Domain adaptation method inspired by quantum convolutional neural network

Quantum machine learning is an important application of quantum computing in the era of noisy intermediate-scale quantum devices. Domain adaptation (DA) is an effective method for addressing the distribution discrepancy problem between the training data and the real data when the neural network mode...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 34; no. 7; pp. 70302 - 70312
Main Authors Wu, Chunhui, Pei, Junhao, Wu, Yihua, Zhang, Anqi, Zhao, Shengmei
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.07.2025
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/adc7ed

Cover

Abstract Quantum machine learning is an important application of quantum computing in the era of noisy intermediate-scale quantum devices. Domain adaptation (DA) is an effective method for addressing the distribution discrepancy problem between the training data and the real data when the neural network model is deployed. In this paper, we propose a variational quantum domain adaptation method inspired by the quantum convolutional neural network, named variational quantum domain adaptation (VQDA). The data are first uploaded by a ‘quantum coding module’, then the feature information is extracted by several ‘quantum convolution layers’ and ‘quantum pooling layers’, which is named ‘Feature Extractor’. Subsequently, the labels and the domains of the samples are obtained by the ‘quantum fully connected layer’. With a gradient reversal module, the trained ‘Feature Extractor’ can extract the features that cannot be distinguished from the source and target domains. The simulations on the local computer and IBM Quantum Experience (IBM Q) platform by Qiskit show the effectiveness of the proposed method. The results show that VQDA (with 8 quantum bits) has 91.46% average classification accuracy for DA task between MNIST→USPS (USPS→ MNIST), achieves 91.16% average classification accuracy for gray-scale and color images (with 10 quantum bits), and has 69.25% average classification accuracy on the DA task for color images (also with 10 quantum bits). VQDA achieves a 9.14% improvement in average classification accuracy compared to its corresponding classical domain adaptation method with the same parameter scale for different DA tasks. Simultaneously, the parameters scale is reduced to 43% by using VQDA when both quantum and classical DA methods have similar classification accuracies.
AbstractList Quantum machine learning is an important application of quantum computing in the era of noisy intermediate-scale quantum devices. Domain adaptation (DA) is an effective method for addressing the distribution discrepancy problem between the training data and the real data when the neural network model is deployed. In this paper, we propose a variational quantum domain adaptation method inspired by the quantum convolutional neural network, named variational quantum domain adaptation (VQDA). The data are first uploaded by a ‘quantum coding module’, then the feature information is extracted by several ‘quantum convolution layers’ and ‘quantum pooling layers’, which is named ‘Feature Extractor’. Subsequently, the labels and the domains of the samples are obtained by the ‘quantum fully connected layer’. With a gradient reversal module, the trained ‘Feature Extractor’ can extract the features that cannot be distinguished from the source and target domains. The simulations on the local computer and IBM Quantum Experience (IBM Q) platform by Qiskit show the effectiveness of the proposed method. The results show that VQDA (with 8 quantum bits) has 91.46% average classification accuracy for DA task between MNIST→USPS (USPS→ MNIST), achieves 91.16% average classification accuracy for gray-scale and color images (with 10 quantum bits), and has 69.25% average classification accuracy on the DA task for color images (also with 10 quantum bits). VQDA achieves a 9.14% improvement in average classification accuracy compared to its corresponding classical domain adaptation method with the same parameter scale for different DA tasks. Simultaneously, the parameters scale is reduced to 43% by using VQDA when both quantum and classical DA methods have similar classification accuracies.
Author Zhang, Anqi
Pei, Junhao
Wu, Chunhui
Zhao, Shengmei
Wu, Yihua
Author_xml – sequence: 1
  givenname: Chunhui
  surname: Wu
  fullname: Wu, Chunhui
  organization: Nanjing University of Posts and Telecommunications (NUPT) Institute of Signal Processing and Transmission, Nanjing 210003, China
– sequence: 2
  givenname: Junhao
  surname: Pei
  fullname: Pei, Junhao
  organization: Nanjing University of Posts and Telecommunications (NUPT) Institute of Signal Processing and Transmission, Nanjing 210003, China
– sequence: 3
  givenname: Yihua
  surname: Wu
  fullname: Wu, Yihua
  organization: Nanjing University of Posts and Telecommunications (NUPT) Institute of Signal Processing and Transmission, Nanjing 210003, China
– sequence: 4
  givenname: Anqi
  surname: Zhang
  fullname: Zhang, Anqi
  organization: Nanjing University of Posts and Telecommunications (NUPT) Institute of Signal Processing and Transmission, Nanjing 210003, China
– sequence: 5
  givenname: Shengmei
  surname: Zhao
  fullname: Zhao, Shengmei
  organization: Nanjing University National Laboratory of Solid State Microstructures, Nanjing 210093, China
BookMark eNp1UDtPwzAYtFCRSAs7o38AoZ_tOHFHVKBUqsQCs-VXREpiBzsB9d_TUMTGdMM9dHdzNPPBO4SuCdwSEGJJyqrICfByqaypnD1DGQUuciZYMUPZH32B5intAUoClGVoex861XisrOoHNTTB484Nb8Hixqe-ic5ifcAfo_LD2GET_Gdox0mmWuzdGH9g-Arx_RKd16pN7uoXF-j18eFl_ZTvnjfb9d0uN5TxITcFK0GsHNUAlOrKEc6MKDgDvWLAa1utrDYgioprcGWpCk0UrZWznFhwhC0QnHJNDClFV8s-Np2KB0lATlfIaauctsrTFUfLzcnShF7uwxiP7dP_8m-azWOV
Cites_doi 10.1007/s43673-021-00030-3
10.1145/3422622
10.1109/CVPR.2019.00846
10.1088/1674-1056/ac1b84
10.1007/s11128-023-04012-2
10.1007/978-3-030-01424-7_27
10.1109/CVPR.2019.00258
10.1103/PhysRevLett.122.040504
10.1103/PhysRevX.7.031041
10.1109/ICASSP39728.2021.9413453
10.1088/1674-1056/acb75e
10.1017/CBO9780511976667
10.1007/s11128-023-04033-x
10.48550/arXiv.2011.06258
10.1109/TPAMI.2018.2814042
10.1038/s43588-022-00311-3
10.16383/j.aas.c200238
10.1007/978-4-431-55978-8
10.1103/PhysRevA.69.062321
10.1088/1674-1056/aca7f3
10.1007/s42484-021-00061-x
10.1016/j.neucom.2018.05.083
10.23919/CCC52363.2021.9550027
10.7498/aps.70.20210985
10.1088/1674-1056/ac523a
10.1007/978-3-319-58347-1_10
10.1007/s11128-022-03424-w
10.5555/2832747.2832823
10.1038/ncomms5213
10.5555/3305381.3305573
10.1038/s41567-019-0648-8
10.1103/PhysRevA.101.032308
10.1007/s11128-022-03700-9
ContentType Journal Article
Copyright 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/1674-1056/adc7ed
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
ExternalDocumentID 10_1088_1674_1056_adc7ed
cpb_34_7_070302
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
W28
AAYXX
CITATION
ID FETCH-LOGICAL-c235t-c436089e2b0022b7e153c84530b9305fd79dbc08475b0e66a4b1a2faed51d0e13
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu Jul 24 02:04:06 EDT 2025
Tue Jul 22 22:45:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c235t-c436089e2b0022b7e153c84530b9305fd79dbc08475b0e66a4b1a2faed51d0e13
PageCount 11
ParticipantIDs crossref_primary_10_1088_1674_1056_adc7ed
iop_journals_10_1088_1674_1056_adc7ed
PublicationCentury 2000
PublicationDate 20250701
2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 20250701
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationYear 2025
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Zhang (cpb_34_7_070302bib16) 2022; 21
Yang (cpb_34_7_070302bib27) 2021
Zhang (cpb_34_7_070302bib30) 2020
Goodfellow (cpb_34_7_070302bib10) 2020; 63
Wu (cpb_34_7_070302bib18) 2023; 22
Tan (cpb_34_7_070302bib3) 2018
Cerezo (cpb_34_7_070302bib14) 2022; 2
Peruzzo (cpb_34_7_070302bib20) 2014; 5
Zhuang (cpb_34_7_070302bib8) 2015
Guo (cpb_34_7_070302bib19) 2023; 32
Chen (cpb_34_7_070302bib21) 2021; 70
Wei (cpb_34_7_070302bib28) 2022; 32
Lü (cpb_34_7_070302bib26) 2021
Schuld (cpb_34_7_070302bib33) 2020; 101
Shende (cpb_34_7_070302bib31) 2004; 69
Wang (cpb_34_7_070302bib2) 2018; 312
Zhang (cpb_34_7_070302bib22) 2023; 32
Ganin (cpb_34_7_070302bib11) 2016; 17
He (cpb_34_7_070302bib13) 2022; 21
Amari (cpb_34_7_070302bib34) 2016; 194
Hou (cpb_34_7_070302bib15) 2022; 31
Fan (cpb_34_7_070302bib1) 2020; 46
Ma (cpb_34_7_070302bib7) 2019
Zhang (cpb_34_7_070302bib23) 2023; 22
Kim (cpb_34_7_070302bib9) 2017
Pan (cpb_34_7_070302bib12) 2022; 31
Rozantsev (cpb_34_7_070302bib5) 2018; 41
Cong (cpb_34_7_070302bib24) 2019; 15
Schuld (cpb_34_7_070302bib17) 2019; 122
Long (cpb_34_7_070302bib4) 2015
Gong (cpb_34_7_070302bib6) 2019
Yao (cpb_34_7_070302bib29) 2017; 7
Nielsen (cpb_34_7_070302bib32) 2010
Hur (cpb_34_7_070302bib25) 2022; 4
References_xml – volume: 32
  start-page: 1
  year: 2022
  ident: cpb_34_7_070302bib28
  publication-title: AAPPS Bull.
  doi: 10.1007/s43673-021-00030-3
– volume: 63
  start-page: 139
  year: 2020
  ident: cpb_34_7_070302bib10
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– start-page: 8258
  year: 2019
  ident: cpb_34_7_070302bib7
  doi: 10.1109/CVPR.2019.00846
– volume: 31
  year: 2022
  ident: cpb_34_7_070302bib15
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ac1b84
– volume: 22
  start-page: 261
  year: 2023
  ident: cpb_34_7_070302bib18
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-023-04012-2
– start-page: 270
  year: 2018
  ident: cpb_34_7_070302bib3
  doi: 10.1007/978-3-030-01424-7_27
– start-page: 2477
  year: 2019
  ident: cpb_34_7_070302bib6
  doi: 10.1109/CVPR.2019.00258
– volume: 122
  year: 2019
  ident: cpb_34_7_070302bib17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.040504
– volume: 7
  year: 2017
  ident: cpb_34_7_070302bib29
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.7.031041
– start-page: 6523
  year: 2021
  ident: cpb_34_7_070302bib27
  doi: 10.1109/ICASSP39728.2021.9413453
– volume: 32
  year: 2023
  ident: cpb_34_7_070302bib22
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/acb75e
– start-page: 186
  year: 2010
  ident: cpb_34_7_070302bib32
  doi: 10.1017/CBO9780511976667
– volume: 22
  start-page: 283
  year: 2023
  ident: cpb_34_7_070302bib23
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-023-04033-x
– year: 2020
  ident: cpb_34_7_070302bib30
  doi: 10.48550/arXiv.2011.06258
– volume: 41
  start-page: 801
  year: 2018
  ident: cpb_34_7_070302bib5
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2018.2814042
– volume: 2
  start-page: 567
  year: 2022
  ident: cpb_34_7_070302bib14
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00311-3
– volume: 46
  start-page: 515
  year: 2020
  ident: cpb_34_7_070302bib1
  publication-title: Acta Autom. Sin.
  doi: 10.16383/j.aas.c200238
– volume: 194
  year: 2016
  ident: cpb_34_7_070302bib34
  doi: 10.1007/978-4-431-55978-8
– volume: 69
  year: 2004
  ident: cpb_34_7_070302bib31
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.69.062321
– volume: 32
  year: 2023
  ident: cpb_34_7_070302bib19
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/aca7f3
– volume: 4
  start-page: 3
  year: 2022
  ident: cpb_34_7_070302bib25
  publication-title: Quantum Machine Intelligence
  doi: 10.1007/s42484-021-00061-x
– volume: 312
  start-page: 135
  year: 2018
  ident: cpb_34_7_070302bib2
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– start-page: 6329
  year: 2021
  ident: cpb_34_7_070302bib26
  doi: 10.23919/CCC52363.2021.9550027
– volume: 70
  year: 2021
  ident: cpb_34_7_070302bib21
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.70.20210985
– volume: 31
  year: 2022
  ident: cpb_34_7_070302bib12
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ac523a
– volume: 17
  start-page: 2096
  year: 2016
  ident: cpb_34_7_070302bib11
  publication-title: The Journal of Machine Learning Research
  doi: 10.1007/978-3-319-58347-1_10
– volume: 21
  start-page: 86
  year: 2022
  ident: cpb_34_7_070302bib13
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-022-03424-w
– start-page: 4119
  year: 2015
  ident: cpb_34_7_070302bib8
  doi: 10.5555/2832747.2832823
– volume: 5
  start-page: 4213
  year: 2014
  ident: cpb_34_7_070302bib20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5213
– start-page: 1857
  year: 2017
  ident: cpb_34_7_070302bib9
  doi: 10.5555/3305381.3305573
– volume: 15
  start-page: 1273
  year: 2019
  ident: cpb_34_7_070302bib24
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0648-8
– volume: 101
  year: 2020
  ident: cpb_34_7_070302bib33
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.032308
– start-page: 97
  year: 2015
  ident: cpb_34_7_070302bib4
– volume: 21
  start-page: 358
  year: 2022
  ident: cpb_34_7_070302bib16
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-022-03700-9
SSID ssj0061023
Score 2.373633
Snippet Quantum machine learning is an important application of quantum computing in the era of noisy intermediate-scale quantum devices. Domain adaptation (DA) is an...
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 70302
SubjectTerms domain adaptation
IBM quantum experience
quantum convolutional neural network
quantum image processing
Title Domain adaptation method inspired by quantum convolutional neural network
URI https://iopscience.iop.org/article/10.1088/1674-1056/adc7ed
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Journals
  customDbUrl:
  eissn: 2058-3834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061023
  issn: 1674-1056
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7aiuDFt1hf5KAHD9um2d1kgydRS_WgHiz0IIR9BYo0rTY56K93H6moKIin5DBslm83M7PMt98AHJNI6dSELWQ8pEIk4RwJwRXCuWSh7Y9EhSPI3saDIbkZ0VEDzj7uwkxntevvmFcvFOwhrAlxrGt588g2jO9yJROtmrCEmTlX2Nt7d_cLNxxbTQJ72lpY1zXKn0b4EpOa5rufQkx_DR4Xk_PMkqdOVYqOfPum2_jP2a_Dap16BufedAMautiEZUcBlfMtuL6cTvi4CLjiM1-fD3x76WBc2HK8VoF4DZ4rsxTVJLBs9XrXmjGtKqZ7OE75Ngz7Vw8XA1Q3WkAywrREkuA4ZKmOXEgXiTZuUDJCcShS4w9ylaRKyNAEMipCHceciB6Pcq4V7alQ9_AOtIppoXchMNmByRE4TjQXJM9xKmVIRRITkzrSJGdtOF1Anc28nkbm6uCMZRaazEKTeWjacGJQzOqfav6r3d4f7fZhJbLdex3Z9gBa5UulD01KUYojt3XeAXKMxZw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5ojcaLb2N9ctCDB1rK7vI4GmvTqqk92KQ33BdJY0rRwkF_vfuARI0mJp7Yw7DAt8vMkPmYD-Ac-0LGKmy5ykMKF4eUuoxR4aKUR57WRyLMEGSHQX-MbydkUumcmn9h5nnl-ltqaBsFWwgrQlzU1rx5VwvGt6ngoRTtXKTLsEIQCbV2w-BhVLviQPcl0F9c9RlVnfKnWb7EpWV17U9hprcJT_UNWnbJc6ssWIu_f-vd-I8n2IKNKgV1rqz5NizJbAdWDRWUL3Zh0J3P6DRzqKC5rdM7VmbamWa6LC-Fw96cl1ItSTlzNGu92r1qTt0d0xwMt3wPxr2bx-u-WwkuuNxHpHA5RoEXxdI3oZ2FUrlDHmGCPBYrv5CKMBaMeyqgEebJIKCYdaifUilIR3iyg_ahkc0zeQCOyhJUrkBRKCnDaYpizj3CwgCrFJKEadSEyxruJLd9NRJTD4-iRMOTaHgSC08TLhSSSfVyLX61O_yj3Rmsjbq95H4wvDuCdV8L-hr-7TE0itdSnqgso2CnZid9AHLQywY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+adaptation+method+inspired+by+quantum+convolutional+neural+network&rft.jtitle=Chinese+physics+B&rft.au=Wu%2C+Chunhui&rft.au=Pei%2C+Junhao&rft.au=Wu%2C+Yihua&rft.au=Zhang%2C+Anqi&rft.date=2025-07-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=34&rft.issue=7&rft_id=info:doi/10.1088%2F1674-1056%2Fadc7ed&rft.externalDocID=cpb_34_7_070302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon