extraction in pattern analysis: A literature review
– year: 2018
  ident: b22
  article-title: Differential co-expression network analysis for gene expression data
  publication-title: Methods in Molecular Biology, Vol. 1754
– year: 2021
  ident: b37
  article-title: A graph-based feature selection using class-feature association map (CFAM)
– volume: 9
  year: 2013
  ident: b27
  article-title: Dissection of regulatory networks that are altered in disease via differential co-expression
  publication-title: PLoS Comput. Biol.
– volume: 24
  year: 2020
  ident: b14
  article-title: Feature selection by recursive binary gravitational search algorithm optimization for cancer classification
  publication-title: Soft Comput.
– volume: 18
  year: 2018
  ident: b10
  article-title: The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers
  publication-title: Nat. Rev. Cancer
– volume: 43
  year: 2019
  ident: b16
  article-title: Two-stage hybrid gene selection using mutual information and genetic algorithm for cancer data classification
  publication-title: J. Med. Syst.
– volume: 429
  year: 2017
  ident: b24
  article-title: BFDCA: A comprehensive tool of using Bayes factor for differential co-expression analysis
  publication-title: J. Mol. Biol.
– volume: 23
  year: 2007
  ident: b5
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– volume: 84
  year: 2015
  ident: b41
  article-title: Integration of graph clustering with ant colony optimization for feature selection
  publication-title: Knowl.-Based Syst.
– volume: 11
  year: 2010
  ident: b25
  article-title: DiffCoEx: A simple and sensitive method to find differentially coexpressed gene modules
  publication-title: BMC Bioinformatics
– year: 2013
  ident: b33
  article-title: Enhancing one-class Support Vector Machines for unsupervised anomaly detection
– year: 2020
  ident: b18
  article-title: Gene encoder: a feature selection technique through unsupervised deep learning-based clustering for large gene expression data
  publication-title: Neural Comput. Appl.
– year: 2008
  ident: b29
  article-title: Mining gene regulatory networks and microarray data: The MinePath approach
– year: 2018
  ident: b3
  article-title: A survey on feature selection and extraction techniques for high-dimensional microarray datasets
  publication-title: Knowledge Computing and its Applications: Knowledge Computing in Specific Domains, Vol. 2
– volume: 41
  year: 2009
  ident: b36
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surv.
– volume: 300
  year: 2018
  ident: b6
  article-title: Feature selection in machine learning: A new perspective
  publication-title: Neurocomputing
– volume: 25
  year: 2021
  ident: b8
  article-title: Gene selection for cancer detection using graph signal processing
  publication-title: Inform. Med. Unlocked
– volume: 7
  year: 2006
  ident: b26
  article-title: CoXpress: Differential co-expression in gene expression data
  publication-title: BMC Bioinformatics
– volume: 8
  year: 2021
  ident: b35
  article-title: A literature review on one-class classification and its potential applications in big data
  publication-title: J. Big Data
– year: 2015
  ident: 10.1016/j.knosys.2022.110249_b34
– volume: 17
  issue: 3
  year: 1996
  ident: 10.1016/j.knosys.2022.110249_b7
  article-title: From data mining to knowledge discovery in databases
  publication-title: AI Mag.
– volume: 300
  year: 2018
  ident: 10.1016/j.knosys.2022.110249_b6
  article-title: Feature selection in machine learning: A new perspective
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.077
– year: 2018
  ident: 10.1016/j.knosys.2022.110249_b22
  article-title: Differential co-expression network analysis for gene expression data
– volume: 11
  issue: 1
  year: 2020
  ident: 10.1016/j.knosys.2022.110249_b20
  article-title: Symmetric uncertainty class-feature association map for feature selection in microarray dataset
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-019-00932-7
– volume: 17
  issue: 4
  year: 2020
  ident: 10.1016/j.knosys.2022.110249_b21
  article-title: (Differential) co-expression analysis of gene expression: A survey of best practices
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2019.2893170
– year: 2004
  ident: 10.1016/j.knosys.2022.110249_b30
  article-title: Chapter 11 An introduction to microarray data analysis
– year: 2000
  ident: 10.1016/j.knosys.2022.110249_b32
– volume: 25
  issue: 1
  year: 2013
  ident: 10.1016/j.knosys.2022.110249_b38
  article-title: A fast clustering-based feature subset selection algorithm for high-dimensional data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.181
– year: 2019
  ident: 10.1016/j.knosys.2022.110249_b2
– volume: 18
  issue: 11
  year: 2018
  ident: 10.1016/j.knosys.2022.110249_b10
  article-title: The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0060-1
– volume: 116
  year: 2019
  ident: 10.1016/j.knosys.2022.110249_b9
  article-title: Recursive Memetic Algorithm for gene selection in microarray data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.06.057
– volume: 44
  year: 2015
  ident: 10.1016/j.knosys.2022.110249_b40
  article-title: A graph theoretic approach for unsupervised feature selection
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.05.005
– volume: 14
  issue: 5
  year: 2018
  ident: 10.1016/j.knosys.2022.110249_b19
  article-title: A clustering approach for feature selection in microarray data classification using random forest
  publication-title: J. Inf. Process. Syst.
– year: 2020
  ident: 10.1016/j.knosys.2022.110249_b18
  article-title: Gene encoder: a feature selection technique through unsupervised deep learning-based clustering for large gene expression data
  publication-title: Neural Comput. Appl.
– volume: 8
  issue: 1
  year: 2021
  ident: 10.1016/j.knosys.2022.110249_b35
  article-title: A literature review on one-class classification and its potential applications in big data
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00514-x
– volume: 43
  issue: 8
  year: 2019
  ident: 10.1016/j.knosys.2022.110249_b16
  article-title: Two-stage hybrid gene selection using mutual information and genetic algorithm for cancer data classification
  publication-title: J. Med. Syst.
– year: 2021
  ident: 10.1016/j.knosys.2022.110249_b37
– volume: 50
  issue: 6
  year: 2017
  ident: 10.1016/j.knosys.2022.110249_b4
  article-title: Feature selection: A data perspective
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3136625
– volume: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.knosys.2022.110249_b23
  article-title: Identifying differentially coexpressed module during HIV disease progression: A multiobjective approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00090-2
– volume: 88
  year: 2017
  ident: 10.1016/j.knosys.2022.110249_b39
  article-title: A new hybrid feature selection approach using feature association map for supervised and unsupervised classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.06.032
– volume: 127
  year: 2018
  ident: 10.1016/j.knosys.2022.110249_b12
  article-title: Selecting significant marker genes from microarray data by filter approach for cancer diagnosis
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.01.126
– start-page: 106
  year: 2020
  ident: 10.1016/j.knosys.2022.110249_b1
  article-title: A survey on feature selection in microarray data: Methods algorithms and challenges
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 429
  issue: 3
  year: 2017
  ident: 10.1016/j.knosys.2022.110249_b24
  article-title: BFDCA: A comprehensive tool of using Bayes factor for differential co-expression analysis
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2016.10.030
– volume: 13
  issue: 3
  year: 2020
  ident: 10.1016/j.knosys.2022.110249_b13
  article-title: A study on metaheuristics approaches for gene selection in microarray data: algorithms, applications and open challenges
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-019-00306-6
– year: 2008
  ident: 10.1016/j.knosys.2022.110249_b29
– volume: 24
  issue: 6
  year: 2020
  ident: 10.1016/j.knosys.2022.110249_b14
  article-title: Feature selection by recursive binary gravitational search algorithm optimization for cancer classification
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-04203-z
– volume: 25
  year: 2021
  ident: 10.1016/j.knosys.2022.110249_b8
  article-title: Gene selection for cancer detection using graph signal processing
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2021.100662
– volume: 23
  issue: 19
  year: 2007
  ident: 10.1016/j.knosys.2022.110249_b5
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 7
  issue: 3
  year: 2006
  ident: 10.1016/j.knosys.2022.110249_b17
  article-title: Graph-based methods for analysing networks in cell biology
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbl022
– volume: 62
  year: 2016
  ident: 10.1016/j.knosys.2022.110249_b11
  article-title: A kernel-based clustering method for gene selection with gene expression data
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2016.05.007
– volume: 71
  year: 2018
  ident: 10.1016/j.knosys.2022.110249_b15
  article-title: A recursive PSO scheme for gene selection in microarray data
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.06.019
– volume: 9
  issue: 3
  year: 2013
  ident: 10.1016/j.knosys.2022.110249_b27
  article-title: Dissection of regulatory networks that are altered in disease via differential co-expression
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002955
– volume: 11
  year: 2010
  ident: 10.1016/j.knosys.2022.110249_b25
  article-title: DiffCoEx: A simple and sensitive method to find differentially coexpressed gene modules
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-497
– year: 2018
  ident: 10.1016/j.knosys.2022.110249_b3
  article-title: A survey on feature selection and extraction techniques for high-dimensional microarray datasets
– volume: 41
  issue: 3
  year: 2009
  ident: 10.1016/j.knosys.2022.110249_b36
  article-title: Anomaly detection: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
– year: 1975
  ident: 10.1016/j.knosys.2022.110249_b31
– volume: 9
  year: 2020
  ident: 10.1016/j.knosys.2022.110249_b28
  article-title: Gene regulatory network reconstruction using single-cell rna sequencing of barcoded genotypes in diverse environments
  publication-title: Elife
  doi: 10.7554/eLife.51254
– volume: 84
  year: 2015
  ident: 10.1016/j.knosys.2022.110249_b41
  article-title: Integration of graph clustering with ant colony optimization for feature selection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.04.007
– year: 2013
  ident: 10.1016/j.knosys.2022.110249_b33
– volume: 7
  year: 2006
  ident: 10.1016/j.knosys.2022.110249_b26
  article-title: CoXpress: Differential co-expression in gene expression data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-509
SSID ssj0002218
Score 2.437368
Snippet Cancer diagnosis based on gene analysis is one of the main research areas in bioinformatics and machine learning. Microarray is a technology that can...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110249
SubjectTerms Anomaly detection
Feature selection, Microarray
Gene selection
Genetic algorithm
Title A two-phase gene selection method using anomaly detection and genetic algorithm for microarray data
URI https://dx.doi.org/10.1016/j.knosys.2022.110249
Volume 262
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AKRWK
  dateStart: 19871201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXrz4Ft_k4DVum2Tb9LiIy6q4F13wVpJmqqu77dKtiBd_u5M-fIAoeCvtDCnT6cy0fPk-Qk6M4WkqQo8lvrFMWk8xY0XILA8TEKGIVEVWfT0KhmN5ede765Czdi-Mg1U2tb-u6VW1bs50m2h255NJ9waHA8xXbFjYw4TsOU5QKUOnYnD69gnz4Lz6x-eMmbNut89VGK-nLF-8OtJuzh0enjtGzZ_a05eWM1gnq82sSPv17WyQDmSbZK3VYaDNa7lFkj4tX3I2f8CORDEhgC4qdRsMOa0VoqmDt99TneUzPX2lFsrmss5s5YErUD29z4tJ-TCjOMjSmUPq6aLQaK5LvU3Gg_PbsyFrxBNYwkVQMiEiix8nwg-sVRBpA4FV0o9kCj3N8Tj0QmMlRFICpBywVZvUM7yndBREqRI7ZCnLM9glVCsIPClTbkFICHCiUcr3NDimelwm2iOijVmcNMziTuBiGrcQsse4jnTsIh3Xkd4j7MNrXjNr_GEfto8j_pYhMRb_Xz33_-15QFacvHy9hf2QLJXFMxzhEFKa4yrLjsly_-JqOHoHTIHdMA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GHODCG_EmB65hXZK26REh0Hhe2KTdqqRxYbC10yhCXPjtOH3wkBBI3KrWVirXtZ3osz9CDo3haSpCjyUdY5m0nmLGipBZHiYgQhGpclj19U3Q7cuLgT9okZOmF8bBKuvYX8X0MlrXd9q1NduT4bB9i8UB-ismLMxhQvpyhsxJn4duB3b09onz4Lw85HPSzIk3_XMlyOsxy59e3dRuzh0gnruRmj_lpy8552yZLNbFIj2u3meFtCBbJUsNEQOt_8s1khzT4iVnk3tMSRQ9AuhTSW-DNqcVRTR1-PY7qrN8rEev1EJRP9aZLTVwBapHd_l0WNyPKVaydOygeno61SiuC71O-menvZMuq9kTWMJFUDAhIou7E9EJrFUQaQOBVbITyRR8zfE69EJjJURSAqQcMFeb1DPcVzoKolSJDTKb5RlsEqoVBJ6UKbcgJARY0ijV8TS4UfW4TLRFRGOzOKlHizuGi1HcYMge4srSsbN0XFl6i7APrUk1WuMP-bD5HPE3F4kx-v-quf1vzQMy3-1dX8VX5zeXO2TBcc1X_ey7ZLaYPsMeViSF2S897h2Hyt7F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-phase+gene+selection+method+using+anomaly+detection+and+genetic+algorithm+for+microarray+data&rft.jtitle=Knowledge-based+systems&rft.au=Akhavan%2C+Motahare&rft.au=Hasheminejad%2C+Seyed+Mohammad+Hossein&rft.date=2023-02-28&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=262&rft_id=info:doi/10.1016%2Fj.knosys.2022.110249&rft.externalDocID=S0950705122013454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon