Domain adaptation method inspired by quantum convolutional neural network
Quantum machine learning is an important application of quantum computing in the era of noisy intermediate-scale quantum devices. Domain adaptation (DA) is an effective method for addressing the distribution discrepancy problem between the training data and the real data when the neural network mode...
Saved in:
Published in | Chinese physics B Vol. 34; no. 7; pp. 70302 - 70312 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/adc7ed |
Cover
Abstract | Quantum machine learning is an important application of quantum computing in the era of noisy intermediate-scale quantum devices. Domain adaptation (DA) is an effective method for addressing the distribution discrepancy problem between the training data and the real data when the neural network model is deployed. In this paper, we propose a variational quantum domain adaptation method inspired by the quantum convolutional neural network, named variational quantum domain adaptation (VQDA). The data are first uploaded by a ‘quantum coding module’, then the feature information is extracted by several ‘quantum convolution layers’ and ‘quantum pooling layers’, which is named ‘Feature Extractor’. Subsequently, the labels and the domains of the samples are obtained by the ‘quantum fully connected layer’. With a gradient reversal module, the trained ‘Feature Extractor’ can extract the features that cannot be distinguished from the source and target domains. The simulations on the local computer and IBM Quantum Experience (IBM Q) platform by Qiskit show the effectiveness of the proposed method. The results show that VQDA (with 8 quantum bits) has 91.46% average classification accuracy for DA task between MNIST→USPS (USPS→ MNIST), achieves 91.16% average classification accuracy for gray-scale and color images (with 10 quantum bits), and has 69.25% average classification accuracy on the DA task for color images (also with 10 quantum bits). VQDA achieves a 9.14% improvement in average classification accuracy compared to its corresponding classical domain adaptation method with the same parameter scale for different DA tasks. Simultaneously, the parameters scale is reduced to 43% by using VQDA when both quantum and classical DA methods have similar classification accuracies. |
---|---|
AbstractList | Quantum machine learning is an important application of quantum computing in the era of noisy intermediate-scale quantum devices. Domain adaptation (DA) is an effective method for addressing the distribution discrepancy problem between the training data and the real data when the neural network model is deployed. In this paper, we propose a variational quantum domain adaptation method inspired by the quantum convolutional neural network, named variational quantum domain adaptation (VQDA). The data are first uploaded by a ‘quantum coding module’, then the feature information is extracted by several ‘quantum convolution layers’ and ‘quantum pooling layers’, which is named ‘Feature Extractor’. Subsequently, the labels and the domains of the samples are obtained by the ‘quantum fully connected layer’. With a gradient reversal module, the trained ‘Feature Extractor’ can extract the features that cannot be distinguished from the source and target domains. The simulations on the local computer and IBM Quantum Experience (IBM Q) platform by Qiskit show the effectiveness of the proposed method. The results show that VQDA (with 8 quantum bits) has 91.46% average classification accuracy for DA task between MNIST→USPS (USPS→ MNIST), achieves 91.16% average classification accuracy for gray-scale and color images (with 10 quantum bits), and has 69.25% average classification accuracy on the DA task for color images (also with 10 quantum bits). VQDA achieves a 9.14% improvement in average classification accuracy compared to its corresponding classical domain adaptation method with the same parameter scale for different DA tasks. Simultaneously, the parameters scale is reduced to 43% by using VQDA when both quantum and classical DA methods have similar classification accuracies. |
Author | Zhang, Anqi Pei, Junhao Wu, Chunhui Zhao, Shengmei Wu, Yihua |
Author_xml | – sequence: 1 givenname: Chunhui surname: Wu fullname: Wu, Chunhui organization: Nanjing University of Posts and Telecommunications (NUPT) Institute of Signal Processing and Transmission, Nanjing 210003, China – sequence: 2 givenname: Junhao surname: Pei fullname: Pei, Junhao organization: Nanjing University of Posts and Telecommunications (NUPT) Institute of Signal Processing and Transmission, Nanjing 210003, China – sequence: 3 givenname: Yihua surname: Wu fullname: Wu, Yihua organization: Nanjing University of Posts and Telecommunications (NUPT) Institute of Signal Processing and Transmission, Nanjing 210003, China – sequence: 4 givenname: Anqi surname: Zhang fullname: Zhang, Anqi organization: Nanjing University of Posts and Telecommunications (NUPT) Institute of Signal Processing and Transmission, Nanjing 210003, China – sequence: 5 givenname: Shengmei surname: Zhao fullname: Zhao, Shengmei organization: Nanjing University National Laboratory of Solid State Microstructures, Nanjing 210093, China |
BookMark | eNp1UDtPwzAYtFCRSAs7o38AoZ_tOHFHVKBUqsQCs-VXREpiBzsB9d_TUMTGdMM9dHdzNPPBO4SuCdwSEGJJyqrICfByqaypnD1DGQUuciZYMUPZH32B5intAUoClGVoex861XisrOoHNTTB484Nb8Hixqe-ic5ifcAfo_LD2GET_Gdox0mmWuzdGH9g-Arx_RKd16pN7uoXF-j18eFl_ZTvnjfb9d0uN5TxITcFK0GsHNUAlOrKEc6MKDgDvWLAa1utrDYgioprcGWpCk0UrZWznFhwhC0QnHJNDClFV8s-Np2KB0lATlfIaauctsrTFUfLzcnShF7uwxiP7dP_8m-azWOV |
Cites_doi | 10.1007/s43673-021-00030-3 10.1145/3422622 10.1109/CVPR.2019.00846 10.1088/1674-1056/ac1b84 10.1007/s11128-023-04012-2 10.1007/978-3-030-01424-7_27 10.1109/CVPR.2019.00258 10.1103/PhysRevLett.122.040504 10.1103/PhysRevX.7.031041 10.1109/ICASSP39728.2021.9413453 10.1088/1674-1056/acb75e 10.1017/CBO9780511976667 10.1007/s11128-023-04033-x 10.48550/arXiv.2011.06258 10.1109/TPAMI.2018.2814042 10.1038/s43588-022-00311-3 10.16383/j.aas.c200238 10.1007/978-4-431-55978-8 10.1103/PhysRevA.69.062321 10.1088/1674-1056/aca7f3 10.1007/s42484-021-00061-x 10.1016/j.neucom.2018.05.083 10.23919/CCC52363.2021.9550027 10.7498/aps.70.20210985 10.1088/1674-1056/ac523a 10.1007/978-3-319-58347-1_10 10.1007/s11128-022-03424-w 10.5555/2832747.2832823 10.1038/ncomms5213 10.5555/3305381.3305573 10.1038/s41567-019-0648-8 10.1103/PhysRevA.101.032308 10.1007/s11128-022-03700-9 |
ContentType | Journal Article |
Copyright | 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/1674-1056/adc7ed |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
ExternalDocumentID | 10_1088_1674_1056_adc7ed cpb_34_7_070302 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K W28 AAYXX CITATION |
ID | FETCH-LOGICAL-c235t-c436089e2b0022b7e153c84530b9305fd79dbc08475b0e66a4b1a2faed51d0e13 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu Jul 24 02:04:06 EDT 2025 Tue Jul 22 22:45:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c235t-c436089e2b0022b7e153c84530b9305fd79dbc08475b0e66a4b1a2faed51d0e13 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1088_1674_1056_adc7ed iop_journals_10_1088_1674_1056_adc7ed |
PublicationCentury | 2000 |
PublicationDate | 20250701 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 20250701 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationYear | 2025 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Zhang (cpb_34_7_070302bib16) 2022; 21 Yang (cpb_34_7_070302bib27) 2021 Zhang (cpb_34_7_070302bib30) 2020 Goodfellow (cpb_34_7_070302bib10) 2020; 63 Wu (cpb_34_7_070302bib18) 2023; 22 Tan (cpb_34_7_070302bib3) 2018 Cerezo (cpb_34_7_070302bib14) 2022; 2 Peruzzo (cpb_34_7_070302bib20) 2014; 5 Zhuang (cpb_34_7_070302bib8) 2015 Guo (cpb_34_7_070302bib19) 2023; 32 Chen (cpb_34_7_070302bib21) 2021; 70 Wei (cpb_34_7_070302bib28) 2022; 32 Lü (cpb_34_7_070302bib26) 2021 Schuld (cpb_34_7_070302bib33) 2020; 101 Shende (cpb_34_7_070302bib31) 2004; 69 Wang (cpb_34_7_070302bib2) 2018; 312 Zhang (cpb_34_7_070302bib22) 2023; 32 Ganin (cpb_34_7_070302bib11) 2016; 17 He (cpb_34_7_070302bib13) 2022; 21 Amari (cpb_34_7_070302bib34) 2016; 194 Hou (cpb_34_7_070302bib15) 2022; 31 Fan (cpb_34_7_070302bib1) 2020; 46 Ma (cpb_34_7_070302bib7) 2019 Zhang (cpb_34_7_070302bib23) 2023; 22 Kim (cpb_34_7_070302bib9) 2017 Pan (cpb_34_7_070302bib12) 2022; 31 Rozantsev (cpb_34_7_070302bib5) 2018; 41 Cong (cpb_34_7_070302bib24) 2019; 15 Schuld (cpb_34_7_070302bib17) 2019; 122 Long (cpb_34_7_070302bib4) 2015 Gong (cpb_34_7_070302bib6) 2019 Yao (cpb_34_7_070302bib29) 2017; 7 Nielsen (cpb_34_7_070302bib32) 2010 Hur (cpb_34_7_070302bib25) 2022; 4 |
References_xml | – volume: 32 start-page: 1 year: 2022 ident: cpb_34_7_070302bib28 publication-title: AAPPS Bull. doi: 10.1007/s43673-021-00030-3 – volume: 63 start-page: 139 year: 2020 ident: cpb_34_7_070302bib10 publication-title: Commun. ACM doi: 10.1145/3422622 – start-page: 8258 year: 2019 ident: cpb_34_7_070302bib7 doi: 10.1109/CVPR.2019.00846 – volume: 31 year: 2022 ident: cpb_34_7_070302bib15 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ac1b84 – volume: 22 start-page: 261 year: 2023 ident: cpb_34_7_070302bib18 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-023-04012-2 – start-page: 270 year: 2018 ident: cpb_34_7_070302bib3 doi: 10.1007/978-3-030-01424-7_27 – start-page: 2477 year: 2019 ident: cpb_34_7_070302bib6 doi: 10.1109/CVPR.2019.00258 – volume: 122 year: 2019 ident: cpb_34_7_070302bib17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.040504 – volume: 7 year: 2017 ident: cpb_34_7_070302bib29 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.7.031041 – start-page: 6523 year: 2021 ident: cpb_34_7_070302bib27 doi: 10.1109/ICASSP39728.2021.9413453 – volume: 32 year: 2023 ident: cpb_34_7_070302bib22 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/acb75e – start-page: 186 year: 2010 ident: cpb_34_7_070302bib32 doi: 10.1017/CBO9780511976667 – volume: 22 start-page: 283 year: 2023 ident: cpb_34_7_070302bib23 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-023-04033-x – year: 2020 ident: cpb_34_7_070302bib30 doi: 10.48550/arXiv.2011.06258 – volume: 41 start-page: 801 year: 2018 ident: cpb_34_7_070302bib5 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2018.2814042 – volume: 2 start-page: 567 year: 2022 ident: cpb_34_7_070302bib14 publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-022-00311-3 – volume: 46 start-page: 515 year: 2020 ident: cpb_34_7_070302bib1 publication-title: Acta Autom. Sin. doi: 10.16383/j.aas.c200238 – volume: 194 year: 2016 ident: cpb_34_7_070302bib34 doi: 10.1007/978-4-431-55978-8 – volume: 69 year: 2004 ident: cpb_34_7_070302bib31 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.69.062321 – volume: 32 year: 2023 ident: cpb_34_7_070302bib19 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/aca7f3 – volume: 4 start-page: 3 year: 2022 ident: cpb_34_7_070302bib25 publication-title: Quantum Machine Intelligence doi: 10.1007/s42484-021-00061-x – volume: 312 start-page: 135 year: 2018 ident: cpb_34_7_070302bib2 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.083 – start-page: 6329 year: 2021 ident: cpb_34_7_070302bib26 doi: 10.23919/CCC52363.2021.9550027 – volume: 70 year: 2021 ident: cpb_34_7_070302bib21 publication-title: Acta Phys. Sin. doi: 10.7498/aps.70.20210985 – volume: 31 year: 2022 ident: cpb_34_7_070302bib12 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ac523a – volume: 17 start-page: 2096 year: 2016 ident: cpb_34_7_070302bib11 publication-title: The Journal of Machine Learning Research doi: 10.1007/978-3-319-58347-1_10 – volume: 21 start-page: 86 year: 2022 ident: cpb_34_7_070302bib13 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-022-03424-w – start-page: 4119 year: 2015 ident: cpb_34_7_070302bib8 doi: 10.5555/2832747.2832823 – volume: 5 start-page: 4213 year: 2014 ident: cpb_34_7_070302bib20 publication-title: Nat. Commun. doi: 10.1038/ncomms5213 – start-page: 1857 year: 2017 ident: cpb_34_7_070302bib9 doi: 10.5555/3305381.3305573 – volume: 15 start-page: 1273 year: 2019 ident: cpb_34_7_070302bib24 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0648-8 – volume: 101 year: 2020 ident: cpb_34_7_070302bib33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.032308 – start-page: 97 year: 2015 ident: cpb_34_7_070302bib4 – volume: 21 start-page: 358 year: 2022 ident: cpb_34_7_070302bib16 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-022-03700-9 |
SSID | ssj0061023 |
Score | 2.373633 |
Snippet | Quantum machine learning is an important application of quantum computing in the era of noisy intermediate-scale quantum devices. Domain adaptation (DA) is an... |
SourceID | crossref iop |
SourceType | Index Database Publisher |
StartPage | 70302 |
SubjectTerms | domain adaptation IBM quantum experience quantum convolutional neural network quantum image processing |
Title | Domain adaptation method inspired by quantum convolutional neural network |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/adc7ed |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Journals customDbUrl: eissn: 2058-3834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061023 issn: 1674-1056 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7aiuDFt1hf5KAHD9um2d1kgydRS_WgHiz0IIR9BYo0rTY56K93H6moKIin5DBslm83M7PMt98AHJNI6dSELWQ8pEIk4RwJwRXCuWSh7Y9EhSPI3saDIbkZ0VEDzj7uwkxntevvmFcvFOwhrAlxrGt588g2jO9yJROtmrCEmTlX2Nt7d_cLNxxbTQJ72lpY1zXKn0b4EpOa5rufQkx_DR4Xk_PMkqdOVYqOfPum2_jP2a_Dap16BufedAMautiEZUcBlfMtuL6cTvi4CLjiM1-fD3x76WBc2HK8VoF4DZ4rsxTVJLBs9XrXmjGtKqZ7OE75Ngz7Vw8XA1Q3WkAywrREkuA4ZKmOXEgXiTZuUDJCcShS4w9ylaRKyNAEMipCHceciB6Pcq4V7alQ9_AOtIppoXchMNmByRE4TjQXJM9xKmVIRRITkzrSJGdtOF1Anc28nkbm6uCMZRaazEKTeWjacGJQzOqfav6r3d4f7fZhJbLdex3Z9gBa5UulD01KUYojt3XeAXKMxZw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5ojcaLb2N9ctCDB1rK7vI4GmvTqqk92KQ33BdJY0rRwkF_vfuARI0mJp7Yw7DAt8vMkPmYD-Ac-0LGKmy5ykMKF4eUuoxR4aKUR57WRyLMEGSHQX-MbydkUumcmn9h5nnl-ltqaBsFWwgrQlzU1rx5VwvGt6ngoRTtXKTLsEIQCbV2w-BhVLviQPcl0F9c9RlVnfKnWb7EpWV17U9hprcJT_UNWnbJc6ssWIu_f-vd-I8n2IKNKgV1rqz5NizJbAdWDRWUL3Zh0J3P6DRzqKC5rdM7VmbamWa6LC-Fw96cl1ItSTlzNGu92r1qTt0d0xwMt3wPxr2bx-u-WwkuuNxHpHA5RoEXxdI3oZ2FUrlDHmGCPBYrv5CKMBaMeyqgEebJIKCYdaifUilIR3iyg_ahkc0zeQCOyhJUrkBRKCnDaYpizj3CwgCrFJKEadSEyxruJLd9NRJTD4-iRMOTaHgSC08TLhSSSfVyLX61O_yj3Rmsjbq95H4wvDuCdV8L-hr-7TE0itdSnqgso2CnZid9AHLQywY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+adaptation+method+inspired+by+quantum+convolutional+neural+network&rft.jtitle=Chinese+physics+B&rft.au=Wu%2C+Chunhui&rft.au=Pei%2C+Junhao&rft.au=Wu%2C+Yihua&rft.au=Zhang%2C+Anqi&rft.date=2025-07-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=34&rft.issue=7&rft_id=info:doi/10.1088%2F1674-1056%2Fadc7ed&rft.externalDocID=cpb_34_7_070302 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon |