Progressive quantum algorithm for maximum independent set with quantum alternating operator ansatz
The quantum alternating operator ansatz algorithm (QAOA+) is widely used for constrained combinatorial optimization problems (CCOPs) due to its ability to construct feasible solution spaces. In this paper, we propose a progressive quantum algorithm (PQA) to reduce qubit requirements for QAOA+ in sol...
Saved in:
Published in | Chinese physics B Vol. 34; no. 7; pp. 70304 - 70316 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/addd83 |
Cover
Abstract | The quantum alternating operator ansatz algorithm (QAOA+) is widely used for constrained combinatorial optimization problems (CCOPs) due to its ability to construct feasible solution spaces. In this paper, we propose a progressive quantum algorithm (PQA) to reduce qubit requirements for QAOA+ in solving the maximum independent set (MIS) problem. PQA iteratively constructs a subgraph likely to include the MIS solution of the original graph and solves the problem on it to approximate the global solution. Specifically, PQA starts with a small-scale subgraph and progressively expands its graph size utilizing heuristic expansion strategies. After each expansion, PQA solves the MIS problem on the newly generated subgraph using QAOA+. In each run, PQA repeats the expansion and solving process until a predefined stopping condition is reached. Simulation results show that PQA achieves an approximation ratio of 0.95 using only 5.57% (2.17%) of the qubits and 17.59% (6.43%) of the runtime compared with directly solving the original problem with QAOA+ on Erdös–Rényi (3-regular) graphs, highlighting the efficiency and scalability of PQA. |
---|---|
AbstractList | The quantum alternating operator ansatz algorithm (QAOA+) is widely used for constrained combinatorial optimization problems (CCOPs) due to its ability to construct feasible solution spaces. In this paper, we propose a progressive quantum algorithm (PQA) to reduce qubit requirements for QAOA+ in solving the maximum independent set (MIS) problem. PQA iteratively constructs a subgraph likely to include the MIS solution of the original graph and solves the problem on it to approximate the global solution. Specifically, PQA starts with a small-scale subgraph and progressively expands its graph size utilizing heuristic expansion strategies. After each expansion, PQA solves the MIS problem on the newly generated subgraph using QAOA+. In each run, PQA repeats the expansion and solving process until a predefined stopping condition is reached. Simulation results show that PQA achieves an approximation ratio of 0.95 using only 5.57% (2.17%) of the qubits and 17.59% (6.43%) of the runtime compared with directly solving the original problem with QAOA+ on Erdös–Rényi (3-regular) graphs, highlighting the efficiency and scalability of PQA. |
Author | Qin, Su-Juan Jin, Zheng-Ping Gao, Fei Ni, Xiao-Hui Li, Ling-Xiao Song, Yan-Qi |
Author_xml | – sequence: 1 givenname: Xiao-Hui surname: Ni fullname: Ni, Xiao-Hui organization: Beijing University of Posts and Telecommunications School of Cyberspace Security, Beijing 100876, China – sequence: 2 givenname: Ling-Xiao surname: Li fullname: Li, Ling-Xiao organization: Beijing University of Posts and Telecommunications State Key Laboratory of Networking and Switching Technology, Beijing 100876, China – sequence: 3 givenname: Yan-Qi surname: Song fullname: Song, Yan-Qi organization: China Academy of Information and Communications Technology , Beijing 100191, China – sequence: 4 givenname: Zheng-Ping surname: Jin fullname: Jin, Zheng-Ping organization: Beijing University of Posts and Telecommunications School of Cyberspace Security, Beijing 100876, China – sequence: 5 givenname: Su-Juan surname: Qin fullname: Qin, Su-Juan organization: Beijing University of Posts and Telecommunications School of Cyberspace Security, Beijing 100876, China – sequence: 6 givenname: Fei surname: Gao fullname: Gao, Fei organization: Beijing University of Posts and Telecommunications School of Cyberspace Security, Beijing 100876, China |
BookMark | eNp1kMtOwzAQRS1UJNrCnqU_gFA_YsdbVPGSKsEC1pYT28FVYwfb4fX1uCpCbNjMSDP3juaeBZj54A0A5xhdYiTECvOmrjBifKW01oIegTlBTFRU0HoG5r_rE7BIaYsQx4jQOWgfY-ijScm9Gfg6KZ-nAapdH6LLLwO0IcJBfbihTJ3XZjSl-AyTyfC9KP5YsoleZed7GEYTVS5O5ZPKX6fg2KpdMmc_fQmeb66f1nfV5uH2fn21qTpCWa5sgyzhSGHdEqqEpS0npKUWES3Ku2XZNZpjxWts2xKQUq2ZZgxx0tWGGboE6HC3iyGlaKwcoxtU_JQYyT0juYcg9xDkgVGxXBwsLoxyG6aSYJf-l38DK7RtMQ |
Cites_doi | 10.1103/PhysRevLett.125.260505 10.3389/fphy.2014.00005 10.22331/q 10.1007/s11433-024-2501-4 10.1007/s11128-022-03766-5 10.1016/j.physa.2023.129089 10.1103/PhysRevLett.79.325 10.1145/3584706 10.1103/PhysRevApplied.19.024027 10.1002/qute.202400484 10.1038/s41534-023-00787-5 10.1109/TCAD.2023.3327102 10.1137/S0036144598347011 10.1007/s11433-023-2337-2 10.1103/PRXQuantum.5.020327 10.1103/PhysRevApplied.14.034009 10.1016/j.asoc.2022.108554 10.1038/s41467-019-10988-2 10.48550/arXiv.1812.04170 10.1109/QCE57702.2023.00009 10.1103/PhysRevA.110.052435 10.2514/1.A34931 10.1088/2058-9565/ab8c2b 10.1016/j.ins.2022.11.020 10.1103/PhysRevLett.103.150502 10.1103/PhysRevA.104.052419 10.22331/q-2022-08-22-781 10.1142/S0219749920500112 10.1145/3149526.3149530 10.1103/PhysRevA.111.022418 10.1103/PhysRevA.101.012320 10.1145/1073814.1073834 10.46632/rmc 10.1103/PhysRevX.10.021067 10.1002/qute.202300419 10.3390/a12020034 10.1103/PRXQuantum.2.020310 10.48550/arXiv.1411.4028 10.1103/PhysRevResearch.4.033029 10.1109/QCE49297.2020.00021 10.1038/s41534-022-00570-y |
ContentType | Journal Article |
Copyright | 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/1674-1056/addd83 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
ExternalDocumentID | 10_1088_1674_1056_addd83 cpb_34_7_070304 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K W28 AAYXX AEINN CITATION |
ID | FETCH-LOGICAL-c235t-f70f260a1db23a8f3b622b3f02d80060f2c7d61a641fbd8333dd5d55062c4e5e3 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Wed Oct 01 05:47:30 EDT 2025 Wed Jul 16 05:32:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c235t-f70f260a1db23a8f3b622b3f02d80060f2c7d61a641fbd8333dd5d55062c4e5e3 |
PageCount | 13 |
ParticipantIDs | iop_journals_10_1088_1674_1056_addd83 crossref_primary_10_1088_1674_1056_addd83 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250701 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 20250701 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationYear | 2025 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Hochbaum (cpb_34_7_070304bib33) 1997 Tang (cpb_34_7_070304bib6) 2021; 2 Zhou (cpb_34_7_070304bib14) 2023; 19 Preskill (cpb_34_7_070304bib4) 2018; 2 Shaydulin (cpb_34_7_070304bib41) 2023; 4 Wu (cpb_34_7_070304bib8) 2025 Wurtz (cpb_34_7_070304bib42) 2021; 104 Lucas (cpb_34_7_070304bib23) 2014; 2 Harrow (cpb_34_7_070304bib3) 2009; 103 He (cpb_34_7_070304bib28) 2023; 9 Moscibroda (cpb_34_7_070304bib31) 2005 Grimsley (cpb_34_7_070304bib5) 2019; 10 Saleem (cpb_34_7_070304bib35) 2020; 18 Shor (cpb_34_7_070304bib2) 1999; 41 Song (cpb_34_7_070304bib9) 2024; 67 Eddy (cpb_34_7_070304bib32) 2021; 58 Zhang (cpb_34_7_070304bib21) 2022; 118 Li (cpb_34_7_070304bib36) 2024; 68 Brady (cpb_34_7_070304bib29) 2024; 110 Bondy (cpb_34_7_070304bib37) 1976 Finžgar (cpb_34_7_070304bib22) 2024; 5 Du (cpb_34_7_070304bib7) 2022; 8 Zhou (cpb_34_7_070304bib17) 2020; 10 Tomesh (cpb_34_7_070304bib39) 2024; 8 Wang (cpb_34_7_070304bib27) 2020; 101 Hadfield (cpb_34_7_070304bib25) 2019; 12 Wang (cpb_34_7_070304bib30) 2023; 626 Brandao (cpb_34_7_070304bib43) 2018 Zhu (cpb_34_7_070304bib13) 2022; 4 Bravyi (cpb_34_7_070304bib11) 2020; 125 Tomesh (cpb_34_7_070304bib19) 2023 Grover (cpb_34_7_070304bib1) 1997; 79 Brandhofer (cpb_34_7_070304bib18) 2022; 22 Hadfield (cpb_34_7_070304bib26) 2017 Vale (cpb_34_7_070304bib38) 2024; 43 Cook (cpb_34_7_070304bib15) 2020 Ruan (cpb_34_7_070304bib24) 2023; 619 Vikstål (cpb_34_7_070304bib16) 2020; 14 Streif (cpb_34_7_070304bib12) 2020; 5 Ni (cpb_34_7_070304bib20) 2024; 7 Farhi (cpb_34_7_070304bib10) 2014 Lyngfelt (cpb_34_7_070304bib40) 2025; 111 Guerreschi (cpb_34_7_070304bib45) 2019; 9 Tomesh (cpb_34_7_070304bib34) 2022; 6 Chinnasamy (cpb_34_7_070304bib44) 2022; 3 |
References_xml | – volume: 125 year: 2020 ident: cpb_34_7_070304bib11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.260505 – volume: 2 start-page: 5 year: 2014 ident: cpb_34_7_070304bib23 publication-title: Front. Phys. doi: 10.3389/fphy.2014.00005 – volume: 18 year: 2020 ident: cpb_34_7_070304bib35 publication-title: Int. J. Quantum Inf. doi: 10.22331/q – year: 1976 ident: cpb_34_7_070304bib37 doi: 10.1007/s11433-024-2501-4 – volume: 22 start-page: 25 year: 2022 ident: cpb_34_7_070304bib18 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-022-03766-5 – start-page: 148 year: 2005 ident: cpb_34_7_070304bib31 doi: 10.1016/j.physa.2023.129089 – volume: 79 start-page: 325 year: 1997 ident: cpb_34_7_070304bib1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.325 – volume: 104 year: 2021 ident: cpb_34_7_070304bib42 publication-title: Phys. Rev. A doi: 10.1145/3584706 – volume: 111 year: 2025 ident: cpb_34_7_070304bib40 publication-title: Phys. Rev. A doi: 10.22331/q – volume: 19 year: 2023 ident: cpb_34_7_070304bib14 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.19.024027 – volume: 2 start-page: 79 year: 2018 ident: cpb_34_7_070304bib4 publication-title: Quantum doi: 10.22331/q – year: 2025 ident: cpb_34_7_070304bib8 doi: 10.1002/qute.202400484 – volume: 110 year: 2024 ident: cpb_34_7_070304bib29 publication-title: Phys. Rev. A doi: 10.1038/s41534-023-00787-5 – volume: 43 start-page: 802 year: 2024 ident: cpb_34_7_070304bib38 publication-title: Trans. Comput.-Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2023.3327102 – volume: 41 start-page: 303 year: 1999 ident: cpb_34_7_070304bib2 publication-title: SIAM Rev. doi: 10.1137/S0036144598347011 – volume: 67 year: 2024 ident: cpb_34_7_070304bib9 publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-023-2337-2 – volume: 5 year: 2024 ident: cpb_34_7_070304bib22 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.5.020327 – volume: 14 year: 2020 ident: cpb_34_7_070304bib16 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.034009 – volume: 118 year: 2022 ident: cpb_34_7_070304bib21 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108554 – volume: 10 start-page: 3007 year: 2019 ident: cpb_34_7_070304bib5 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10988-2 – volume: 3 start-page: 1 year: 2022 ident: cpb_34_7_070304bib44 publication-title: Recent Trends Manag. Commer. doi: 10.48550/arXiv.1812.04170 – start-page: 1 year: 2023 ident: cpb_34_7_070304bib19 doi: 10.1109/QCE57702.2023.00009 – volume: 626 year: 2023 ident: cpb_34_7_070304bib30 publication-title: Physica A doi: 10.1103/PhysRevA.110.052435 – start-page: 94 year: 1997 ident: cpb_34_7_070304bib33 doi: 10.2514/1.A34931 – volume: 5 year: 2020 ident: cpb_34_7_070304bib12 publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/ab8c2b – start-page: 15 year: 2017 ident: cpb_34_7_070304bib26 doi: 10.1016/j.ins.2022.11.020 – volume: 103 year: 2009 ident: cpb_34_7_070304bib3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.150502 – year: 2018 ident: cpb_34_7_070304bib43 doi: 10.1103/PhysRevA.104.052419 – volume: 8 start-page: 1493 year: 2024 ident: cpb_34_7_070304bib39 publication-title: Quantum doi: 10.1109/TCAD.2023.3327102 – volume: 6 start-page: 781 year: 2022 ident: cpb_34_7_070304bib34 publication-title: Quantum doi: 10.22331/q-2022-08-22-781 – volume: 68 year: 2024 ident: cpb_34_7_070304bib36 publication-title: Sci. China Phys. Mech. Astron. doi: 10.1142/S0219749920500112 – volume: 101 year: 2020 ident: cpb_34_7_070304bib27 publication-title: Phys. Rev. A doi: 10.1145/3149526.3149530 – volume: 4 start-page: 19 year: 2023 ident: cpb_34_7_070304bib41 publication-title: ACM Trans. Quantum Comput. doi: 10.1103/PhysRevA.111.022418 – volume: 9 start-page: 121 year: 2023 ident: cpb_34_7_070304bib28 publication-title: npj Quantum Inf. doi: 10.1103/PhysRevA.101.012320 – volume: 58 start-page: 1416 year: 2021 ident: cpb_34_7_070304bib32 publication-title: J. Spacecr. Rockets doi: 10.1145/1073814.1073834 – volume: 9 start-page: 6903 year: 2019 ident: cpb_34_7_070304bib45 publication-title: Sci. Rep. doi: 10.46632/rmc – volume: 10 year: 2020 ident: cpb_34_7_070304bib17 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.10.021067 – volume: 7 year: 2024 ident: cpb_34_7_070304bib20 publication-title: Adv. Quantum Technol. doi: 10.1002/qute.202300419 – volume: 619 start-page: 98 year: 2023 ident: cpb_34_7_070304bib24 publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.11.020 – volume: 12 start-page: 34 year: 2019 ident: cpb_34_7_070304bib25 publication-title: Algorithms doi: 10.3390/a12020034 – volume: 2 year: 2021 ident: cpb_34_7_070304bib6 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.2.020310 – year: 2014 ident: cpb_34_7_070304bib10 doi: 10.48550/arXiv.1411.4028 – volume: 4 year: 2022 ident: cpb_34_7_070304bib13 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.4.033029 – start-page: 83 year: 2020 ident: cpb_34_7_070304bib15 doi: 10.1109/QCE49297.2020.00021 – volume: 8 start-page: 62 year: 2022 ident: cpb_34_7_070304bib7 publication-title: npj Quantum Inf. doi: 10.1038/s41534-022-00570-y |
SSID | ssj0061023 |
Score | 2.373246 |
Snippet | The quantum alternating operator ansatz algorithm (QAOA+) is widely used for constrained combinatorial optimization problems (CCOPs) due to its ability to... |
SourceID | crossref iop |
SourceType | Index Database Publisher |
StartPage | 70304 |
SubjectTerms | constrained combinatorial optimization problems (CCOPs) feasible space maximum independent set (MIS) quantum alternating operator ansatz algorithm (QAOA+) |
Title | Progressive quantum algorithm for maximum independent set with quantum alternating operator ansatz |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/addd83 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Electronic Journals customDbUrl: eissn: 2058-3834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061023 issn: 1674-1056 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5zInjxW5xf5KAHD5lrkjYRTyKOIag7ONhBKM3XHNp2bq3Ifr1J240pCuKtlLdp8qRN3jd58j4AnOggCqgOWohFVCJKfYW48jSijArlRZLJQqbz7j7o9Oht3-_XwOX8LEw6qob-pr0sEwWXEFaEOH7uePPICcY7yo3iZAksE27jCnd676E7G4YDl5PARVsz62qP8qcSvsxJS_a9C1NMex08zSpXMktemnkmmnL6LW_jP2u_AdYq1xNelaaboKaTLbBSUEDlZBuIrqNqOVbsu4ZvuUU8j2H0OkjHw-w5hta5hXH0MYzt3eFcOzeDE51Bt5i78Ei1xpgMYDrSxTY-dKLk2XQH9No3j9cdVCkwIImJnyHDWsYGPJGnBCYRN0QEGAtiWlhxl8nFYMlU4Nnu9oywjSFEKV_ZoCfAkmpfk11QT9JE7wHoG4OJLYVYH4Rqz7uQ1lHgjBlmIqoNaYCzWR-EozLRRlhskHMeOsxCh1lYYtYApxbesPrbJr_a7f_R7gCsYifrW7BwD0E9G-f6yPoamTguvqlPW8fO4w |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVoEYgLO6KsPsCBg0tjO3E4IqBqWUoPVOotJF5KBUlDmyDUr8fOggoCCYlbFNlO_JzYM57neQAcScd3qHQaiPmUI0ptgVxhSUQZDYTlc8Yzmc67jtPq0eu-3S90TrOzMKO4mPrr-jJPFJxDWBDi3FPDm0dGMN5QboRLTmOhKmDeJjYz2g3t-245FTsmL4HxuMoaRZzyp1a-rEsV_eyZZaa5Ah7LF8zZJc_1NAnqfPotd-M_erAKlgsTFJ7nxdfAnIzWwUJGBeWTDRB0DWXLsGPfJHxNNfJpCP2XwWg8TJ5CqI1cGPrvw1DfHX5q6CZwIhNoNnVnqhR7jdEAjmKZhfOhESdPppug17x6uGihQokBcUzsBCnWUNrx8S0RYOK7igQOxgFRDSxck9FFYc6EY-lht1SgO0SIELbQzo-DOZW2JFugGo0iuQ2grRQmuhWibREqLeuMa4PBZUwx5VOpSA2clOPgxXnCDS8LlLuuZ3DzDG5ejlsNHGuIveKvm_xabueP5Q7BYvey6d22Oze7YAkbpd-MmLsHqsk4lfva_EiCg-wT-wAIG9RN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progressive+quantum+algorithm+for+maximum+independent+set+with+quantum+alternating+operator+ansatz&rft.jtitle=Chinese+physics+B&rft.au=Ni+%E5%80%AA%2C+Xiao-Hui+%E6%99%93%E6%85%A7&rft.au=Li+%E6%9D%8E%2C+Ling-Xiao+%E5%87%8C%E9%9C%84&rft.au=Song+%E5%AE%8B%2C+Yan-Qi+%E7%87%95%E7%90%AA&rft.au=Jin+%E9%87%91%2C+Zheng-Ping+%E6%AD%A3%E5%B9%B3&rft.date=2025-07-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=34&rft.issue=7&rft.spage=70304&rft_id=info:doi/10.1088%2F1674-1056%2Faddd83&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_addd83 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon |