Robust growing neural gas algorithm with application in cluster analysis
We propose a novel robust clustering algorithm within the Growing Neural Gas (GNG) framework, called Robust Growing Neural Gas (RGNG) network.The Matlab codes are available from . By incorporating several robust strategies, such as outlier resistant scheme, adaptive modulation of learning rates and...
Saved in:
| Published in | Neural networks Vol. 17; no. 8; pp. 1135 - 1148 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
01.10.2004
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0893-6080 |
| DOI | 10.1016/S0893-6080(04)00166-2 |
Cover
| Abstract | We propose a novel robust clustering algorithm within the Growing Neural Gas (GNG) framework, called Robust Growing Neural Gas (RGNG) network.The Matlab codes are available from . By incorporating several robust strategies, such as outlier resistant scheme, adaptive modulation of learning rates and cluster repulsion method into the traditional GNG framework, the proposed RGNG network possesses better robustness properties. The RGNG is insensitive to initialization, input sequence ordering and the presence of outliers. Furthermore, the RGNG network can automatically determine the optimal number of clusters by seeking the extreme value of the Minimum Description Length (MDL) measure during network growing process. The resulting center positions of the optimal number of clusters represented by prototype vectors are close to the actual ones irrespective of the existence of outliers. Topology relationships among these prototypes can also be established. Experimental results have shown the superior performance of our proposed method over the original GNG incorporating MDL method, called GNG-M, in static data clustering tasks on both artificial and UCI data sets. |
|---|---|
| AbstractList | We propose a novel robust clustering algorithm within the Growing Neural Gas (GNG) framework, called Robust Growing Neural Gas (RGNG) network.The Matlab codes are available from . By incorporating several robust strategies, such as outlier resistant scheme, adaptive modulation of learning rates and cluster repulsion method into the traditional GNG framework, the proposed RGNG network possesses better robustness properties. The RGNG is insensitive to initialization, input sequence ordering and the presence of outliers. Furthermore, the RGNG network can automatically determine the optimal number of clusters by seeking the extreme value of the Minimum Description Length (MDL) measure during network growing process. The resulting center positions of the optimal number of clusters represented by prototype vectors are close to the actual ones irrespective of the existence of outliers. Topology relationships among these prototypes can also be established. Experimental results have shown the superior performance of our proposed method over the original GNG incorporating MDL method, called GNG-M, in static data clustering tasks on both artificial and UCI data sets. |
| Author | QIN A. K. SUGANTHAN P. N. |
| Author_xml | – sequence: 1 givenname: A surname: QIN fullname: QIN, A – sequence: 2 givenname: P surname: SUGANTHAN fullname: SUGANTHAN, P |
| BackLink | https://cir.nii.ac.jp/crid/1572261549812315264$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/15555857$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkEtLxDAUhbMYcR76E5QsXOiimndTXMmgjiAIPtYhzaQ10klL0mGYf2-m4wPceBfnXi7nu3DPFIx86y0AJxhdYoTF1QuSBc0EkugcsQuUViIjIzD5WY_BNMYPhJCQjB6CMeapJM8nYPHcluvYwzq0G-dr6O066AbWOkLd1G1w_fsKbpJC3XWNM7p3rYfOQ9MkzAaovW620cUjcFDpJtrjrz4Db3e3r_NF9vh0_zC_ecwMobzPCpNLZGhBqkLwCktOOBXIYilZycrKMJsLu9TEFCSvRMUpZXiYTKmZyEs6A6f7u926XNml6oJb6bBV3y8lA98bTGhjDLb6tSC1i0sNcaldLgoxNcSlSOKu_3DG9cO7fdCu-Zc-29PeuQTuFPOcEIE5KyQmFHMiGP0ENwR7yw |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2011_02_007 crossref_primary_10_1016_j_cor_2016_08_018 crossref_primary_10_1109_TAMD_2015_2418678 crossref_primary_10_1016_j_flowmeasinst_2025_102816 crossref_primary_10_1016_j_patcog_2008_11_006 crossref_primary_10_1016_j_swevo_2012_02_003 crossref_primary_10_1016_j_neuroimage_2013_09_003 crossref_primary_10_1142_S0218001416500166 crossref_primary_10_1371_journal_pcbi_1005450 crossref_primary_10_1016_j_neucom_2007_12_024 crossref_primary_10_1016_j_procs_2019_12_134 crossref_primary_10_1109_TAMD_2015_2476374 crossref_primary_10_1016_j_neunet_2012_02_032 crossref_primary_10_4015_S1016237219500121 crossref_primary_10_1016_j_ins_2012_08_023 crossref_primary_10_1016_j_mechmachtheory_2020_103978 crossref_primary_10_1016_j_neucom_2019_06_093 crossref_primary_10_1016_j_swevo_2023_101273 crossref_primary_10_22399_ijcesen_1282146 crossref_primary_10_1016_j_patcog_2016_05_008 crossref_primary_10_1016_j_jhydrol_2017_04_047 crossref_primary_10_1016_j_neucom_2010_10_003 crossref_primary_10_1002_cae_21824 crossref_primary_10_1016_j_neucom_2008_02_012 crossref_primary_10_1016_j_neucom_2012_10_004 crossref_primary_10_1088_1741_2552_ab208c crossref_primary_10_1016_j_clinph_2018_03_021 crossref_primary_10_1016_j_jneumeth_2018_02_007 crossref_primary_10_1016_j_orl_2011_01_002 crossref_primary_10_1016_j_patcog_2009_12_018 crossref_primary_10_1016_j_ifacol_2020_12_2699 |
| ContentType | Journal Article |
| DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM |
| DOI | 10.1016/S0893-6080(04)00166-2 |
| DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 1148 |
| ExternalDocumentID | 15555857 10_1016_S0893_6080_04_00166_2 10014158243 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYFN AAYWO ABAOU ABBOA ABCQJ ABEFU ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADJOM ADMUD ADNMO AECPX AEFWE AEIPS AEKER AENEX AEUPX AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F0J F5P FDB FIRID FNPLU FYGXN G-Q GBOLZ HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 M2V M41 MHUIS MO0 MOBAO N9A O-L O9- OAUVE OZT P-9 P2P PC. Q38 RIG ROL RPZ RYH SCC SDF SDG SDP SES SPC SPCBC SSH SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH XPP ZMT ~G- 6TJ AAQXK AAYXX ABDPE ABFNM ACLOT ADRHT AEBSH AFJKZ AGQPQ AIGII APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 GBLVA HLZ HMQ HVGLF LMP MVM P-8 R2- SBC SEW SNS WUQ ~HD AACTN AFKWA AJOXV AMFUW CGR CUY CVF ECM EIF NPM PKN |
| ID | FETCH-LOGICAL-c235t-9c780c392f965f18525360e1884b4bfc4e76eda2c927f6f5334127f6fcba467b3 |
| ISSN | 0893-6080 |
| IngestDate | Wed Feb 19 01:38:14 EST 2025 Thu Apr 24 23:10:39 EDT 2025 Wed Oct 01 02:07:45 EDT 2025 Thu Jun 26 22:26:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c235t-9c780c392f965f18525360e1884b4bfc4e76eda2c927f6f5334127f6fcba467b3 |
| PMID | 15555857 |
| PageCount | 14 |
| ParticipantIDs | pubmed_primary_15555857 crossref_primary_10_1016_S0893_6080_04_00166_2 crossref_citationtrail_10_1016_S0893_6080_04_00166_2 nii_cinii_1572261549812315264 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2004-10-01 2004-10-00 2004 Oct-Nov |
| PublicationDateYYYYMMDD | 2004-10-01 |
| PublicationDate_xml | – month: 10 year: 2004 text: 2004-10-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2004 |
| SSID | ssj0006843 |
| Score | 2.042284 |
| Snippet | We propose a novel robust clustering algorithm within the Growing Neural Gas (GNG) framework, called Robust Growing Neural Gas (RGNG) network.The Matlab codes... |
| SourceID | pubmed crossref nii |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 1135 |
| SubjectTerms | Algorithms Artificial Intelligence Cluster Analysis Minimum description length Neural Networks (Computer) Outlier resistant Prototypes Robust clustering algorithm Robust growing neural gas Topology formation |
| Title | Robust growing neural gas algorithm with application in cluster analysis |
| URI | https://cir.nii.ac.jp/crid/1572261549812315264 https://www.ncbi.nlm.nih.gov/pubmed/15555857 |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0893-6080 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006843 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0893-6080 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006843 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0893-6080 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006843 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0893-6080 databaseCode: AKRWK dateStart: 19930101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVguXCB5buwi3wACVSlJPFXcqwQUJCIBNtKe4scx-5WKili08se9rczjh2nXa2A5WJFkTKO_JrxjDvvDUKvaiJNXBMRSSJYRCuqIllrFRliiwANbKm5JTh_LfhsQb-cstO-m71nl7TVRF1cyyv5H1ThHuBqWbI3QDYYhRtwDfjCCAjD-E8Yf99U2_N2vIRU2mb8VpsSVnwpz8dyvdxA2n_2w5PXhr-p7QGHWm-tPsJYekWS3Qi1cEYaVx4eIu5vn4u9k8-TxadpMZ9Ni4Ej1p8d0FCFFlxMTiIeu15KwR-KHdzBG-64tyRx2iJ-q7S51LVu2J0InATzECzH9HWa2wCTe7rjnvT1lS0pFAoONWhgquSdmCktOzMlbLx3UvDltmHH5HIo7OGZq5XsJx94W--GN3oT07f-bfYiktvNanUlw-gijfkhuudTBDx1eD9At3TzEN3v229g740foZmDH3v4sYMfA_w4wI8t_HgHfrxqsIcf9_A_RouPH-bvZ5FvjBGplLA2ypXIYgWRrck5M5b-zgiPdZJl8LFVRlEtuK5lqvJUGG4s2zrprlQlYWOsyBN00Gwa_QxhxXkd61oblgOYVSKz2GRZYmKRZ1VK-AjRfnFK5VXjbfOSdflHaEZoEh776WRT_vbAMaw8TGHHhAnICqx4IISfBCJMTkfoqcNkMMesVB0Tz2861Qt0d_gWjtBB-2urjyGybKuX3Q_pN8YIazo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+growing+neural+gas+algorithm+with+application+in+cluster+analysis&rft.jtitle=Neural+networks&rft.au=QIN%2C+A&rft.au=SUGANTHAN%2C+P&rft.date=2004-10-01&rft.issn=0893-6080&rft.volume=17&rft.issue=8-9&rft.spage=1135&rft.epage=1148&rft_id=info:doi/10.1016%2FS0893-6080%2804%2900166-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0893_6080_04_00166_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |