Robust growing neural gas algorithm with application in cluster analysis

We propose a novel robust clustering algorithm within the Growing Neural Gas (GNG) framework, called Robust Growing Neural Gas (RGNG) network.The Matlab codes are available from . By incorporating several robust strategies, such as outlier resistant scheme, adaptive modulation of learning rates and...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 17; no. 8; pp. 1135 - 1148
Main Authors QIN, A, SUGANTHAN, P
Format Journal Article
LanguageEnglish
Published United States 01.10.2004
Subjects
Online AccessGet full text
ISSN0893-6080
DOI10.1016/S0893-6080(04)00166-2

Cover

Abstract We propose a novel robust clustering algorithm within the Growing Neural Gas (GNG) framework, called Robust Growing Neural Gas (RGNG) network.The Matlab codes are available from . By incorporating several robust strategies, such as outlier resistant scheme, adaptive modulation of learning rates and cluster repulsion method into the traditional GNG framework, the proposed RGNG network possesses better robustness properties. The RGNG is insensitive to initialization, input sequence ordering and the presence of outliers. Furthermore, the RGNG network can automatically determine the optimal number of clusters by seeking the extreme value of the Minimum Description Length (MDL) measure during network growing process. The resulting center positions of the optimal number of clusters represented by prototype vectors are close to the actual ones irrespective of the existence of outliers. Topology relationships among these prototypes can also be established. Experimental results have shown the superior performance of our proposed method over the original GNG incorporating MDL method, called GNG-M, in static data clustering tasks on both artificial and UCI data sets.
AbstractList We propose a novel robust clustering algorithm within the Growing Neural Gas (GNG) framework, called Robust Growing Neural Gas (RGNG) network.The Matlab codes are available from . By incorporating several robust strategies, such as outlier resistant scheme, adaptive modulation of learning rates and cluster repulsion method into the traditional GNG framework, the proposed RGNG network possesses better robustness properties. The RGNG is insensitive to initialization, input sequence ordering and the presence of outliers. Furthermore, the RGNG network can automatically determine the optimal number of clusters by seeking the extreme value of the Minimum Description Length (MDL) measure during network growing process. The resulting center positions of the optimal number of clusters represented by prototype vectors are close to the actual ones irrespective of the existence of outliers. Topology relationships among these prototypes can also be established. Experimental results have shown the superior performance of our proposed method over the original GNG incorporating MDL method, called GNG-M, in static data clustering tasks on both artificial and UCI data sets.
Author QIN A. K.
SUGANTHAN P. N.
Author_xml – sequence: 1
  givenname: A
  surname: QIN
  fullname: QIN, A
– sequence: 2
  givenname: P
  surname: SUGANTHAN
  fullname: SUGANTHAN, P
BackLink https://cir.nii.ac.jp/crid/1572261549812315264$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/15555857$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLxDAUhbMYcR76E5QsXOiimndTXMmgjiAIPtYhzaQ10klL0mGYf2-m4wPceBfnXi7nu3DPFIx86y0AJxhdYoTF1QuSBc0EkugcsQuUViIjIzD5WY_BNMYPhJCQjB6CMeapJM8nYPHcluvYwzq0G-dr6O066AbWOkLd1G1w_fsKbpJC3XWNM7p3rYfOQ9MkzAaovW620cUjcFDpJtrjrz4Db3e3r_NF9vh0_zC_ecwMobzPCpNLZGhBqkLwCktOOBXIYilZycrKMJsLu9TEFCSvRMUpZXiYTKmZyEs6A6f7u926XNml6oJb6bBV3y8lA98bTGhjDLb6tSC1i0sNcaldLgoxNcSlSOKu_3DG9cO7fdCu-Zc-29PeuQTuFPOcEIE5KyQmFHMiGP0ENwR7yw
CitedBy_id crossref_primary_10_1016_j_asoc_2011_02_007
crossref_primary_10_1016_j_cor_2016_08_018
crossref_primary_10_1109_TAMD_2015_2418678
crossref_primary_10_1016_j_flowmeasinst_2025_102816
crossref_primary_10_1016_j_patcog_2008_11_006
crossref_primary_10_1016_j_swevo_2012_02_003
crossref_primary_10_1016_j_neuroimage_2013_09_003
crossref_primary_10_1142_S0218001416500166
crossref_primary_10_1371_journal_pcbi_1005450
crossref_primary_10_1016_j_neucom_2007_12_024
crossref_primary_10_1016_j_procs_2019_12_134
crossref_primary_10_1109_TAMD_2015_2476374
crossref_primary_10_1016_j_neunet_2012_02_032
crossref_primary_10_4015_S1016237219500121
crossref_primary_10_1016_j_ins_2012_08_023
crossref_primary_10_1016_j_mechmachtheory_2020_103978
crossref_primary_10_1016_j_neucom_2019_06_093
crossref_primary_10_1016_j_swevo_2023_101273
crossref_primary_10_22399_ijcesen_1282146
crossref_primary_10_1016_j_patcog_2016_05_008
crossref_primary_10_1016_j_jhydrol_2017_04_047
crossref_primary_10_1016_j_neucom_2010_10_003
crossref_primary_10_1002_cae_21824
crossref_primary_10_1016_j_neucom_2008_02_012
crossref_primary_10_1016_j_neucom_2012_10_004
crossref_primary_10_1088_1741_2552_ab208c
crossref_primary_10_1016_j_clinph_2018_03_021
crossref_primary_10_1016_j_jneumeth_2018_02_007
crossref_primary_10_1016_j_orl_2011_01_002
crossref_primary_10_1016_j_patcog_2009_12_018
crossref_primary_10_1016_j_ifacol_2020_12_2699
ContentType Journal Article
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1016/S0893-6080(04)00166-2
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 1148
ExternalDocumentID 15555857
10_1016_S0893_6080_04_00166_2
10014158243
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABCQJ
ABEFU
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBOLZ
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
M2V
M41
MHUIS
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
RYH
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
XPP
ZMT
~G-
6TJ
AAQXK
AAYXX
ABDPE
ABFNM
ACLOT
ADRHT
AEBSH
AFJKZ
AGQPQ
AIGII
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
GBLVA
HLZ
HMQ
HVGLF
LMP
MVM
P-8
R2-
SBC
SEW
SNS
WUQ
~HD
AACTN
AFKWA
AJOXV
AMFUW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
ID FETCH-LOGICAL-c235t-9c780c392f965f18525360e1884b4bfc4e76eda2c927f6f5334127f6fcba467b3
ISSN 0893-6080
IngestDate Wed Feb 19 01:38:14 EST 2025
Thu Apr 24 23:10:39 EDT 2025
Wed Oct 01 02:07:45 EDT 2025
Thu Jun 26 22:26:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c235t-9c780c392f965f18525360e1884b4bfc4e76eda2c927f6f5334127f6fcba467b3
PMID 15555857
PageCount 14
ParticipantIDs pubmed_primary_15555857
crossref_primary_10_1016_S0893_6080_04_00166_2
crossref_citationtrail_10_1016_S0893_6080_04_00166_2
nii_cinii_1572261549812315264
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-10-01
2004-10-00
2004 Oct-Nov
PublicationDateYYYYMMDD 2004-10-01
PublicationDate_xml – month: 10
  year: 2004
  text: 2004-10-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2004
SSID ssj0006843
Score 2.042284
Snippet We propose a novel robust clustering algorithm within the Growing Neural Gas (GNG) framework, called Robust Growing Neural Gas (RGNG) network.The Matlab codes...
SourceID pubmed
crossref
nii
SourceType Index Database
Enrichment Source
Publisher
StartPage 1135
SubjectTerms Algorithms
Artificial Intelligence
Cluster Analysis
Minimum description length
Neural Networks (Computer)
Outlier resistant
Prototypes
Robust clustering algorithm
Robust growing neural gas
Topology formation
Title Robust growing neural gas algorithm with application in cluster analysis
URI https://cir.nii.ac.jp/crid/1572261549812315264
https://www.ncbi.nlm.nih.gov/pubmed/15555857
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0893-6080
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006843
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0893-6080
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006843
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0893-6080
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006843
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0893-6080
  databaseCode: AKRWK
  dateStart: 19930101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVguXCB5buwi3wACVSlJPFXcqwQUJCIBNtKe4scx-5WKili08se9rczjh2nXa2A5WJFkTKO_JrxjDvvDUKvaiJNXBMRSSJYRCuqIllrFRliiwANbKm5JTh_LfhsQb-cstO-m71nl7TVRF1cyyv5H1ThHuBqWbI3QDYYhRtwDfjCCAjD-E8Yf99U2_N2vIRU2mb8VpsSVnwpz8dyvdxA2n_2w5PXhr-p7QGHWm-tPsJYekWS3Qi1cEYaVx4eIu5vn4u9k8-TxadpMZ9Ni4Ej1p8d0FCFFlxMTiIeu15KwR-KHdzBG-64tyRx2iJ-q7S51LVu2J0InATzECzH9HWa2wCTe7rjnvT1lS0pFAoONWhgquSdmCktOzMlbLx3UvDltmHH5HIo7OGZq5XsJx94W--GN3oT07f-bfYiktvNanUlw-gijfkhuudTBDx1eD9At3TzEN3v229g740foZmDH3v4sYMfA_w4wI8t_HgHfrxqsIcf9_A_RouPH-bvZ5FvjBGplLA2ypXIYgWRrck5M5b-zgiPdZJl8LFVRlEtuK5lqvJUGG4s2zrprlQlYWOsyBN00Gwa_QxhxXkd61oblgOYVSKz2GRZYmKRZ1VK-AjRfnFK5VXjbfOSdflHaEZoEh776WRT_vbAMaw8TGHHhAnICqx4IISfBCJMTkfoqcNkMMesVB0Tz2861Qt0d_gWjtBB-2urjyGybKuX3Q_pN8YIazo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+growing+neural+gas+algorithm+with+application+in+cluster+analysis&rft.jtitle=Neural+networks&rft.au=QIN%2C+A&rft.au=SUGANTHAN%2C+P&rft.date=2004-10-01&rft.issn=0893-6080&rft.volume=17&rft.issue=8-9&rft.spage=1135&rft.epage=1148&rft_id=info:doi/10.1016%2FS0893-6080%2804%2900166-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0893_6080_04_00166_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon