Reduced Non-Local Integrable NLS Hierarchies by Pairs of Local and Non-Local Constraints
We conduct three pairs of local and non-local group constraints for the Ablowitz-Kaup-Newell-Segur matrix eigenvalue problems and generate three reduced non-local integrable nonlinear Schrödinger (NLS) hierarchies. All resulting non-local equations possess infinitely many Lie-Bäcklund symmetries and...
Saved in:
| Published in | International journal of applied and computational mathematics Vol. 8; no. 4 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
New Delhi
Springer India
01.08.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2349-5103 2199-5796 |
| DOI | 10.1007/s40819-022-01422-1 |
Cover
| Abstract | We conduct three pairs of local and non-local group constraints for the Ablowitz-Kaup-Newell-Segur matrix eigenvalue problems and generate three reduced non-local integrable nonlinear Schrödinger (NLS) hierarchies. All resulting non-local equations possess infinitely many Lie-Bäcklund symmetries and conservation laws expressed in terms of differential functions of potentials. |
|---|---|
| AbstractList | We conduct three pairs of local and non-local group constraints for the Ablowitz-Kaup-Newell-Segur matrix eigenvalue problems and generate three reduced non-local integrable nonlinear Schrödinger (NLS) hierarchies. All resulting non-local equations possess infinitely many Lie-Bäcklund symmetries and conservation laws expressed in terms of differential functions of potentials. |
| ArticleNumber | 206 |
| Author | Ma, Wen-Xiu |
| Author_xml | – sequence: 1 givenname: Wen-Xiu surname: Ma fullname: Ma, Wen-Xiu email: mawx@cas.usf.edu organization: Department of Mathematics, Zhejiang Normal University, Department of Mathematics, King Abdulaziz University, Department of Mathematics and Statistics, University of South Florida, School of Mathematical and Statistical Sciences, North-West University |
| BookMark | eNp9kEtPwzAQhC0EEqX0D3CyxDmwfiSxj6gCWikqiIfEzXIcp6QqdrHTQ_89LkECcehldw7z7Y7mDB077yxCFwSuCEB5HTkIIjOgNAPC0yRHaESJlFleyuI4acaTJsBO0STGFQBQwkugYoTenmyzNbbBC--yyhu9xnPX22XQ9driRfWMZ50NOpj3zkZc7_Cj7kLEvsWDWbu_6NS72AfduT6eo5NWr6Od_Owxer27fZnOsurhfj69qTJDWUEy1tS6pm1DNSFc1FK23EpCRV7nKZ8B2eSMMcFzI6RloqYGSkpow_MSWskbNkaXw91N8J9bG3u18tvg0ktFC1kUQgIUySUGlwk-xmBbZbpe9513-7hrRUDtq1RDlSpVqb6rVCSh9B-6Cd2HDrvDEBugmMxuacNvqgPUF68JhYE |
| CitedBy_id | crossref_primary_10_1016_j_jmaa_2023_127275 crossref_primary_10_4213_tmf10489 crossref_primary_10_1007_s10473_024_0624_y crossref_primary_10_1111_sapm_12764 crossref_primary_10_1142_S0217984923500458 crossref_primary_10_1016_j_cnsns_2023_107316 crossref_primary_10_1016_j_chaos_2023_113272 crossref_primary_10_1140_epjb_s10051_023_00489_z crossref_primary_10_1016_j_cjph_2023_03_016 crossref_primary_10_1088_1572_9494_acd998 crossref_primary_10_1088_1572_9494_acea70 crossref_primary_10_1016_j_physleta_2022_128575 crossref_primary_10_1007_s12346_023_00856_2 crossref_primary_10_1016_j_aml_2023_108775 crossref_primary_10_1007_s10440_023_00610_5 crossref_primary_10_3390_sym14122579 crossref_primary_10_1142_S0217984923501439 crossref_primary_10_59277_RomRepPhys_2023_75_115 crossref_primary_10_3390_math11081794 crossref_primary_10_1007_s11082_023_04812_x crossref_primary_10_1016_j_cjph_2023_09_023 crossref_primary_10_3390_math11040861 crossref_primary_10_1016_j_cjph_2023_02_011 crossref_primary_10_3390_fluids8010013 crossref_primary_10_1016_j_cnsns_2023_107460 crossref_primary_10_1134_S0040577923080093 crossref_primary_10_11948_20220470 crossref_primary_10_3390_sym15010207 crossref_primary_10_1016_j_asej_2023_102214 crossref_primary_10_1142_S0219887823500986 |
| Cites_doi | 10.1016/j.padiff.2021.100190 10.1016/j.nonrwa.2018.09.017 10.1063/1.4997835 10.1111/sapm.12329 10.1142/S0217979221500351 10.1007/s10473-022-0106-z 10.1016/j.physleta.2018.10.051 10.1016/j.geomphys.2022.104522 10.1016/j.physd.2021.133078 10.1090/proc/15174 10.3390/sym13030512 10.1111/sapm.12153 10.1016/j.aml.2019.106161 10.1016/j.cnsns.2016.09.013 10.1088/0951-7715/29/3/915 10.1088/1361-6544/aae031 10.1090/bproc/116 10.1016/j.aml.2022.108074 10.3390/sym13112205 10.3390/math10060870 10.1103/PhysRevE.98.042202 10.1088/0305-4470/26/11/009 10.1016/j.cnsns.2018.07.013 10.1016/j.cnsns.2016.06.015 10.1002/mma.5416 10.1142/S0217984922500944 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature India Private Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s40819-022-01422-1 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 2199-5796 |
| ExternalDocumentID | 10_1007_s40819_022_01422_1 |
| GrantInformation_xml | – fundername: Ministry of Science and Technology of the People’s Republic of China grantid: G2021016032L) funderid: http://dx.doi.org/10.13039/501100002855 |
| GroupedDBID | -EM 0R~ 203 4.4 406 AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AVXWI AXYYD AZFZN BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD GQ6 HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c2361-3dbab2fd2a1148b99f4e91285b5028c09d5333845c89e38b2c07212d4570f94d3 |
| ISSN | 2349-5103 |
| IngestDate | Wed Sep 17 23:58:36 EDT 2025 Wed Oct 01 05:00:15 EDT 2025 Thu Apr 24 23:05:04 EDT 2025 Fri Feb 21 02:45:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | 35Q55 37K15 37K40 Matrix eigenvalue problem Non-local group constraint Integrable hierarchy |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2361-3dbab2fd2a1148b99f4e91285b5028c09d5333845c89e38b2c07212d4570f94d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2696689006 |
| PQPubID | 2044256 |
| ParticipantIDs | proquest_journals_2696689006 crossref_citationtrail_10_1007_s40819_022_01422_1 crossref_primary_10_1007_s40819_022_01422_1 springer_journals_10_1007_s40819_022_01422_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220800 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 8 year: 2022 text: 20220800 |
| PublicationDecade | 2020 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi – name: Heidelberg |
| PublicationTitle | International journal of applied and computational mathematics |
| PublicationTitleAbbrev | Int. J. Appl. Comput. Math |
| PublicationYear | 2022 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | Ma (CR4) 2021; 4 Ma (CR11) 1993; 26 Ablowitz, Musslimani (CR3) 2017; 139 Ma (CR7) 2022; 10 Ma (CR12) 2021; 13 Song, Xiao, Zhu (CR14) 2017; 45 Ma (CR5) 2020; 102 Adjiri, Ahmed, Ma (CR20) 2022; 35 Yang (CR18) 2019; 383 Gürses, Pekcan (CR15) 2018; 59 Ma (CR1) 2019; 47 Ma (CR21) 2022; 42B Ji, Zhu (CR13) 2017; 42 CR2 Feng, Luo, Ablowitz, Musslimani (CR16) 2018; 31 Ling, Ma (CR10) 2021; 13 Ma (CR19) 2021; 149 Ma (CR22) 2022; 430 Ma (CR25) 2022; 9 Gürses, Pekcan (CR17) 2019; 67 Ablowitz, Musslimani (CR9) 2016; 29 Ma, Huang, Wang (CR6) 2020; 145 Ma (CR8) 2022; 131 Ma (CR23) 2019; 42 Yang (CR24) 2018; 98 Ma (CR26) 2022; 177 J Yang (1422_CR18) 2019; 383 LM Ling (1422_CR10) 2021; 13 WX Ma (1422_CR23) 2019; 42 CQ Song (1422_CR14) 2017; 45 MJ Ablowitz (1422_CR3) 2017; 139 J Yang (1422_CR24) 2018; 98 WX Ma (1422_CR25) 2022; 9 WX Ma (1422_CR5) 2020; 102 WX Ma (1422_CR8) 2022; 131 JL Ji (1422_CR13) 2017; 42 1422_CR2 WX Ma (1422_CR7) 2022; 10 WX Ma (1422_CR21) 2022; 42B WX Ma (1422_CR1) 2019; 47 WX Ma (1422_CR22) 2022; 430 WX Ma (1422_CR12) 2021; 13 WX Ma (1422_CR26) 2022; 177 WX Ma (1422_CR11) 1993; 26 WX Ma (1422_CR4) 2021; 4 MJ Ablowitz (1422_CR9) 2016; 29 A Adjiri (1422_CR20) 2022; 35 WX Ma (1422_CR19) 2021; 149 M Gürses (1422_CR17) 2019; 67 WX Ma (1422_CR6) 2020; 145 M Gürses (1422_CR15) 2018; 59 BF Feng (1422_CR16) 2018; 31 |
| References_xml | – volume: 4 year: 2021 ident: CR4 article-title: Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems publication-title: Partial Differ. Equ. Appl. Math. doi: 10.1016/j.padiff.2021.100190 – volume: 47 start-page: 1 year: 2019 end-page: 17 ident: CR1 article-title: Application of the Riemann-Hilbert approach to the multicomponent AKNS integrable hierarchies publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2018.09.017 – volume: 59 year: 2018 ident: CR15 article-title: Nonlocal nonlinear Schrödinger equations and their soliton solutions publication-title: J. Math. Phys. doi: 10.1063/1.4997835 – volume: 145 start-page: 563 year: 2020 end-page: 585 ident: CR6 article-title: Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrödinger hierarchies publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12329 – volume: 35 start-page: 2150035 year: 2022 ident: CR20 article-title: Riemann-Hilbert problems of a nonlocal reverse-time six-component AKNS system of fourth order and its exact soliton solutions publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979221500351 – volume: 42B start-page: 127 year: 2022 end-page: 140 ident: CR21 article-title: Riemann-Hilbert problems and soliton solutions of nonlocal reverse-time NLS hierarchies publication-title: Acta Math. Sci. doi: 10.1007/s10473-022-0106-z – ident: CR2 – volume: 383 start-page: 328 year: 2019 end-page: 337 ident: CR18 article-title: General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.10.051 – volume: 177 year: 2022 ident: CR26 article-title: Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2022.104522 – volume: 430 year: 2022 ident: CR22 article-title: Riemann-Hilbert problems and inverse scattering of nonlocal real reverse-spacetime matrix AKNS hierarchies publication-title: Physica D doi: 10.1016/j.physd.2021.133078 – volume: 149 start-page: 251 year: 2021 end-page: 263 ident: CR19 article-title: Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations publication-title: Proc. Amer. Math. Soc. doi: 10.1090/proc/15174 – volume: 13 start-page: 512 year: 2021 ident: CR10 article-title: Inverse scattering and soliton solutions of nonlocal complex reverse-spacetime modified Korteweg-de Vries hierarchies publication-title: Symmetry doi: 10.3390/sym13030512 – volume: 139 start-page: 7 year: 2017 end-page: 59 ident: CR3 article-title: Integrable nonlocal nonlinear equations publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12153 – volume: 102 year: 2020 ident: CR5 article-title: Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.106161 – volume: 45 start-page: 13 year: 2017 end-page: 28 ident: CR14 article-title: Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2016.09.013 – volume: 29 start-page: 915 year: 2016 end-page: 946 ident: CR9 article-title: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation publication-title: Nonlinearity doi: 10.1088/0951-7715/29/3/915 – volume: 31 start-page: 5385 year: 2018 end-page: 5409 ident: CR16 article-title: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions publication-title: Nonlinearity doi: 10.1088/1361-6544/aae031 – volume: 9 start-page: 1 year: 2022 end-page: 11 ident: CR25 article-title: Integrable nonlocal nonlinear Schrödinger equations associated with so(3, ) publication-title: Proc. Amer. Math. Soc. Ser. B doi: 10.1090/bproc/116 – volume: 131 year: 2022 ident: CR8 article-title: Type ( ) reduced nonlocal integrable mKdV equations and their soliton solutions publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2022.108074 – volume: 13 start-page: 2205 year: 2021 ident: CR12 article-title: Integrable nonlocal PT-symmetric modified Korteweg-de Vries equations associated with so(3, ) publication-title: Symmetry doi: 10.3390/sym13112205 – volume: 10 start-page: 870 year: 2022 ident: CR7 article-title: Riemann-Hilbert problems and soliton solutions of type ( ) reduced nonlocal integrable mKdV hierarchies publication-title: Math. doi: 10.3390/math10060870 – volume: 98 year: 2018 ident: CR24 article-title: Phyiscally significant nonlocal nonlinear Schrödinger equation and its soliton solutions publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.98.042202 – volume: 26 start-page: 2573 year: 1993 end-page: 2582 ident: CR11 article-title: The algebraic structure of zero curvature representations and application to coupled KdV systems publication-title: J. Phys. A Math. Gen. doi: 10.1088/0305-4470/26/11/009 – volume: 67 start-page: 427 year: 2019 end-page: 448 ident: CR17 article-title: Nonlocal modified KdV equations and their soliton solutions by Hirota method publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.07.013 – volume: 42 start-page: 699 year: 2017 end-page: 708 ident: CR13 article-title: On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2016.06.015 – volume: 42 start-page: 1099 year: 2019 end-page: 1113 ident: CR23 article-title: Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction publication-title: Math. Meth. Appl. Sci. doi: 10.1002/mma.5416 – volume: 9 start-page: 1 year: 2022 ident: 1422_CR25 publication-title: Proc. Amer. Math. Soc. Ser. B doi: 10.1090/bproc/116 – volume: 67 start-page: 427 year: 2019 ident: 1422_CR17 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.07.013 – volume: 149 start-page: 251 year: 2021 ident: 1422_CR19 publication-title: Proc. Amer. Math. Soc. doi: 10.1090/proc/15174 – volume: 45 start-page: 13 year: 2017 ident: 1422_CR14 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2016.09.013 – volume: 42 start-page: 699 year: 2017 ident: 1422_CR13 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2016.06.015 – volume: 29 start-page: 915 year: 2016 ident: 1422_CR9 publication-title: Nonlinearity doi: 10.1088/0951-7715/29/3/915 – volume: 31 start-page: 5385 year: 2018 ident: 1422_CR16 publication-title: Nonlinearity doi: 10.1088/1361-6544/aae031 – volume: 98 year: 2018 ident: 1422_CR24 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.98.042202 – volume: 13 start-page: 2205 year: 2021 ident: 1422_CR12 publication-title: Symmetry doi: 10.3390/sym13112205 – volume: 430 year: 2022 ident: 1422_CR22 publication-title: Physica D doi: 10.1016/j.physd.2021.133078 – volume: 42B start-page: 127 year: 2022 ident: 1422_CR21 publication-title: Acta Math. Sci. doi: 10.1007/s10473-022-0106-z – ident: 1422_CR2 doi: 10.1142/S0217984922500944 – volume: 42 start-page: 1099 year: 2019 ident: 1422_CR23 publication-title: Math. Meth. Appl. Sci. doi: 10.1002/mma.5416 – volume: 131 year: 2022 ident: 1422_CR8 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2022.108074 – volume: 177 year: 2022 ident: 1422_CR26 publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2022.104522 – volume: 13 start-page: 512 year: 2021 ident: 1422_CR10 publication-title: Symmetry doi: 10.3390/sym13030512 – volume: 4 year: 2021 ident: 1422_CR4 publication-title: Partial Differ. Equ. Appl. Math. doi: 10.1016/j.padiff.2021.100190 – volume: 26 start-page: 2573 year: 1993 ident: 1422_CR11 publication-title: J. Phys. A Math. Gen. doi: 10.1088/0305-4470/26/11/009 – volume: 145 start-page: 563 year: 2020 ident: 1422_CR6 publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12329 – volume: 59 year: 2018 ident: 1422_CR15 publication-title: J. Math. Phys. doi: 10.1063/1.4997835 – volume: 35 start-page: 2150035 year: 2022 ident: 1422_CR20 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979221500351 – volume: 47 start-page: 1 year: 2019 ident: 1422_CR1 publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2018.09.017 – volume: 139 start-page: 7 year: 2017 ident: 1422_CR3 publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12153 – volume: 102 year: 2020 ident: 1422_CR5 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.106161 – volume: 10 start-page: 870 year: 2022 ident: 1422_CR7 publication-title: Math. doi: 10.3390/math10060870 – volume: 383 start-page: 328 year: 2019 ident: 1422_CR18 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.10.051 |
| SSID | ssj0002147028 |
| Score | 2.39177 |
| Snippet | We conduct three pairs of local and non-local group constraints for the Ablowitz-Kaup-Newell-Segur matrix eigenvalue problems and generate three reduced... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Applications of Mathematics Applied mathematics Computational mathematics Computational Science and Engineering Conservation laws Eigenvalues Hierarchies Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nuclear Energy Operations Research/Decision Theory Original Paper Theoretical |
| Title | Reduced Non-Local Integrable NLS Hierarchies by Pairs of Local and Non-Local Constraints |
| URI | https://link.springer.com/article/10.1007/s40819-022-01422-1 https://www.proquest.com/docview/2696689006 |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2199-5796 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002147028 issn: 2349-5103 databaseCode: AFBBN dateStart: 20150301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAG1EoyAMbGKWJ3cRjQaAKaIV4iG5RnMRQCVJE2wF-PWfHcVJeApaocs-pm-9if3f23SG0x1KHB7EjiJ-2wEBhUhBgRYxQCuwgCiRwaBXg3Ou3u7f0bMAGtdp55dTSdCIO47cv40r-gyq0Aa4qSvYPyNqbQgN8BnzhCgjD9VcYX6m8q8AY-6OMXKhFSTv47l90OFT_4nq_O1TxxfEDmMOKZ16qzRu9KzAqcgSUXVXpTl0wIs_tVDDWWZdhJdFEZPirCYx7nk4KoSebCtYS9p7mqHdpRgbDadXTAEZqcc5t1tMIfyUZRuU85XqUE5WYL19S8rYWhzY_L1ZbTLRBRZ_ol9N3fmJjTBVPIXoEykVFWuViZY8Q2nTLWjgE4VALh2AKz7kwxTt1NNc5PTrqW5ebKsnk6Gq7dsgmjEoHU3761VmqUtofH7bMNRO5WUaLxoTAnVwfVlAtzVbRkjEnsJmsx6tooVfisIYGRlmwRRyXyoJBWXBFWbB4xVpZ8EjiXBhgrnStKMs6uj09uTnuElNWg8Qq0w7xEhEJVyZupGxhwbmkKQeawgSDpxM7PAETwAsoiwOeeoFwY5VDz00o8x3JaeJtoHo2ytJNhH3GkwBMBEEFp1EC1FH6DOy1yI2YlL7XQK3iCYaxyTmvBvcYfg9fA-3bPs95xpUfpZsFMKF5Bcah2wYjPuCwoDTQQQFW-fX3d9v6m_g2mi_fkyaqT16m6Q5w1InYNbr3Dm37iKc |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+Non-Local+Integrable+NLS+Hierarchies+by+Pairs+of+Local+and+Non-Local+Constraints&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=Ma%2C+Wen-Xiu&rft.date=2022-08-01&rft.pub=Springer+India&rft.issn=2349-5103&rft.eissn=2199-5796&rft.volume=8&rft.issue=4&rft_id=info:doi/10.1007%2Fs40819-022-01422-1&rft.externalDocID=10_1007_s40819_022_01422_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon |