Reduced Non-Local Integrable NLS Hierarchies by Pairs of Local and Non-Local Constraints

We conduct three pairs of local and non-local group constraints for the Ablowitz-Kaup-Newell-Segur matrix eigenvalue problems and generate three reduced non-local integrable nonlinear Schrödinger (NLS) hierarchies. All resulting non-local equations possess infinitely many Lie-Bäcklund symmetries and...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied and computational mathematics Vol. 8; no. 4
Main Author Ma, Wen-Xiu
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2349-5103
2199-5796
DOI10.1007/s40819-022-01422-1

Cover

Abstract We conduct three pairs of local and non-local group constraints for the Ablowitz-Kaup-Newell-Segur matrix eigenvalue problems and generate three reduced non-local integrable nonlinear Schrödinger (NLS) hierarchies. All resulting non-local equations possess infinitely many Lie-Bäcklund symmetries and conservation laws expressed in terms of differential functions of potentials.
AbstractList We conduct three pairs of local and non-local group constraints for the Ablowitz-Kaup-Newell-Segur matrix eigenvalue problems and generate three reduced non-local integrable nonlinear Schrödinger (NLS) hierarchies. All resulting non-local equations possess infinitely many Lie-Bäcklund symmetries and conservation laws expressed in terms of differential functions of potentials.
ArticleNumber 206
Author Ma, Wen-Xiu
Author_xml – sequence: 1
  givenname: Wen-Xiu
  surname: Ma
  fullname: Ma, Wen-Xiu
  email: mawx@cas.usf.edu
  organization: Department of Mathematics, Zhejiang Normal University, Department of Mathematics, King Abdulaziz University, Department of Mathematics and Statistics, University of South Florida, School of Mathematical and Statistical Sciences, North-West University
BookMark eNp9kEtPwzAQhC0EEqX0D3CyxDmwfiSxj6gCWikqiIfEzXIcp6QqdrHTQ_89LkECcehldw7z7Y7mDB077yxCFwSuCEB5HTkIIjOgNAPC0yRHaESJlFleyuI4acaTJsBO0STGFQBQwkugYoTenmyzNbbBC--yyhu9xnPX22XQ9driRfWMZ50NOpj3zkZc7_Cj7kLEvsWDWbu_6NS72AfduT6eo5NWr6Od_Owxer27fZnOsurhfj69qTJDWUEy1tS6pm1DNSFc1FK23EpCRV7nKZ8B2eSMMcFzI6RloqYGSkpow_MSWskbNkaXw91N8J9bG3u18tvg0ktFC1kUQgIUySUGlwk-xmBbZbpe9513-7hrRUDtq1RDlSpVqb6rVCSh9B-6Cd2HDrvDEBugmMxuacNvqgPUF68JhYE
CitedBy_id crossref_primary_10_1016_j_jmaa_2023_127275
crossref_primary_10_4213_tmf10489
crossref_primary_10_1007_s10473_024_0624_y
crossref_primary_10_1111_sapm_12764
crossref_primary_10_1142_S0217984923500458
crossref_primary_10_1016_j_cnsns_2023_107316
crossref_primary_10_1016_j_chaos_2023_113272
crossref_primary_10_1140_epjb_s10051_023_00489_z
crossref_primary_10_1016_j_cjph_2023_03_016
crossref_primary_10_1088_1572_9494_acd998
crossref_primary_10_1088_1572_9494_acea70
crossref_primary_10_1016_j_physleta_2022_128575
crossref_primary_10_1007_s12346_023_00856_2
crossref_primary_10_1016_j_aml_2023_108775
crossref_primary_10_1007_s10440_023_00610_5
crossref_primary_10_3390_sym14122579
crossref_primary_10_1142_S0217984923501439
crossref_primary_10_59277_RomRepPhys_2023_75_115
crossref_primary_10_3390_math11081794
crossref_primary_10_1007_s11082_023_04812_x
crossref_primary_10_1016_j_cjph_2023_09_023
crossref_primary_10_3390_math11040861
crossref_primary_10_1016_j_cjph_2023_02_011
crossref_primary_10_3390_fluids8010013
crossref_primary_10_1016_j_cnsns_2023_107460
crossref_primary_10_1134_S0040577923080093
crossref_primary_10_11948_20220470
crossref_primary_10_3390_sym15010207
crossref_primary_10_1016_j_asej_2023_102214
crossref_primary_10_1142_S0219887823500986
Cites_doi 10.1016/j.padiff.2021.100190
10.1016/j.nonrwa.2018.09.017
10.1063/1.4997835
10.1111/sapm.12329
10.1142/S0217979221500351
10.1007/s10473-022-0106-z
10.1016/j.physleta.2018.10.051
10.1016/j.geomphys.2022.104522
10.1016/j.physd.2021.133078
10.1090/proc/15174
10.3390/sym13030512
10.1111/sapm.12153
10.1016/j.aml.2019.106161
10.1016/j.cnsns.2016.09.013
10.1088/0951-7715/29/3/915
10.1088/1361-6544/aae031
10.1090/bproc/116
10.1016/j.aml.2022.108074
10.3390/sym13112205
10.3390/math10060870
10.1103/PhysRevE.98.042202
10.1088/0305-4470/26/11/009
10.1016/j.cnsns.2018.07.013
10.1016/j.cnsns.2016.06.015
10.1002/mma.5416
10.1142/S0217984922500944
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature India Private Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s40819-022-01422-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 2199-5796
ExternalDocumentID 10_1007_s40819_022_01422_1
GrantInformation_xml – fundername: Ministry of Science and Technology of the People’s Republic of China
  grantid: G2021016032L)
  funderid: http://dx.doi.org/10.13039/501100002855
GroupedDBID -EM
0R~
203
4.4
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
GQ6
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c2361-3dbab2fd2a1148b99f4e91285b5028c09d5333845c89e38b2c07212d4570f94d3
ISSN 2349-5103
IngestDate Wed Sep 17 23:58:36 EDT 2025
Wed Oct 01 05:00:15 EDT 2025
Thu Apr 24 23:05:04 EDT 2025
Fri Feb 21 02:45:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 35Q55
37K15
37K40
Matrix eigenvalue problem
Non-local group constraint
Integrable hierarchy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2361-3dbab2fd2a1148b99f4e91285b5028c09d5333845c89e38b2c07212d4570f94d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2696689006
PQPubID 2044256
ParticipantIDs proquest_journals_2696689006
crossref_citationtrail_10_1007_s40819_022_01422_1
crossref_primary_10_1007_s40819_022_01422_1
springer_journals_10_1007_s40819_022_01422_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220800
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 8
  year: 2022
  text: 20220800
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Heidelberg
PublicationTitle International journal of applied and computational mathematics
PublicationTitleAbbrev Int. J. Appl. Comput. Math
PublicationYear 2022
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Ma (CR4) 2021; 4
Ma (CR11) 1993; 26
Ablowitz, Musslimani (CR3) 2017; 139
Ma (CR7) 2022; 10
Ma (CR12) 2021; 13
Song, Xiao, Zhu (CR14) 2017; 45
Ma (CR5) 2020; 102
Adjiri, Ahmed, Ma (CR20) 2022; 35
Yang (CR18) 2019; 383
Gürses, Pekcan (CR15) 2018; 59
Ma (CR1) 2019; 47
Ma (CR21) 2022; 42B
Ji, Zhu (CR13) 2017; 42
CR2
Feng, Luo, Ablowitz, Musslimani (CR16) 2018; 31
Ling, Ma (CR10) 2021; 13
Ma (CR19) 2021; 149
Ma (CR22) 2022; 430
Ma (CR25) 2022; 9
Gürses, Pekcan (CR17) 2019; 67
Ablowitz, Musslimani (CR9) 2016; 29
Ma, Huang, Wang (CR6) 2020; 145
Ma (CR8) 2022; 131
Ma (CR23) 2019; 42
Yang (CR24) 2018; 98
Ma (CR26) 2022; 177
J Yang (1422_CR18) 2019; 383
LM Ling (1422_CR10) 2021; 13
WX Ma (1422_CR23) 2019; 42
CQ Song (1422_CR14) 2017; 45
MJ Ablowitz (1422_CR3) 2017; 139
J Yang (1422_CR24) 2018; 98
WX Ma (1422_CR25) 2022; 9
WX Ma (1422_CR5) 2020; 102
WX Ma (1422_CR8) 2022; 131
JL Ji (1422_CR13) 2017; 42
1422_CR2
WX Ma (1422_CR7) 2022; 10
WX Ma (1422_CR21) 2022; 42B
WX Ma (1422_CR1) 2019; 47
WX Ma (1422_CR22) 2022; 430
WX Ma (1422_CR12) 2021; 13
WX Ma (1422_CR26) 2022; 177
WX Ma (1422_CR11) 1993; 26
WX Ma (1422_CR4) 2021; 4
MJ Ablowitz (1422_CR9) 2016; 29
A Adjiri (1422_CR20) 2022; 35
WX Ma (1422_CR19) 2021; 149
M Gürses (1422_CR17) 2019; 67
WX Ma (1422_CR6) 2020; 145
M Gürses (1422_CR15) 2018; 59
BF Feng (1422_CR16) 2018; 31
References_xml – volume: 4
  year: 2021
  ident: CR4
  article-title: Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems
  publication-title: Partial Differ. Equ. Appl. Math.
  doi: 10.1016/j.padiff.2021.100190
– volume: 47
  start-page: 1
  year: 2019
  end-page: 17
  ident: CR1
  article-title: Application of the Riemann-Hilbert approach to the multicomponent AKNS integrable hierarchies
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2018.09.017
– volume: 59
  year: 2018
  ident: CR15
  article-title: Nonlocal nonlinear Schrödinger equations and their soliton solutions
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4997835
– volume: 145
  start-page: 563
  year: 2020
  end-page: 585
  ident: CR6
  article-title: Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrödinger hierarchies
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12329
– volume: 35
  start-page: 2150035
  year: 2022
  ident: CR20
  article-title: Riemann-Hilbert problems of a nonlocal reverse-time six-component AKNS system of fourth order and its exact soliton solutions
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979221500351
– volume: 42B
  start-page: 127
  year: 2022
  end-page: 140
  ident: CR21
  article-title: Riemann-Hilbert problems and soliton solutions of nonlocal reverse-time NLS hierarchies
  publication-title: Acta Math. Sci.
  doi: 10.1007/s10473-022-0106-z
– ident: CR2
– volume: 383
  start-page: 328
  year: 2019
  end-page: 337
  ident: CR18
  article-title: General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.10.051
– volume: 177
  year: 2022
  ident: CR26
  article-title: Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2022.104522
– volume: 430
  year: 2022
  ident: CR22
  article-title: Riemann-Hilbert problems and inverse scattering of nonlocal real reverse-spacetime matrix AKNS hierarchies
  publication-title: Physica D
  doi: 10.1016/j.physd.2021.133078
– volume: 149
  start-page: 251
  year: 2021
  end-page: 263
  ident: CR19
  article-title: Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/proc/15174
– volume: 13
  start-page: 512
  year: 2021
  ident: CR10
  article-title: Inverse scattering and soliton solutions of nonlocal complex reverse-spacetime modified Korteweg-de Vries hierarchies
  publication-title: Symmetry
  doi: 10.3390/sym13030512
– volume: 139
  start-page: 7
  year: 2017
  end-page: 59
  ident: CR3
  article-title: Integrable nonlocal nonlinear equations
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12153
– volume: 102
  year: 2020
  ident: CR5
  article-title: Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.106161
– volume: 45
  start-page: 13
  year: 2017
  end-page: 28
  ident: CR14
  article-title: Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2016.09.013
– volume: 29
  start-page: 915
  year: 2016
  end-page: 946
  ident: CR9
  article-title: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/29/3/915
– volume: 31
  start-page: 5385
  year: 2018
  end-page: 5409
  ident: CR16
  article-title: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/aae031
– volume: 9
  start-page: 1
  year: 2022
  end-page: 11
  ident: CR25
  article-title: Integrable nonlocal nonlinear Schrödinger equations associated with so(3, )
  publication-title: Proc. Amer. Math. Soc. Ser. B
  doi: 10.1090/bproc/116
– volume: 131
  year: 2022
  ident: CR8
  article-title: Type ( ) reduced nonlocal integrable mKdV equations and their soliton solutions
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2022.108074
– volume: 13
  start-page: 2205
  year: 2021
  ident: CR12
  article-title: Integrable nonlocal PT-symmetric modified Korteweg-de Vries equations associated with so(3, )
  publication-title: Symmetry
  doi: 10.3390/sym13112205
– volume: 10
  start-page: 870
  year: 2022
  ident: CR7
  article-title: Riemann-Hilbert problems and soliton solutions of type ( ) reduced nonlocal integrable mKdV hierarchies
  publication-title: Math.
  doi: 10.3390/math10060870
– volume: 98
  year: 2018
  ident: CR24
  article-title: Phyiscally significant nonlocal nonlinear Schrödinger equation and its soliton solutions
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.042202
– volume: 26
  start-page: 2573
  year: 1993
  end-page: 2582
  ident: CR11
  article-title: The algebraic structure of zero curvature representations and application to coupled KdV systems
  publication-title: J. Phys. A Math. Gen.
  doi: 10.1088/0305-4470/26/11/009
– volume: 67
  start-page: 427
  year: 2019
  end-page: 448
  ident: CR17
  article-title: Nonlocal modified KdV equations and their soliton solutions by Hirota method
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.07.013
– volume: 42
  start-page: 699
  year: 2017
  end-page: 708
  ident: CR13
  article-title: On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2016.06.015
– volume: 42
  start-page: 1099
  year: 2019
  end-page: 1113
  ident: CR23
  article-title: Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction
  publication-title: Math. Meth. Appl. Sci.
  doi: 10.1002/mma.5416
– volume: 9
  start-page: 1
  year: 2022
  ident: 1422_CR25
  publication-title: Proc. Amer. Math. Soc. Ser. B
  doi: 10.1090/bproc/116
– volume: 67
  start-page: 427
  year: 2019
  ident: 1422_CR17
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.07.013
– volume: 149
  start-page: 251
  year: 2021
  ident: 1422_CR19
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/proc/15174
– volume: 45
  start-page: 13
  year: 2017
  ident: 1422_CR14
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2016.09.013
– volume: 42
  start-page: 699
  year: 2017
  ident: 1422_CR13
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2016.06.015
– volume: 29
  start-page: 915
  year: 2016
  ident: 1422_CR9
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/29/3/915
– volume: 31
  start-page: 5385
  year: 2018
  ident: 1422_CR16
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/aae031
– volume: 98
  year: 2018
  ident: 1422_CR24
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.042202
– volume: 13
  start-page: 2205
  year: 2021
  ident: 1422_CR12
  publication-title: Symmetry
  doi: 10.3390/sym13112205
– volume: 430
  year: 2022
  ident: 1422_CR22
  publication-title: Physica D
  doi: 10.1016/j.physd.2021.133078
– volume: 42B
  start-page: 127
  year: 2022
  ident: 1422_CR21
  publication-title: Acta Math. Sci.
  doi: 10.1007/s10473-022-0106-z
– ident: 1422_CR2
  doi: 10.1142/S0217984922500944
– volume: 42
  start-page: 1099
  year: 2019
  ident: 1422_CR23
  publication-title: Math. Meth. Appl. Sci.
  doi: 10.1002/mma.5416
– volume: 131
  year: 2022
  ident: 1422_CR8
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2022.108074
– volume: 177
  year: 2022
  ident: 1422_CR26
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2022.104522
– volume: 13
  start-page: 512
  year: 2021
  ident: 1422_CR10
  publication-title: Symmetry
  doi: 10.3390/sym13030512
– volume: 4
  year: 2021
  ident: 1422_CR4
  publication-title: Partial Differ. Equ. Appl. Math.
  doi: 10.1016/j.padiff.2021.100190
– volume: 26
  start-page: 2573
  year: 1993
  ident: 1422_CR11
  publication-title: J. Phys. A Math. Gen.
  doi: 10.1088/0305-4470/26/11/009
– volume: 145
  start-page: 563
  year: 2020
  ident: 1422_CR6
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12329
– volume: 59
  year: 2018
  ident: 1422_CR15
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4997835
– volume: 35
  start-page: 2150035
  year: 2022
  ident: 1422_CR20
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979221500351
– volume: 47
  start-page: 1
  year: 2019
  ident: 1422_CR1
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2018.09.017
– volume: 139
  start-page: 7
  year: 2017
  ident: 1422_CR3
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12153
– volume: 102
  year: 2020
  ident: 1422_CR5
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.106161
– volume: 10
  start-page: 870
  year: 2022
  ident: 1422_CR7
  publication-title: Math.
  doi: 10.3390/math10060870
– volume: 383
  start-page: 328
  year: 2019
  ident: 1422_CR18
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.10.051
SSID ssj0002147028
Score 2.39177
Snippet We conduct three pairs of local and non-local group constraints for the Ablowitz-Kaup-Newell-Segur matrix eigenvalue problems and generate three reduced...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applications of Mathematics
Applied mathematics
Computational mathematics
Computational Science and Engineering
Conservation laws
Eigenvalues
Hierarchies
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nuclear Energy
Operations Research/Decision Theory
Original Paper
Theoretical
Title Reduced Non-Local Integrable NLS Hierarchies by Pairs of Local and Non-Local Constraints
URI https://link.springer.com/article/10.1007/s40819-022-01422-1
https://www.proquest.com/docview/2696689006
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2199-5796
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002147028
  issn: 2349-5103
  databaseCode: AFBBN
  dateStart: 20150301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAG1EoyAMbGKWJ3cRjQaAKaIV4iG5RnMRQCVJE2wF-PWfHcVJeApaocs-pm-9if3f23SG0x1KHB7EjiJ-2wEBhUhBgRYxQCuwgCiRwaBXg3Ou3u7f0bMAGtdp55dTSdCIO47cv40r-gyq0Aa4qSvYPyNqbQgN8BnzhCgjD9VcYX6m8q8AY-6OMXKhFSTv47l90OFT_4nq_O1TxxfEDmMOKZ16qzRu9KzAqcgSUXVXpTl0wIs_tVDDWWZdhJdFEZPirCYx7nk4KoSebCtYS9p7mqHdpRgbDadXTAEZqcc5t1tMIfyUZRuU85XqUE5WYL19S8rYWhzY_L1ZbTLRBRZ_ol9N3fmJjTBVPIXoEykVFWuViZY8Q2nTLWjgE4VALh2AKz7kwxTt1NNc5PTrqW5ebKsnk6Gq7dsgmjEoHU3761VmqUtofH7bMNRO5WUaLxoTAnVwfVlAtzVbRkjEnsJmsx6tooVfisIYGRlmwRRyXyoJBWXBFWbB4xVpZ8EjiXBhgrnStKMs6uj09uTnuElNWg8Qq0w7xEhEJVyZupGxhwbmkKQeawgSDpxM7PAETwAsoiwOeeoFwY5VDz00o8x3JaeJtoHo2ytJNhH3GkwBMBEEFp1EC1FH6DOy1yI2YlL7XQK3iCYaxyTmvBvcYfg9fA-3bPs95xpUfpZsFMKF5Bcah2wYjPuCwoDTQQQFW-fX3d9v6m_g2mi_fkyaqT16m6Q5w1InYNbr3Dm37iKc
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+Non-Local+Integrable+NLS+Hierarchies+by+Pairs+of+Local+and+Non-Local+Constraints&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=Ma%2C+Wen-Xiu&rft.date=2022-08-01&rft.pub=Springer+India&rft.issn=2349-5103&rft.eissn=2199-5796&rft.volume=8&rft.issue=4&rft_id=info:doi/10.1007%2Fs40819-022-01422-1&rft.externalDocID=10_1007_s40819_022_01422_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon