A two-phase gene selection method using anomaly detection and genetic algorithm for microarray data
Cancer diagnosis based on gene analysis is one of the main research areas in bioinformatics and machine learning. Microarray is a technology that can simultaneously study the expression level of thousands of genes in a sample. However, mutation or change in gene expression of only a small number of...
Saved in:
| Published in | Knowledge-based systems Vol. 262; p. 110249 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
28.02.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0950-7051 1872-7409 |
| DOI | 10.1016/j.knosys.2022.110249 |
Cover
| Abstract | Cancer diagnosis based on gene analysis is one of the main research areas in bioinformatics and machine learning. Microarray is a technology that can simultaneously study the expression level of thousands of genes in a sample. However, mutation or change in gene expression of only a small number of genes can lead to cancer, and basically, the expression level of most genes is the same between cancerous and healthy samples. On the other hand, the main challenge in microarray data is the high number of genes compared to the very small number of samples. This issue makes gene selection an essential step in microarray analysis. In this paper, we have proposed a new two-phase gene selection method for microarray data. In the first stage of this method, with a different approach, the genes that are the main features of the microarray are considered as training samples instead of cancerous and healthy samples; afterward, we reduce the number of genes to a great extent via anomaly detection. In the second stage, we apply a guided genetic algorithm to the genes obtained from the previous step to reach the final effective genes. Based on the experimental results, our method can reduce the number of genes up to at least 99% on all datasets. Besides, in addition to the very high reduction rate of genes, we managed to significantly increase the classification accuracy using the selected genes. |
|---|---|
| AbstractList | Cancer diagnosis based on gene analysis is one of the main research areas in bioinformatics and machine learning. Microarray is a technology that can simultaneously study the expression level of thousands of genes in a sample. However, mutation or change in gene expression of only a small number of genes can lead to cancer, and basically, the expression level of most genes is the same between cancerous and healthy samples. On the other hand, the main challenge in microarray data is the high number of genes compared to the very small number of samples. This issue makes gene selection an essential step in microarray analysis. In this paper, we have proposed a new two-phase gene selection method for microarray data. In the first stage of this method, with a different approach, the genes that are the main features of the microarray are considered as training samples instead of cancerous and healthy samples; afterward, we reduce the number of genes to a great extent via anomaly detection. In the second stage, we apply a guided genetic algorithm to the genes obtained from the previous step to reach the final effective genes. Based on the experimental results, our method can reduce the number of genes up to at least 99% on all datasets. Besides, in addition to the very high reduction rate of genes, we managed to significantly increase the classification accuracy using the selected genes. |
| ArticleNumber | 110249 |
| Author | Hasheminejad, Seyed Mohammad Hossein Akhavan, Motahare |
| Author_xml | – sequence: 1 givenname: Motahare surname: Akhavan fullname: Akhavan, Motahare email: motahare.akhavan@gmail.com – sequence: 2 givenname: Seyed Mohammad Hossein surname: Hasheminejad fullname: Hasheminejad, Seyed Mohammad Hossein email: smh.hasheminejad@alzahra.ac.ir |
| BookMark | eNqFkMlOwzAQQC1UJNrCH3DwDyTYjrOYA1JVsUmVuMDZcuxJ65LYlW1A_XtS2hMHOM1IM2-WN0MT5x0gdE1JTgmtbrb5u_NxH3NGGMspJYyLMzSlTc2ymhMxQVMiSpLVpKQXaBbjlpCxkzZTpBc4fflst1ER8Boc4Ag96GS9wwOkjTf4I1q3xsr5QfV7bCCdysqZHyJZjVW_9sGmzYA7H_BgdfAqBDW2q6Qu0Xmn-ghXpzhHbw_3r8unbPXy-LxcrDLNiiplRSFMRaqCVsY0IFQLlWk4FbyDUrExr0ndGg6Cc4COAeOs7UjLykaJSnRNMUe3x7nj9hgDdFLbpA63pqBsLymRB11yK4-65EGXPOoaYf4L3gU7qLD_D7s7YjA-9mkhyKgtOA3GhtGTNN7-PeAb4ReK6Q |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_125126 crossref_primary_10_1007_s11042_024_18327_4 crossref_primary_10_1016_j_cmpb_2024_108291 crossref_primary_10_1016_j_chemolab_2023_104989 crossref_primary_10_1007_s10115_024_02292_3 crossref_primary_10_1016_j_heliyon_2025_e42544 crossref_primary_10_1186_s12859_023_05605_5 crossref_primary_10_1016_j_knosys_2024_111481 crossref_primary_10_1371_journal_pone_0316536 crossref_primary_10_1007_s10115_025_02340_6 crossref_primary_10_1155_2023_3489461 crossref_primary_10_1016_j_compbiomed_2023_107674 crossref_primary_10_1007_s00521_024_09965_8 crossref_primary_10_1016_j_compbiomed_2023_107221 |
| Cites_doi | 10.1016/j.neucom.2017.11.077 10.1007/s13042-019-00932-7 10.1109/TCBB.2019.2893170 10.1109/TKDE.2011.181 10.1038/s41568-018-0060-1 10.1016/j.eswa.2018.06.057 10.1016/j.engappai.2015.05.005 10.1186/s40537-021-00514-x 10.1145/3136625 10.1038/s41598-017-00090-2 10.1016/j.eswa.2017.06.032 10.1016/j.procs.2018.01.126 10.1016/j.jmb.2016.10.030 10.1007/s12065-019-00306-6 10.1007/s00500-019-04203-z 10.1016/j.imu.2021.100662 10.1093/bioinformatics/btm344 10.1093/bib/bbl022 10.1016/j.jbi.2016.05.007 10.1016/j.asoc.2018.06.019 10.1371/journal.pcbi.1002955 10.1186/1471-2105-11-497 10.1145/1541880.1541882 10.7554/eLife.51254 10.1016/j.knosys.2015.04.007 10.1186/1471-2105-7-509 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.knosys.2022.110249 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2022_110249 S0950705122013454 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c236t-339d606316dd8e9abe6d84194fe5a26d8707bd4e944eef2e242bf0b258a969f83 |
| IEDL.DBID | .~1 |
| ISSN | 0950-7051 |
| IngestDate | Thu Apr 24 23:07:27 EDT 2025 Sat Oct 25 05:52:30 EDT 2025 Fri Feb 23 02:35:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Gene selection Genetic algorithm Feature selection, Microarray Anomaly detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c236t-339d606316dd8e9abe6d84194fe5a26d8707bd4e944eef2e242bf0b258a969f83 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_knosys_2022_110249 crossref_primary_10_1016_j_knosys_2022_110249 elsevier_sciencedirect_doi_10_1016_j_knosys_2022_110249 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-28 |
| PublicationDateYYYYMMDD | 2023-02-28 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Prasad, Biswas, Hanmandlu (b15) 2018; 71 Bouazza, Auhmani, Zeroual, Hamdi (b12) 2018; 127 Minter (b31) 1975 Moradi, Rostami (b40) 2015; 44 Cai, Luo, Wang, Yang (b6) 2018; 300 Ghosh, Begum, Sarkar, Chakraborty, Maulik (b9) 2019; 116 Song, Ni, Wang (b38) 2013; 25 Fayyad, Piatetsky-Shapiro, Smyth (b7) 1996; 17 Babu (b30) 2004 Aydadenta, Adiwijaya (b19) 2018; 14 Manikandan, Abirami (b3) 2018 Liu (b22) 2018 Watson (b26) 2006; 7 Ray, Maulik (b23) 2017; 7 Schölkopf, Williamson, Smola, Shawe-Taylor, Piatt (b32) 2000 Jackson, Castro, Saldi, Bonneau, Gresham (b28) 2020; 9 Jansi Rani, Devaraj (b16) 2019; 43 Wang, Wang, Jiang, Liang, Xu (b24) 2017; 429 Shukla, Tripathi, Reddy, Chandramohan (b13) 2020; 13 Chen, Zhang, Gutman (b11) 2016; 62 Aittokallio, Schwikowski (b17) 2006; 7 Sondka, Bamford, Cole, Ward, Dunham, Forbes (b10) 2018; 18 Saeys, Inza, Larrañaga (b5) 2007; 23 Moradi, Rostami (b41) 2015; 84 Tesson, Breitling, Jansen (b25) 2010; 11 Amar, Safer, Shamir (b27) 2013; 9 Wang, Zhou, Tay, Jiang (b8) 2021; 25 Bakhshandeh, Azmi, Teshnehlab (b20) 2020; 11 Chandola, Banerjee, Kumar (b36) 2009; 41 Das, Goswami, Chakrabarti, Chakraborty (b39) 2017; 88 Uthman, Fadl Mutaher, Suad (b1) 2020 Ghojogh (b2) 2019 Chowdhury, Bhattacharyya, Kalita (b21) 2020; 17 Kanterakis, Dimitris, Vassilis, George (b29) 2008 Seliya, Abdollah Zadeh, Khoshgoftaar (b35) 2021; 8 Li (b4) 2017; 50 Akhavan, Hasheminejad (b37) 2021 Amer, Goldstein, Abdennadher (b33) 2013 Han, Li, Liu, Wang (b14) 2020; 24 Uzma, Al-Obeidat, Tubaishat, Shah, Halim (b18) 2020 Kingma, Ba (b34) 2015 Uthman (10.1016/j.knosys.2022.110249_b1) 2020 Moradi (10.1016/j.knosys.2022.110249_b41) 2015; 84 Shukla (10.1016/j.knosys.2022.110249_b13) 2020; 13 Sondka (10.1016/j.knosys.2022.110249_b10) 2018; 18 Ghosh (10.1016/j.knosys.2022.110249_b9) 2019; 116 Chandola (10.1016/j.knosys.2022.110249_b36) 2009; 41 Kanterakis (10.1016/j.knosys.2022.110249_b29) 2008 Amer (10.1016/j.knosys.2022.110249_b33) 2013 Akhavan (10.1016/j.knosys.2022.110249_b37) 2021 Prasad (10.1016/j.knosys.2022.110249_b15) 2018; 71 Chen (10.1016/j.knosys.2022.110249_b11) 2016; 62 Aittokallio (10.1016/j.knosys.2022.110249_b17) 2006; 7 Wang (10.1016/j.knosys.2022.110249_b24) 2017; 429 Tesson (10.1016/j.knosys.2022.110249_b25) 2010; 11 Jackson (10.1016/j.knosys.2022.110249_b28) 2020; 9 Minter (10.1016/j.knosys.2022.110249_b31) 1975 Moradi (10.1016/j.knosys.2022.110249_b40) 2015; 44 Wang (10.1016/j.knosys.2022.110249_b8) 2021; 25 Bakhshandeh (10.1016/j.knosys.2022.110249_b20) 2020; 11 Fayyad (10.1016/j.knosys.2022.110249_b7) 1996; 17 Das (10.1016/j.knosys.2022.110249_b39) 2017; 88 Li (10.1016/j.knosys.2022.110249_b4) 2017; 50 Jansi Rani (10.1016/j.knosys.2022.110249_b16) 2019; 43 Kingma (10.1016/j.knosys.2022.110249_b34) 2015 Manikandan (10.1016/j.knosys.2022.110249_b3) 2018 Liu (10.1016/j.knosys.2022.110249_b22) 2018 Chowdhury (10.1016/j.knosys.2022.110249_b21) 2020; 17 Saeys (10.1016/j.knosys.2022.110249_b5) 2007; 23 Cai (10.1016/j.knosys.2022.110249_b6) 2018; 300 Uzma (10.1016/j.knosys.2022.110249_b18) 2020 Han (10.1016/j.knosys.2022.110249_b14) 2020; 24 Schölkopf (10.1016/j.knosys.2022.110249_b32) 2000 Ghojogh (10.1016/j.knosys.2022.110249_b2) 2019 Babu (10.1016/j.knosys.2022.110249_b30) 2004 Aydadenta (10.1016/j.knosys.2022.110249_b19) 2018; 14 Ray (10.1016/j.knosys.2022.110249_b23) 2017; 7 Bouazza (10.1016/j.knosys.2022.110249_b12) 2018; 127 Amar (10.1016/j.knosys.2022.110249_b27) 2013; 9 Song (10.1016/j.knosys.2022.110249_b38) 2013; 25 Watson (10.1016/j.knosys.2022.110249_b26) 2006; 7 Seliya (10.1016/j.knosys.2022.110249_b35) 2021; 8 |
| References_xml | – volume: 127 year: 2018 ident: b12 article-title: Selecting significant marker genes from microarray data by filter approach for cancer diagnosis publication-title: Procedia Comput. Sci. – year: 1975 ident: b31 article-title: Single-class classification – volume: 13 year: 2020 ident: b13 article-title: A study on metaheuristics approaches for gene selection in microarray data: algorithms, applications and open challenges publication-title: Evol. Intell. – year: 2000 ident: b32 article-title: Support vector method for novelty detection – volume: 7 year: 2017 ident: b23 article-title: Identifying differentially coexpressed module during HIV disease progression: A multiobjective approach publication-title: Sci. Rep. – volume: 116 year: 2019 ident: b9 article-title: Recursive Memetic Algorithm for gene selection in microarray data publication-title: Expert Syst. Appl. – volume: 7 year: 2006 ident: b17 article-title: Graph-based methods for analysing networks in cell biology publication-title: Brief. Bioinform. – volume: 71 year: 2018 ident: b15 article-title: A recursive PSO scheme for gene selection in microarray data publication-title: Appl. Soft Comput. – volume: 44 year: 2015 ident: b40 article-title: A graph theoretic approach for unsupervised feature selection publication-title: Eng. Appl. Artif. Intell. – volume: 17 year: 2020 ident: b21 article-title: (Differential) co-expression analysis of gene expression: A survey of best practices publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – year: 2015 ident: b34 article-title: Adam: A method for stochastic optimization – volume: 25 year: 2013 ident: b38 article-title: A fast clustering-based feature subset selection algorithm for high-dimensional data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 11 year: 2020 ident: b20 article-title: Symmetric uncertainty class-feature association map for feature selection in microarray dataset publication-title: Int. J. Mach. Learn. Cybern. – volume: 9 year: 2020 ident: b28 article-title: Gene regulatory network reconstruction using single-cell rna sequencing of barcoded genotypes in diverse environments publication-title: Elife – year: 2004 ident: b30 article-title: Chapter 11 An introduction to microarray data analysis publication-title: Computational Genomics: Theory and Application – start-page: 106 year: 2020 end-page: 116 ident: b1 article-title: A survey on feature selection in microarray data: Methods algorithms and challenges publication-title: Int. J. Comput. Sci. Eng. – volume: 50 year: 2017 ident: b4 article-title: Feature selection: A data perspective publication-title: ACM Comput. Surv. – volume: 17 year: 1996 ident: b7 article-title: From data mining to knowledge discovery in databases publication-title: AI Mag. – volume: 88 year: 2017 ident: b39 article-title: A new hybrid feature selection approach using feature association map for supervised and unsupervised classification publication-title: Expert Syst. Appl. – volume: 62 year: 2016 ident: b11 article-title: A kernel-based clustering method for gene selection with gene expression data publication-title: J. Biomed. Inform. – volume: 14 year: 2018 ident: b19 article-title: A clustering approach for feature selection in microarray data classification using random forest publication-title: J. Inf. Process. Syst. – year: 2019 ident: b2 article-title: Feature selection and feature extraction in pattern analysis: A literature review – year: 2018 ident: b22 article-title: Differential co-expression network analysis for gene expression data publication-title: Methods in Molecular Biology, Vol. 1754 – year: 2021 ident: b37 article-title: A graph-based feature selection using class-feature association map (CFAM) – volume: 9 year: 2013 ident: b27 article-title: Dissection of regulatory networks that are altered in disease via differential co-expression publication-title: PLoS Comput. Biol. – volume: 24 year: 2020 ident: b14 article-title: Feature selection by recursive binary gravitational search algorithm optimization for cancer classification publication-title: Soft Comput. – volume: 18 year: 2018 ident: b10 article-title: The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers publication-title: Nat. Rev. Cancer – volume: 43 year: 2019 ident: b16 article-title: Two-stage hybrid gene selection using mutual information and genetic algorithm for cancer data classification publication-title: J. Med. Syst. – volume: 429 year: 2017 ident: b24 article-title: BFDCA: A comprehensive tool of using Bayes factor for differential co-expression analysis publication-title: J. Mol. Biol. – volume: 23 year: 2007 ident: b5 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics – volume: 84 year: 2015 ident: b41 article-title: Integration of graph clustering with ant colony optimization for feature selection publication-title: Knowl.-Based Syst. – volume: 11 year: 2010 ident: b25 article-title: DiffCoEx: A simple and sensitive method to find differentially coexpressed gene modules publication-title: BMC Bioinformatics – year: 2013 ident: b33 article-title: Enhancing one-class Support Vector Machines for unsupervised anomaly detection – year: 2020 ident: b18 article-title: Gene encoder: a feature selection technique through unsupervised deep learning-based clustering for large gene expression data publication-title: Neural Comput. Appl. – year: 2008 ident: b29 article-title: Mining gene regulatory networks and microarray data: The MinePath approach – year: 2018 ident: b3 article-title: A survey on feature selection and extraction techniques for high-dimensional microarray datasets publication-title: Knowledge Computing and its Applications: Knowledge Computing in Specific Domains, Vol. 2 – volume: 41 year: 2009 ident: b36 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. – volume: 300 year: 2018 ident: b6 article-title: Feature selection in machine learning: A new perspective publication-title: Neurocomputing – volume: 25 year: 2021 ident: b8 article-title: Gene selection for cancer detection using graph signal processing publication-title: Inform. Med. Unlocked – volume: 7 year: 2006 ident: b26 article-title: CoXpress: Differential co-expression in gene expression data publication-title: BMC Bioinformatics – volume: 8 year: 2021 ident: b35 article-title: A literature review on one-class classification and its potential applications in big data publication-title: J. Big Data – year: 2015 ident: 10.1016/j.knosys.2022.110249_b34 – volume: 17 issue: 3 year: 1996 ident: 10.1016/j.knosys.2022.110249_b7 article-title: From data mining to knowledge discovery in databases publication-title: AI Mag. – volume: 300 year: 2018 ident: 10.1016/j.knosys.2022.110249_b6 article-title: Feature selection in machine learning: A new perspective publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.077 – year: 2018 ident: 10.1016/j.knosys.2022.110249_b22 article-title: Differential co-expression network analysis for gene expression data – volume: 11 issue: 1 year: 2020 ident: 10.1016/j.knosys.2022.110249_b20 article-title: Symmetric uncertainty class-feature association map for feature selection in microarray dataset publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-019-00932-7 – volume: 17 issue: 4 year: 2020 ident: 10.1016/j.knosys.2022.110249_b21 article-title: (Differential) co-expression analysis of gene expression: A survey of best practices publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2019.2893170 – year: 2004 ident: 10.1016/j.knosys.2022.110249_b30 article-title: Chapter 11 An introduction to microarray data analysis – year: 2000 ident: 10.1016/j.knosys.2022.110249_b32 – volume: 25 issue: 1 year: 2013 ident: 10.1016/j.knosys.2022.110249_b38 article-title: A fast clustering-based feature subset selection algorithm for high-dimensional data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.181 – year: 2019 ident: 10.1016/j.knosys.2022.110249_b2 – volume: 18 issue: 11 year: 2018 ident: 10.1016/j.knosys.2022.110249_b10 article-title: The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0060-1 – volume: 116 year: 2019 ident: 10.1016/j.knosys.2022.110249_b9 article-title: Recursive Memetic Algorithm for gene selection in microarray data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.06.057 – volume: 44 year: 2015 ident: 10.1016/j.knosys.2022.110249_b40 article-title: A graph theoretic approach for unsupervised feature selection publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.05.005 – volume: 14 issue: 5 year: 2018 ident: 10.1016/j.knosys.2022.110249_b19 article-title: A clustering approach for feature selection in microarray data classification using random forest publication-title: J. Inf. Process. Syst. – year: 2020 ident: 10.1016/j.knosys.2022.110249_b18 article-title: Gene encoder: a feature selection technique through unsupervised deep learning-based clustering for large gene expression data publication-title: Neural Comput. Appl. – volume: 8 issue: 1 year: 2021 ident: 10.1016/j.knosys.2022.110249_b35 article-title: A literature review on one-class classification and its potential applications in big data publication-title: J. Big Data doi: 10.1186/s40537-021-00514-x – volume: 43 issue: 8 year: 2019 ident: 10.1016/j.knosys.2022.110249_b16 article-title: Two-stage hybrid gene selection using mutual information and genetic algorithm for cancer data classification publication-title: J. Med. Syst. – year: 2021 ident: 10.1016/j.knosys.2022.110249_b37 – volume: 50 issue: 6 year: 2017 ident: 10.1016/j.knosys.2022.110249_b4 article-title: Feature selection: A data perspective publication-title: ACM Comput. Surv. doi: 10.1145/3136625 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.knosys.2022.110249_b23 article-title: Identifying differentially coexpressed module during HIV disease progression: A multiobjective approach publication-title: Sci. Rep. doi: 10.1038/s41598-017-00090-2 – volume: 88 year: 2017 ident: 10.1016/j.knosys.2022.110249_b39 article-title: A new hybrid feature selection approach using feature association map for supervised and unsupervised classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.06.032 – volume: 127 year: 2018 ident: 10.1016/j.knosys.2022.110249_b12 article-title: Selecting significant marker genes from microarray data by filter approach for cancer diagnosis publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.01.126 – start-page: 106 year: 2020 ident: 10.1016/j.knosys.2022.110249_b1 article-title: A survey on feature selection in microarray data: Methods algorithms and challenges publication-title: Int. J. Comput. Sci. Eng. – volume: 429 issue: 3 year: 2017 ident: 10.1016/j.knosys.2022.110249_b24 article-title: BFDCA: A comprehensive tool of using Bayes factor for differential co-expression analysis publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2016.10.030 – volume: 13 issue: 3 year: 2020 ident: 10.1016/j.knosys.2022.110249_b13 article-title: A study on metaheuristics approaches for gene selection in microarray data: algorithms, applications and open challenges publication-title: Evol. Intell. doi: 10.1007/s12065-019-00306-6 – year: 2008 ident: 10.1016/j.knosys.2022.110249_b29 – volume: 24 issue: 6 year: 2020 ident: 10.1016/j.knosys.2022.110249_b14 article-title: Feature selection by recursive binary gravitational search algorithm optimization for cancer classification publication-title: Soft Comput. doi: 10.1007/s00500-019-04203-z – volume: 25 year: 2021 ident: 10.1016/j.knosys.2022.110249_b8 article-title: Gene selection for cancer detection using graph signal processing publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2021.100662 – volume: 23 issue: 19 year: 2007 ident: 10.1016/j.knosys.2022.110249_b5 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 7 issue: 3 year: 2006 ident: 10.1016/j.knosys.2022.110249_b17 article-title: Graph-based methods for analysing networks in cell biology publication-title: Brief. Bioinform. doi: 10.1093/bib/bbl022 – volume: 62 year: 2016 ident: 10.1016/j.knosys.2022.110249_b11 article-title: A kernel-based clustering method for gene selection with gene expression data publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2016.05.007 – volume: 71 year: 2018 ident: 10.1016/j.knosys.2022.110249_b15 article-title: A recursive PSO scheme for gene selection in microarray data publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.06.019 – volume: 9 issue: 3 year: 2013 ident: 10.1016/j.knosys.2022.110249_b27 article-title: Dissection of regulatory networks that are altered in disease via differential co-expression publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002955 – volume: 11 year: 2010 ident: 10.1016/j.knosys.2022.110249_b25 article-title: DiffCoEx: A simple and sensitive method to find differentially coexpressed gene modules publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-497 – year: 2018 ident: 10.1016/j.knosys.2022.110249_b3 article-title: A survey on feature selection and extraction techniques for high-dimensional microarray datasets – volume: 41 issue: 3 year: 2009 ident: 10.1016/j.knosys.2022.110249_b36 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541882 – year: 1975 ident: 10.1016/j.knosys.2022.110249_b31 – volume: 9 year: 2020 ident: 10.1016/j.knosys.2022.110249_b28 article-title: Gene regulatory network reconstruction using single-cell rna sequencing of barcoded genotypes in diverse environments publication-title: Elife doi: 10.7554/eLife.51254 – volume: 84 year: 2015 ident: 10.1016/j.knosys.2022.110249_b41 article-title: Integration of graph clustering with ant colony optimization for feature selection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.04.007 – year: 2013 ident: 10.1016/j.knosys.2022.110249_b33 – volume: 7 year: 2006 ident: 10.1016/j.knosys.2022.110249_b26 article-title: CoXpress: Differential co-expression in gene expression data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-509 |
| SSID | ssj0002218 |
| Score | 2.437368 |
| Snippet | Cancer diagnosis based on gene analysis is one of the main research areas in bioinformatics and machine learning. Microarray is a technology that can... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110249 |
| SubjectTerms | Anomaly detection Feature selection, Microarray Gene selection Genetic algorithm |
| Title | A two-phase gene selection method using anomaly detection and genetic algorithm for microarray data |
| URI | https://dx.doi.org/10.1016/j.knosys.2022.110249 |
| Volume | 262 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AKRWK dateStart: 19871201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXrz4Ft_k4DVum2Tb9LiIy6q4F13wVpJmqqu77dKtiBd_u5M-fIAoeCvtDCnT6cy0fPk-Qk6M4WkqQo8lvrFMWk8xY0XILA8TEKGIVEVWfT0KhmN5ede765Czdi-Mg1U2tb-u6VW1bs50m2h255NJ9waHA8xXbFjYw4TsOU5QKUOnYnD69gnz4Lz6x-eMmbNut89VGK-nLF-8OtJuzh0enjtGzZ_a05eWM1gnq82sSPv17WyQDmSbZK3VYaDNa7lFkj4tX3I2f8CORDEhgC4qdRsMOa0VoqmDt99TneUzPX2lFsrmss5s5YErUD29z4tJ-TCjOMjSmUPq6aLQaK5LvU3Gg_PbsyFrxBNYwkVQMiEiix8nwg-sVRBpA4FV0o9kCj3N8Tj0QmMlRFICpBywVZvUM7yndBREqRI7ZCnLM9glVCsIPClTbkFICHCiUcr3NDimelwm2iOijVmcNMziTuBiGrcQsse4jnTsIh3Xkd4j7MNrXjNr_GEfto8j_pYhMRb_Xz33_-15QFacvHy9hf2QLJXFMxzhEFKa4yrLjsly_-JqOHoHTIHdMA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GHODCG_EmB65hXZK26REh0Hhe2KTdqqRxYbC10yhCXPjtOH3wkBBI3KrWVirXtZ3osz9CDo3haSpCjyUdY5m0nmLGipBZHiYgQhGpclj19U3Q7cuLgT9okZOmF8bBKuvYX8X0MlrXd9q1NduT4bB9i8UB-ismLMxhQvpyhsxJn4duB3b09onz4Lw85HPSzIk3_XMlyOsxy59e3dRuzh0gnruRmj_lpy8552yZLNbFIj2u3meFtCBbJUsNEQOt_8s1khzT4iVnk3tMSRQ9AuhTSW-DNqcVRTR1-PY7qrN8rEev1EJRP9aZLTVwBapHd_l0WNyPKVaydOygeno61SiuC71O-menvZMuq9kTWMJFUDAhIou7E9EJrFUQaQOBVbITyRR8zfE69EJjJURSAqQcMFeb1DPcVzoKolSJDTKb5RlsEqoVBJ6UKbcgJARY0ijV8TS4UfW4TLRFRGOzOKlHizuGi1HcYMge4srSsbN0XFl6i7APrUk1WuMP-bD5HPE3F4kx-v-quf1vzQMy3-1dX8VX5zeXO2TBcc1X_ey7ZLaYPsMeViSF2S897h2Hyt7F |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-phase+gene+selection+method+using+anomaly+detection+and+genetic+algorithm+for+microarray+data&rft.jtitle=Knowledge-based+systems&rft.au=Akhavan%2C+Motahare&rft.au=Hasheminejad%2C+Seyed+Mohammad+Hossein&rft.date=2023-02-28&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=262&rft_id=info:doi/10.1016%2Fj.knosys.2022.110249&rft.externalDocID=S0950705122013454 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |